Skip to main content

Advertisement

Log in

Vascular injury in systemic sclerosis: Angiotensin-converting enzyme insertion/deletion polymorphism

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

The microvascular involvement in systemic sclerosis (SSc) is characterized by endothelial damage and smooth muscle cell migration in the intima. The vascular pathologic modifications in SSc are strikingly similar to those of atherosclerosis. SSc also is characterized by an accelerated macrovascular disease. The gene encoding for angiotensinconverting enzyme (ACE) is a 21-kb, 26-exon gene, localized on chromosome 17 (17q23). Polymorphic sites are an insertion/deletion (I/D) that consists of three genotypes: DD and II homozygotes, and ID heterozygote. ACE gene polymorphisms have been linked to vascular disorders (coronary artery disease, hypertension, cerebrovascular disease, hypertrophic cardiomyopathy, and diabetic or nondiabetic nephropathy). In particular, the possession of ACE D allele was associated with an increased risk of developing malignant vascular injury. ACE D allele frequency of the I/D polymorphism was associated with an increased risk of SSc, suggesting a genetic contribution to the disease. The discrepancy between the high prevalence of D allele and reduced ACE plasma levels in SSc demonstrate the lack of knowledge on the regulation and function of renin-angiotensin system in SSc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. LeRoy EC: Systemic sclerosis: a vascular perspective. Rheum Dis Clin North Am 1996, 22:675–695.

    Article  PubMed  CAS  Google Scholar 

  2. Matucci-Cerinic M, Fiori G, Grenbaum E, Shoenfeld Y: Macrovascular disease in systemic sclerosis. In Systemic Sclerosis. Edited by Furst D, Clements P. Philadelphia: Lippincott, Williams & Wilkins; 2003:241–248.

    Google Scholar 

  3. Soubrier F, Hubert C, Testut P, et al.: Molecular biology of the angiotensin I converting enzyme: biochemistry and structure of the gene. J Hypertens 1993, 11:471–476.

    Article  PubMed  CAS  Google Scholar 

  4. Patel JM, Yarid FR, Block ER, Raizada MK: Angiotensin receptors in pulmonary arterial and aortic endothelial cells. Am J Physiol 1989, 256:C987-C993.

    PubMed  CAS  Google Scholar 

  5. Vaughan DE, Lazos SA, Tong K: Angiotensin II regulates the expression of plasminogen activator inhibitor-1 in cultured endothelial cells: a potential link between the renin-angiotensin system and thrombosis. J Clin Invest 1995, 95:995–1001.

    PubMed  CAS  Google Scholar 

  6. Malik FS, Lavie CJ, Mehra MR, et al.: Renin-angiotensin system: genes to bedside. Am Heart J 1997, 134:514–526.

    Article  PubMed  CAS  Google Scholar 

  7. Dzau VJ: Cell biology and genetics of angiotensin in cardiovascular disease. J Hypertens Suppl 1994, 12:S3-S10.

    PubMed  CAS  Google Scholar 

  8. Rigat B, Hubert C, Corvol P, Soubrier F: PCR detection of the insertion/deletion polymorphism of the human angiotensin converting enzyme gene (DCP1) (dipeptidyl carboxypeptidase 1). Nucl Acids Res 1992, 20:1433.

    Article  PubMed  CAS  Google Scholar 

  9. Rigat B, Hubert C, Alhenc-Gelas F, et al.: An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 1990, 86:1343–1346.

    Article  PubMed  CAS  Google Scholar 

  10. Boehm M, Nabel EG: Angiotensin-converting enzyme 2: a new cardiac regulator. N Engl J Med 2002, 347:1795–1797. This report suggests that ACE2, a new member of the RAS, is a critical regulator of cardiac function and may be an important therapeutic target.

    Article  PubMed  Google Scholar 

  11. Cambien F, Poirer O, Lecerf L, et al.: Deletion polymorphism in the gene for angiotensin converting enzyme is a potent risk factor for myocardial infarction. Nature 1992, 359:641–644.

