Skip to main content
Log in

Lessons from animal models of osteoarthritis

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Animal models of osteoarthritis (OA) provide valuable insight into pathogenetic pathways. Although OA is not an inflammatory disease, synovial activation clearly plays a role. Matrix metalloproteinases 3 (stromelysin) and 13 (collagenase) appear crucial, and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-5-mediated aggrecan cleavage in the interglobular domain is key in OA cartilage damage. Apart from cytokines, chondrocyte derangement or hypertrophy may contribute. Enhanced discoidin domain receptor-2 expression is found in OA models and human OA. Moreover, deficiency of Runt-related transcription factor-2 ameliorates murine OA. The abundant transforming growth factor-β prevents chondrocyte hypertrophy. Age-related loss of proper transforming growth factor-β signaling, with a major drop in SMAD-2 phosphorylation, may contribute to hypertrophy and subsequent development of OA cartilage pathology. Finally, transgenic mice show that osteoprotegerin is protective in OA, and treatment studies with recombinant osteoprotegerin have identified chondrocyte apoptosis blocking as an underlying mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Blom AB, van der Kraan PM, van den Berg WB: Cytokine targeting in osteoarthritis. Curr Drug Targets 2007, 8:283–292.

    Article  PubMed  CAS  Google Scholar 

  2. Clements KM, Price JS, Chambers MG, et al.: Gene deletion of either interleukin-1beta, interleukin-1beta-converting enzyme, inducible nitric oxide synthase, or stromelysin 1 accelerates the development of knee osteoarthritis in mice after surgical transection of the medial collateral ligament and partial medial meniscectomy. Arthritis Rheum 2003, 48:3452–3463.

    Article  PubMed  CAS  Google Scholar 

  3. Goldring MB, Goldring SR: Osteoarthritis. J Cell Physiol 2007, 213:626–634.

    Article  PubMed  CAS  Google Scholar 

  4. Blom AB, van Lent PL, Libregts S, et al.: Crucial role of macrophages in matrix metalloproteinase-mediated cartilage destruction during experimental osteoarthritis. Arthritis Rheum 2007, 56:147–157.

    Article  PubMed  CAS  Google Scholar 

  5. Bondeson J, Wainwright SD, Lauder S, et al.: The role of synovial macrophages and macrophage-produced cytokines in driving aggrecanases, matrix metalloproteinases, and other destructive and inflammatory responses in osteoarthritis. Arthritis Res Ther 2006, 8:R187.

    Article  PubMed  Google Scholar 

  6. Amos N, Lauder S, Evans A, et al.: Adenoviral gene transfer into OA synovial cells using the endogenous inhibitor IkBa reveals that most, but not all, inflammatory and destructive mediators are NFkB dependent. Rheumatology 2006, 45:2101–2109.

    Article  Google Scholar 

  7. Aigner T, Haag J, Zimmer R: Functional genomics, evo-devo and systems biology: a chance to overcome complexity? Curr Opin Rheumatol 2007, 19:463–470.

    Article  PubMed  Google Scholar 

  8. Appleton CT, McErlain DD, Pitelka V, et al.: Forced immobilization accelerates pathogenesis: characterization of a preclinical surgical model of OA. Arthritis Res Ther 2007, 9:R13.

    Article  PubMed  Google Scholar 

  9. Appleton CT, Pitelka V, Henry J, Beier F: Global analyses of gene expression in early experimental osteoarthritis. Arthritis Rheum 2007, 56:1854–1868.

    Article  PubMed  CAS  Google Scholar 

  10. Barve RA, Minnerly JC, Weiss DJ, et al.: Transcriptional profiling and pathway analysis of monosodium iodoacetate-induced experimental OA in rats: relevance to human disease. Osteoarthritis Cartilage 2007, 15:1190–1198.

    Article  PubMed  CAS  Google Scholar 

  11. Glasson SS, Askew R, Sheppard B, et al.: Deletion of active ADAMTS5 prevents cartilage degradation in a murine model of osteoarthritis. Nature 2005, 434:644–648.

    Article  PubMed  CAS  Google Scholar 

  12. Little CB, Meeker CT, Golub SB, et al.: Blocking aggrecanase cleavage in the aggrecan interglobular domain abrogates cartilage erosion and promotes cartilage repair. J Clin Invest 2007, 117:1627–1636.

    Article  PubMed  CAS  Google Scholar 

  13. Majumdar MK, Askew R, Schelling S, et al.: Double-knockout of ADAMTS-4 and ADAMTS-5 in mice results in physiologically normal animals and prevents the progression of osteoarthritis. Arthritis Rheum 2007, 56:3670–3674.

