Skip to main content

Advertisement

Log in

Atherosclerosis in autoimmune diseases

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Lipid peroxidation occurs frequently in patients with systemic autoimmune diseases and contributes to autoimmune vascular inflammation. Oxidized low-density lipoprotein (oxLDL) interacts with β2-glycoprotein I (β2GPI), forming oxLDL/β2GPI complexes. Circulating oxLDL/β2GPI complexes and autoantibodies to these complexes have been demonstrated in patients with systemic lupus erythematosus and antiphospholipid syndrome. These findings suggest an immunogenic nature of the complexes and an active proatherogenic role in autoimmunity. Biochemical characterization of the complexes and immunohistochemical studies of atherosclerotic lesions suggest that most of the complexes originate in the arterial wall and are released into circulation. The in vitro macrophage uptake of oxLDL/β2GPI complexes increased significantly in the presence of antiphospholipid antibodies (anti-β2GPI), suggesting that macrophage Fcγ receptors are involved in the lipid intracellular inflthat leads to foam cell formation. These findings provide an immunologic explanation for the accelerated development of atherosclerosis seen in systemic lupus erythematosus and antiphospholipid syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Aranow C, Ginzler EM: Epidemiology of cardiovascular disease in systemic lupus erythematosus. Lupus 2000, 9:166–169.

    Article  PubMed  CAS  Google Scholar 

  2. Steinberg D: Low-density lipoprotein oxidation and its pathobiological significance. J Biol Chem 1997, 272:20963–20966.

    Article  PubMed  CAS  Google Scholar 

  3. Heinecke JW: Mechanisms of oxidative damage of lowdensity lipoprotein in human atherosclerosis. Curr Opin Lipid 1997, 8:268–274.

    Article  CAS  Google Scholar 

  4. Hughes GR, Harris EN, Gharavi AE: The anticardiolipin syndrome. J Rheumatol 1986, 13:486–489.

    PubMed  CAS  Google Scholar 

  5. Ginsburg KS, Liang MH, Newcomer L, et al.: Anticardiolipin antibodies and the risk for ischemic stroke and venous thrombosis. Ann Intern Med 1992, 117:997–1002.

    PubMed  CAS  Google Scholar 

  6. Vaarala O: Antiphospholipid antibodies in myocardial infarction. Lupus 1998, 7:S132–S134.

    Article  PubMed  CAS  Google Scholar 

  7. McNeil HP, Simpson RJ, Chesterman CN, Krilis SA: Antiphospholipid antibodies are directed against a complex antigen that includes a lipid-binding inhibitor of coagulation: beta 2-glycoprotein I (apolipoprotein H). Proc Natl Acad Sci U S A 1990, 87:4120–4124.

    Article  PubMed  CAS  Google Scholar 

  8. Matsuura E, Igarashi Y, Yasuda T, et al.: Anticardiolipin antibodies recognize b2-glycoprotein I structure altered by interacting with an oxygen modified solid phase surface. J Exp Med 1994, 179:457–462.

    Article  PubMed  CAS  Google Scholar 

  9. Brey RL, Abbott RD, Curb JD, et al.: Beta2-glycoprotein I dependent anticardiolipin antibodies and the risk of ischemic stroke and myocardial infarction. Stroke 2001, 32:1701–1706.

    PubMed  CAS  Google Scholar 

  10. Lopez LR, Dier KJ, Lopez D, et al.: Anti-b2-glycoprotein I and antiphosphatidylserine antibodies are predictors of arterial thrombosis in patients with antiphospholipid syndrome. Am J Clin Pathol 2004, 121:142–149.

    Article  PubMed  CAS  Google Scholar 

  11. George J, Harats D, Gilburd B, et al.: Immunolocalization of b2-glycoprotein I (apolipoprotein H) to human atherosclerotic plaques: potential implications for lesion progression. Circulation 1999, 99:2227–2230.

    PubMed  CAS  Google Scholar 

  12. Yla-Herttuala S, Palinski W, Rosenfeld ME, et al.: Evidence for the presence of oxidatively modified low-density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin Invest 1989, 85:1086–1095.

    Article  Google Scholar 

  13. Kobayashi K, Kishi M, Atsumi T, et al.: Circulating oxidized LDL forms complexes with b2-glycoprotein I: implication as an atherogenic autoantigen. J Lipid Res 2003, 44:716–726.

    Article  PubMed  CAS  Google Scholar 

  14. Hasunuma Y, Matsuura E, Makita Z, et al.: Involvement of b2-glycoprotein I and anticardiolipin antibodies in oxidatively modified low-density lipoprotein uptake by macrophages. Clin Exp Immunol 1997, 107:569–573.