    Article  PubMed  CAS  Google Scholar 

  12. Ramasawmy R, Manraj M, Kotea N: Lack of association of angiotensin I converting enzyme gene polymorphism and premature myocardial infarction in Mauritians Indians. Clin Genet 1996, 50:551–554.

    Article  PubMed  CAS  Google Scholar 

  13. Agerholm-Larsen B, Nordestgaard BG, Steffensen R, et al.: ACE gene polymorphism ischemic heart disease and longevity in 10150 individuals: a case-referent and retrospective cohort study based on the Copenhagen City Heart Study. Circulation 1997, 95:2358–2367.

    PubMed  CAS  Google Scholar 

  14. Gardeman A, Fink M, Stricker J, et al.: ACE I/D polymorphism: presence of the D allele increases the risk of coronary artery disease in younger individuals. Atherosclerosis 1998, 139:153–159.

    Article  Google Scholar 

  15. Evans AE, Poirier O, Kee F, et al.: Polymorphisms of the angiotensin converting enzyme gene in subjects who die from coronary artery disease. Q J Med 1994, 87:211–214.

    PubMed  CAS  Google Scholar 

  16. Tiret L, Bonnardeaux A, Poirier O, et al.: Synergistic effects of angiotensin-converting enzyme and angiotensin-II type 1 receptor gene polymorphisms on risk of myocardial infarction. Lancet 1994, 344:910–913.

    Article  PubMed  CAS  Google Scholar 

  17. Fatini C, Abbate R, Pepe G, et al.: Searching for a better assessment of the individual coronary risk profile: the role of angiotensin-converting enzyme, angiotensin II type 1 receptor and angiotensinogen gene polymorphisms. Eur Heart J 2000, 21:633–638. In this study, the authors indicate an increased risk for coronary artery disease in the presence of ACE DD and AT1R CC geneotypes independently of other risk factors, stressing the relevance of screening for genetic risk factors.

    Article  PubMed  CAS  Google Scholar 

  18. Lindpaintner K, Pfeffer MA, Kreutz R, et al.: A prospective evaluation of angiotensin converting enzyme gene polymorphism and the risk of ischemic heart disease. N Engl J Med 1995, 332:706–711.

    Article  PubMed  CAS  Google Scholar 

  19. Agerholm-Larsen B, Nordestgaard BG, Tybjaerg-Hansen A: ACE gene polymorphism in cardiovascular disease: meta-analyses of small and large studies in whites. Arterioscler Thromb Vasc Biol 2000, 20:484–492.

    PubMed  CAS  Google Scholar 

  20. Dzau V, Gibbons G, Pratt R: Molecular mechanisms of vascular renin angiotensin system in myointimal hyperplasia. Hypertension 1991, 18(suppl):II100-II105.

    PubMed  CAS  Google Scholar 

  21. Ohishi M, Fujii K, Minamino T: A potent genetic risk factor for restenosis. Nat Genet 1993, 5:324–325.

    Article  PubMed  CAS  Google Scholar 

  22. Samani NJ, Martin DS, Brack M, et al.: Insertion/deletion polymorphism in the angiotensin-converting enzyme gene and risk of restenosis after coronary angioplasty. Lancet 1995, 345:1013–1016.

    Article  PubMed  CAS  Google Scholar 

  23. Bonnici F, Keavney B, Collins R, Danesh J: Angiotensin-converting enzyme insertion or deletion polymorphism and coronary restenosis: meta-analysis of 16 studies. BMJ 2002, 325:517–519.

    Article  PubMed  Google Scholar 

  24. Castellano M, Muiesan ML, Rizzoni D, et al.: Angiotensin-converting enzyme I/D polymorphism and arterial wall thickness in a general population. The Vobarno Study. Circulation 1995, 91:2721–2724.

    PubMed  CAS  Google Scholar 

  25. Hung J, McQuillan BM, Nidorf M, et al.: Angiotensin-converting enzyme gene polymorphism and carotid wall thickening in a community population. Arterioscler Thromb Vasc Biol 1999, 19:1969–1974.