    Article  PubMed  CAS  Google Scholar 

  14. Pritzker KP, Gay S, Jimenez SA, et al.: Osteoarthritis cartilage histopathology: grading and staging. Osteoarthritis Cartilage 2006, 14:13–29.

    Article  PubMed  CAS  Google Scholar 

  15. Ma HL, Blanchet TJ, Peluso D, et al.: Osteoarthritis severity is sex dependent in a surgical mouse model. Osteoarthritis Cartilage 2007, 15:695–700.

    Article  PubMed  Google Scholar 

  16. Glasson SS: In vivo osteoarthritis target validation utilizing genetically-modified mice. Curr Drug Targets 2007, 8:367–376.

    Article  PubMed  CAS  Google Scholar 

  17. Mastbergen SC, Marijnissen AC, Vianen ME, et al.: The canine groove model of OA is more than simply the expression of surgically applied damage. Osteoarthritis Cartilage 2006, 14:39–46.

    Article  PubMed  Google Scholar 

  18. Hu K, Xu L, Cao L, et al.: Pathogenesis of osteoarthritis-like changes in the joints of mice deficient in type IX collagen. Arthritis Rheum 2006, 54:2891–2900.

    Article  PubMed  CAS  Google Scholar 

  19. Xu L, Peng H, Glasson S, et al.: Increased expression of the collagen receptor discoidin domain receptor 2 in articular cartilage as a key event in the pathogenesis of osteoarthritis. Arthritis Rheum 2007, 56:2663–2673.

    Article  PubMed  CAS  Google Scholar 

  20. Kamekura S, Hoshi K, Shimoaka T, et al.: Osteoarthritis development in novel experimental mouse models induced by knee joint instability. Osteoarthritis Cartilage 2005, 13:632–641.

    Article  PubMed  CAS  Google Scholar 

  21. Kamekura S, Kawasaki Y, Hoshi K, et al.: Contribution of runt-related transcription factor 2 to the pathogenesis of osteoarthritis in mice after induction of knee joint instability. Osteoarthritis Cartilage 2006, 54:2462–2470.

    CAS  Google Scholar 

  22. Blaney Davidson EN, Scharstuhl A, Vitters EL, et al.: Reduced TGF-beta signaling in cartilage of old mice: role in impaired repair capacity. Arthritis Res Ther 2005, 7:R1338–R1347.

    Article  PubMed  CAS  Google Scholar 

  23. Blaney Davidson EN, Vitters EL, van der Kraan PM, et al.: Expression of TGFbeta and the TGF-beta signaling molecule SMAD-2P in spontaneous and instability-induced osteoarthritis. Ann Rheum Dis 2006, 65:1414–1421.

    Article  PubMed  CAS  Google Scholar 

  24. Komuro H, Olee T, Kuhn K, et al.: The OPG RANK system in cartilage. Arthritis Rheumatism 2001, 44:2768–2776.

    Article  PubMed  CAS  Google Scholar 

  25. Shimizu S, Asou Y, Itoh S, et al.: Prevention of cartilage destruction with intraarticular osteoclastogenesis inhibitory factor/osteoprotegerin in a murine model of osteoarthritis. Arthritis Rheum 2007, 56:3358–3365.

    Article  PubMed  Google Scholar 

  26. Boileau C, Martel-Pelletier J, Fahmi H, et al.: The peroxisome proliferator-activated receptor gamma agonist piolitazone reduces the development of cartilage lesions in an experimental dog model of osteoarthritis: in vivo protective effects mediated through the inhibition of key signaling and catabolic pathways. Arthritis Rheum 2007, 56:2288–2298.

    Article  PubMed  CAS  Google Scholar 

  27. Yoo SA, Park BH, Yoon HJ, et al.: Calcineurin modulates the catabolic and anabolic activity of chondrocytes and participates in the progression of experimental osteoarthritis. Arthritis Rheum 2007, 56:2299–2311.

    Article  PubMed  CAS  Google Scholar 

  28. Wang SX, Laverty S, Dumitriu M, et al.: The effects of glucosamine hydrochloride on subchondral bone changes in an animal model of osteoarthritis. Arthritis Rheum 2007, 56:1537–1548.

    Article  PubMed  CAS  Google Scholar 

  29. Wolheim F: Prescription of glucosamine for OA: does it work and is it safe? Nat Clin Pract Rheumatol 2007, 3:364–365.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wim B. van den Berg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

van den Berg, W.B. Lessons from animal models of osteoarthritis. Curr Rheumatol Rep 10, 26–29 (2008). https://doi.org/10.1007/s11926-008-0005-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-008-0005-x

Keywords

Navigation