    Article  PubMed  CAS  Google Scholar 

  15. Kobayashi K, Matsuura E, Liu Q, et al.: A specific ligand for b2-glycoprotein I mediates autoantibody-dependent uptake of oxidized low density lipoprotein by macrophages. J Lipid Res 2001, 42:697–709.

    PubMed  CAS  Google Scholar 

  16. Matsuura E, Kobayashi K, Tabuchi M, Lopez LR: Oxidative modification of low-density lipoprotein and immune regulation of atherosclerosis. Prog Lipid Res 2006, 45:466–486.

    Article  PubMed  CAS  Google Scholar 

  17. Lopez D, Kobayashi K, Merrill JT, et al.: IgG Autoantibodies against b2-glycoprotein I complexed with a lipid ligand derived from oxidized low-density lipoprotein are associated with arterial thrombosis in antiphospholipid syndrome. Clin Dev Immunol 2003, 10:203–211.

    Article  PubMed  CAS  Google Scholar 

  18. American Heart Association: Heart Disease and Stroke Statistics — 2005 Update. Available at http://www.americanheart.org. Accessed on September 25, 2008.

  19. Ross R: Atherosclerosis—an inflammatory disease. N Engl J Med 1999, 340:115–126.

    Article  PubMed  CAS  Google Scholar 

  20. Virella G, Atchley DH, Koskinen S, et al.: Pro-atherogenic and pro-inflammatory properties of immune complexes prepared with purified human oxLDL antibodies and human oxLDL. Clin Immunol 2002, 105:81–92.

    Article  PubMed  CAS  Google Scholar 

  21. Salonen JT, Yla-Herttuala S, Yamamoto R, et al.: Autoantibodies against oxidized LDL and progression of carotid atherosclerosis. Lancet 1992, 339:883–887.

    Article  PubMed  CAS  Google Scholar 

  22. Esdaile JM, Abrahamowicz M, Grodzicky T, et al.: Traditional Framingham risk factors fail to fully account for accelerated atherosclerosis in systemic lupus erythematosus. Arthritis Rheum 2001, 44:2331–2337.

    Article  PubMed  CAS  Google Scholar 

  23. Thomas RH: Hypercoagulability syndromes. Arch Intern Med 2001, 161:2433–2439.

    Article  PubMed  CAS  Google Scholar 

  24. Wahl DG, Guillemin F, de Maistre E, et al.: Risk for venous thrombosis related to antiphospholipid antibodies in systemic lupus erythematosus: a meta analysis. Lupus 1997, 6:467–473.

    Article  PubMed  CAS  Google Scholar 

  25. Shah NM, Khamashta MA, Atsumi T, Hughes GR: Outcome of patients with anticardiolipin antibodies: a 10 year follow-up of 52 patients. Lupus 1998, 7:3–6.

    Article  PubMed  CAS  Google Scholar 

  26. Cervera R, Piette JC, Font J, et al.: Antiphospholipid syndrome. Clinical and immunologic manifestations and patterns of disease expression in a cohort of 1,000 patients. Arthritis Rheum 2002, 46:1019–1027.

    Article  PubMed  Google Scholar 

  27. George J, Harats D, Gilburd B, et al.: Adoptive transfer of b2-glycoprotein I-reactive lymphocytes enhances early atherosclerosis in LDL receptor-deficient mice. Circulation 2000, 102:1822–1827.

    PubMed  CAS  Google Scholar 

  28. Cushing SD, Berliner JA, Valente AJ, et al.: Minimally modified low-density lipoprotein induces monocyte chemotactic protein 1 in human endothelial cells and smooth muscle cells. Proc Natl Acad Sci U S A 1990, 87:5134–5138.

    Article  PubMed  CAS  Google Scholar 

  29. Frostegard J, Wu R, Haegerstrand A, et al.: Mononuclear leukocytes exposed to oxidized low density lipoprotein secrete a factor that stimulates endothelial cells to express adhesion molecules. Atherosclerosis 1993, 103:213–219.

    Article  PubMed  CAS  Google Scholar 

  30. Mach F, Schonbeck U, Sukhova GK, et al.: Reduction of atherosclerosis in mice by inhibition of CD40 signalling. Nature 1998, 394:200–203.

    Article  PubMed  CAS  Google Scholar 

  31. Fong LG, Parthasarathy S, Witztum JL, Steinberg D: Nonenzymatic oxidative cleavage of peptide bonds in apoprotein B-100. J Lipid Res 1987, 28:1466–1467.