    PubMed  CAS  Google Scholar 

  26. Mannami T, Katsuya T, Baba S, et al.: Low potentiality of angiotensin- converting enzyme gene insertion/deletion polymorphism as a useful predictive marker for carotid atherogenesis in a large general population of a Japanese City. The Suita Study. Stroke 2001, 32:1250–1256.

    PubMed  CAS  Google Scholar 

  27. Philipp CS, Dilley A, Saidi P, et al.: Deletion polymorphism in the angiotensin-converting enzyme gene as a thrombophilic risk factor after hip arthroplasty. Thromb Haemost 1998, 80:869–873.

    PubMed  CAS  Google Scholar 

  28. Fatini C, Gensini F, Sticchi E, et al.: ACE DD genotype: an independent predisposition factor to venous thromboembolism. Eur J Clin Invest 2003, 33:642–647. This study shows that ACE DD genotype represents a susceptibility marker of thrombosis in subjects apparently without predisposing factors and traditional thrombophilic alterations, and increases the risk of venous thromboembolism in subjects in whom a thrombogenic condition occurs. Moreover, ACE DD genotype may be considered a new predisposing factor to venous thromboembolism recurrence.

    Article  PubMed  CAS  Google Scholar 

  29. Stassen JA, Wang JI, Ginocchio G, et al.: The deletion/insertion polymorphism of the angiotensin converting enzyme gene and cardiovascular-renal risk. J Hypertension 1997, 15:1579–1592.

    Article  Google Scholar 

  30. O’Donnell CJ, Lindpaintner K, Larson MG, et al.: Evidence for association and genetic linkage of the angiotensin converting enzyme locus with hypertension and blood pressure in men but not in women in the Framingham heart study. Circulation 1998, 97:1766–1772.

    PubMed  CAS  Google Scholar 

  31. Higaki J, Baba S, Katsuya T, et al.: Deletion allele of angiotensin- converting enzyme gene increase risk of essential hypertension in Japanese men: the Suita Study. Circulation 2000, 101:2060–2065.

    PubMed  CAS  Google Scholar 

  32. Matsubara M, Suzuki M, Fujiwara T, et al.: Angiotensin-converting enzyme I/D polymorphism and hypertension: the Ohasama Study. J Hypertension 2002, 20:1121–1126.

    Article  CAS  Google Scholar 

  33. Tarnow L, Cambien F, Rossing P, et al.: Lack of relationship between an insertion/deletion polymorphism in the angiotensin- converting enzyme gene and diabetic nephropathy and proliferative retinopathy in IDDM patients. Diabetes 1995, 44:489–494.

    Article  PubMed  CAS  Google Scholar 

  34. Miller JA, Scholey JW, Thai K, Pei YPC: Angiotensin-converting enzyme gene polymorphism and renal hemodynamic function in early diabetes. Kidney Int 1997, 51:119–124.

    Article  PubMed  Google Scholar 

  35. Jacobsen P, Tarnow L, Carstensen B, et al.: Genetic variation in the renin angiotensin system and progression of diabetic nephropathy. J Am Soc Nephrol 2003, 14:2843–2850.

    Article  PubMed  CAS  Google Scholar 

  36. Matucci-Cerinic M, Jaffa A, Kahaleh B: Angiotensin-converting enzyme: an in vivo and in vitro marker of endothelial injury. J Lab Clin Med 1992, 120:428–433. This paper shows that circulating ACE activity is reduced in patients suffered from SSc.

    PubMed  CAS  Google Scholar 

  37. Orfanos SE, Psevdi E, Stratigis N, et al.: Pulmonary capillary endothelial dysfunction in early systemic sclerosis. Arthritis Rheum 2001, 44:902–911. In this paper, it is demonstrated that the depression of pulmonary ACE activity, indicating pulmonary endothelial dysfunction, occurs early in SSc, in the absence of pulmonary hypertension, and is more pronounced, at this early pulmonary disease stage, in diffuse SSc than in limited SSc.

    Article  PubMed  CAS  Google Scholar 

  38. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW: Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 1994, 74:1141–1148.

    PubMed  CAS  Google Scholar 

  39. Matucci-Cerinic M, Pignone A, Lotti T, et al.: Reduced angiotensin-converting enzyme plasmatic activity in scleroderma: a marker of endothelial injury? J Rheumatol 1990, 17:328–326.

    PubMed  CAS  Google Scholar 

  40. Matucci-Cerinic M, Pignone A, Iannone F, et al.: Clinical correlations of plasma angiotensin converting enzyme activity in systemic sclerosis: a longitudinal study of plasma ACE levels, endothelial injury and lung involvement. Resp Med 1990, 84:283–288.

    CAS  Google Scholar 

  41. Fatini C, Gensini F, Sticchi E, et al.: High prevalence of polymorphisms of angiotensin-converting enzyme (I/D) and endothelial nitric oxide synthase (Glu298Asp) in patients with systemic sclerosis. Am J Med 2002, 112:540–544. High ACE D allele frequency was found in SSc patients. An increased risk of SSc in ACE D and enothelial NO synthase 894T allele carriers suggest that these polymorphisms may contribute to the pathogenesis of the disease.

    Article  PubMed  CAS  Google Scholar 

  42. Mayer NJ, Forsyth A, Kantachuvesiri S, et al.: Association of the D allele of the angiotensin I converting enzyme polymorphism with malignant vascular injury. J Clin Pathol Mol Pathol 2002, 55:29–33. In this paper, it is demonstrated that the possession of ACE D allele is associated with an increased risk of developing malignant vascular injury in different diseases.

    Article  CAS  Google Scholar 

  43. Angotti C, Bartoli F, Righi A, et al.: Polymorphisms of ACE (I/ D) and macrovascular disease in systemic sclerosis [manuscript submitted].

  44. Kantachuvesiri S, Haley CS, Fleming S, et al.: Genetic mapping of modifier loci affecting malignant hypertension in TGRmRen2 rats. Kidney Int 1999, 56:414–420.

    Article  PubMed  CAS  Google Scholar 

  45. Maddison P: Prevention of vascular damage in scleroderma with angiotensin-converting enzyme (ACE) inhibition. Rheumatology (Oxford) 2002, 41:965–971.

    Article  CAS  Google Scholar 

  46. Prasad A, Husaini S, Quyyumi AA: Human peripheral endothelial dysfunction and nitric oxide bioavailability improves with angiotensin converting enzyme inhibition. Am J Cardiol 1999, 84:1–6.

    Article  PubMed  CAS  Google Scholar 

  47. Ueda S, Meredith PA, Morton JJ, et al.: ACE (I/D) genotype as a predictor of the magnitude and duration of the response to an ACE inhibitor drug (Enaprilat) in humans. Circulation 1998, 98:2148–2153.

    PubMed  CAS  Google Scholar 

  48. McNamara DM, Holubkov R, Janosko K, et al.: Pharmacogenetic interactions between b-blocker therapy and the angiotensin-converting enzyme deletion polymorphism in patients with congestive heart failure. Circulation 2001, 103:1644–1648.

    PubMed  CAS  Google Scholar 

  49. Pretorius M, Rosenbaum D, Vaughan DE, Brown NJ: Angiotensin- converting enzyme inhibition increases human vascular tissue-type plasminogen activator release through endogenous bradykinin. Circulation 2003, 117:579–585. In this paper, it is demonstrated that ACE inhibition increases constitutive endothelial t-PA release through endogenous bradykinin and the enhancement of local vascular t-PA release, thus contributing to the cardioprotective effect of ACE inhibitors.

    Article  Google Scholar 

  50. Ghiadoni L, Magagna A, Versari D, et al.: Different effect of antihypertensive drugs on conduit artery endothelial function. Hypertension 2003, 41:1281–1286.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fatini, C., Guiducci, S., Abbate, R. et al. Vascular injury in systemic sclerosis: Angiotensin-converting enzyme insertion/deletion polymorphism. Curr Rheumatol Rep 6, 149–155 (2004). https://doi.org/10.1007/s11926-004-0060-x

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-004-0060-x

Keywords

Navigation