    PubMed  CAS  Google Scholar 

  32. Kleinveld HA, Hak-Lemmers HL, Stalenhoef AF, Demacker PN: Improved measurement of low-density-lipoprotein susceptibility to copper-induced oxidation: application of a short procedure for isolating low-density lipoprotein. Clin Chem 1992, 38:2066–2072.

    PubMed  CAS  Google Scholar 

  33. Parthasarathy S, Fong LG, Quinn MT, Steinberg D: Oxidative modification of LDL: comparison between cell-mediated and copper-mediated modification. Eur Heart J 11(Suppl E):83–87.

  34. Podrez EA, Abu-Soud HM, Hazen SL: Myeloperoxidase-generated oxidants and atherosclerosis. Free Rad Biol Med 1999, 28:1717–1725.

    Article  Google Scholar 

  35. Yamamoto T, Davis CG, Brown MS, et al.: The human LDL receptor: a cysteine-rich protein with multiple Alu sequences in its mRNA. Cell 1984, 39:27–38.

    Article  PubMed  CAS  Google Scholar 

  36. Brown MS, Goldstein JL: Scavenger cell receptor shared. Nature 1985, 316:680–681.

    Article  PubMed  CAS  Google Scholar 

  37. Kodama T, Reddy P, Kishimoto C, Krieger M: Purification and characterization of a bovine acetyl low-density lipoprotein receptor. Proc Natl Acad Sci U S A 1988, 85:9238–9242.

    Article  PubMed  CAS  Google Scholar 

  38. Ramprasad MP, Fischer W, Witztum JL, et al.: The 94- to 97-kDa mouse macrophage membrane protein that recognizes oxidized low density lipoprotein and phosphatidylserine-rich liposomes is identical to macrosialin, the mouse homologue of human CD68. Proc Natl Acad Sci U S A 1995, 92:9580–9584.

    Article  PubMed  CAS  Google Scholar 

  39. Sawamura T, Kume N, Aoyama T, et al.: An endothelial receptor for oxidized low-density lipoprotein. Nature 1997, 386:73–77.

    Article  PubMed  CAS  Google Scholar 

  40. Shimaoka T, Kume N, Minami M, et al.: Molecular cloning of a novel scavenger receptor for oxidized low-density lipoprotein, SR-PSOX, on macrophages. J Biol Chem 2000, 275:40663–40666.

    Article  PubMed  CAS  Google Scholar 

  41. Hoshino M, Hagihara Y, Nishii I, et al.: Identification of the phospholipid-binding site of human b2-glycoprotein I domain V by heteronuclear magnetic resonance. J Mol Biol 2000, 304:927–939.

    Article  PubMed  CAS  Google Scholar 

  42. Inanc M, Radway-Bright EL, Isenberg DA: Beta2-glycoprotein I and anti-b2-glycoprotein I antibodies: where are we now? Br J Rheumatol 1997, 36:1247–1257.

    Article  PubMed  CAS  Google Scholar 

  43. Merrill JT, Zhang HW, Shen C, et al.: Enhancement of Protein S anticoagulant function by b2-glycoprotein I, a major target antigen of antiphospholipid antibodies: b2-glycoprotein I interferes with binding of Protein S to its plasma inhibitor, C4b-binding protein. Thromb Haemost 1999, 81:748–757.

    PubMed  CAS  Google Scholar 

  44. Morgan PE, Sturgess AD, Davies M: Increased levels of serum protein oxidation and correlation with disease activity in patients with systemic lupus erythematosus. Arthritis Rheum 2005, 52:2069–2079.

    Article  PubMed  CAS  Google Scholar 

  45. Frostegard J, Svenungsson E, Wu R, et al.: Lipid peroxidation is enhanced in patients with systemic lupus erythematosus and is associated with arterial and renal disease manifestations. Arthritis Rheum 2005, 52:192–200.

    Article  PubMed  CAS  Google Scholar 

  46. Lopez D, Garcia-Valladares I, Palafox-Sanchez C, et al.: Oxidized low-density lipoprotein/b2-glycoprotein I complexes and autoantibodies to oxLig-1/b2-glycoprotein I in patients with systemic lupus erythematosus and antiphospholipid syndrome. Am J Clin Pathol 2004, 121:426–436.

    Article  PubMed  CAS  Google Scholar 

  47. Lopez LR, Simpson DF, Hurley BL, Matsuura E: OxLDL/b2GPI complexes and autoantibodies in patients with systemic lupus erythematosus, systemic sclerosis and antiphospholipid syndrome. Pathogenic implications for vascular involvement. Ann NY Acad Sci 2005, 1051:313–322.

    Article  PubMed  CAS  Google Scholar 

  48. Matsuura E, Kobayashi K, Inoue K, et al.: Oxidized LDL/b2-glycoprotein I complexes: new aspects in atherosclerosis. Lupus 2005, 14:736–741.

    Article  PubMed  CAS  Google Scholar 

  49. Ayada K, Yokota K, Kobayashi K, et al.: Chronic infections and atherosclerosis. Ann NY Acad Sci 2007, 1108:594–602.

    Article  PubMed  CAS  Google Scholar 

  50. Liu Q, Kobayashi K, Furukawa J, et al.: Omega-carboxyl variants of 7-ketocholesteryl esters are ligands for β2-glycoprotein I and mediate antibody-dependent uptake of oxidized LDL by macrophages. J Lipid Res 2002, 43:1486–1495.

    Article  PubMed  CAS  Google Scholar 

  51. Tabuchi M, Inoue K, Usui-Kataoka H, et al.: The association of C-reactive protein with an oxidative metabolite of LDL and its implication in atherosclerosis. J Lipid Res 2007, 48:768–781.

    Article  PubMed  CAS  Google Scholar 

  52. Kobayashi K, Lopez LR, Matsuura E: Atherogenic antiphospholipid antibodies in antiphospholipid syndrome. Ann N Y Acad Sci 2007, 1108:489–496.

    Article  PubMed  CAS  Google Scholar 

  53. Kobayashi K, Tada K, Itabe H, et al.: Distinguished effects of antiphospholipid antibodies and anti-oxidized LDL antibodies on oxidized LDL uptake by macrophages. Lupus 2007, 16:929–938.

    Article  PubMed  CAS  Google Scholar 

  54. Kuwana M, Matsuura E, Kobayashi K, et al.: Binding of β2-glycoprotein I to anionic phospholipids facilitates processing and presentation of a cryptic epitope that activates pathogenic autoreactive T cells. Blood 2005, 105:1552–1557.

    Article  PubMed  CAS  Google Scholar 

  55. Yamaguchi Y, Seta N, Kaburaki J, et al.: Excessive exposure to anionic surfaces maintains autoantibody response to β2-glycoprotein I in patients with antiphospholipid syndrome. Blood 2007, 110:4312–4318.

    Article  PubMed  CAS  Google Scholar 

  56. Kajiwara T, Yasuda T, Matsuura E: Intracellular trafficking of β2-glycoprotein I complexes with lipid vesicles in macrophages: implications on the development of antiphospholipid syndrome. J Autoimmun 2007, 29:164–173.

    Article  PubMed  CAS  Google Scholar 

  57. Kasahara J, Kobayashi K, Maeshima Y, et al.: Clinical significance of serum oxidized low-density lipoprotein/β2-glycoprotein I complexes in patients with chronic renal diseases. Nephron Clin Pract 2004, 98:c15–24.

    Article  PubMed  CAS  Google Scholar 

  58. Ames PR, Margarita A, Sokoll KB, et al.: Premature atherosclerosis in primary antiphospholipid syndrome: preliminary data. Ann Rheum Dis 2005, 64:315–317.

    Article  PubMed  CAS  Google Scholar 

  59. Matsuura E, Kobayashi K, Tabuchi M, et al.: Accelerated atheroma in the antiphospholipid syndrome. Rheum Dis Clin North Am 2006, 32:537–551.

    Article  PubMed  Google Scholar 

  60. Margarita A, Batuca J, Scenna G, et al.: Subclinical atherosclerosis in primary antiphospholipid syndrome. Ann N Y Acad Sci 2007, 1108:475–480.

    Article  PubMed  CAS  Google Scholar 

  61. Matsuura E, Kobayashi K, Lopez LR: Preventing autoimmune and infection triggered atherosclerosis for an enduring healthful lifestyle. Autoimmun Rev 2008, 7:214–222.

    Article  PubMed  CAS  Google Scholar 

  62. Ames PR, Margarita A, Alves JD: Antiphospholipid antibodies and atherosclerosis: insights from systemic lupus erythematosus and primary antiphospholipid syndrome. Clin Rev Allergy Immunol 2008 [Epub ahead of print].

  63. Matsuura E, Lopez LR: Autoimmune-mediated atherothrombosis. Lupus 2008, 17:878–887.

    Article  PubMed  CAS  Google Scholar 

  64. Ames PR, Antinolfi I, Ciampa A, et al.: Primary antiphospholipid syndrome: a low-grade auto-inflammatory disease? Rheumatology 2008, 47:1832–1837.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Matsuura.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsuura, E., Kobayashi, K. & Lopez, L.R. Atherosclerosis in autoimmune diseases. Curr Rheumatol Rep 11, 61–69 (2009). https://doi.org/10.1007/s11926-009-0009-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-009-0009-1

Keywords

Navigation