Skip to main content
Log in

Pathogenesis of cartilage calcification: Mechanisms of crystal deposition in cartilage

  • Published:
Current Rheumatology Reports Aims and scope Submit manuscript

Abstract

Apatite crystals form in physiologically calcified tissues, including the hyaline cartilage of the epiphyseal growth plate. While apatite crystals appear as unwanted deposits in other cartilage sites, more frequently, crystalline materials other than or in addition to apatite develop in dystrophic cartilage deposits. These crystalline materials include calcium pyrophosphate dihydrate and other calcium phosphate and calcium carbonate phases, monosodium urate, calcium oxalate, cholesterol, and crystallized proteins. This review describes the physical chemistry of crystal deposition and the events that occur in the growth plate as a basis for understanding the pathogenesis of nonphysiologic crystal deposition in cartilage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Hunziker EB: Mechanism of longitudinal bone growth and its regulation by growth plate chondrocytes. Microsc Res Tech 1994, 28:505–519.

    Article  PubMed  CAS  Google Scholar 

  2. Szuwart T, Kierdorf H, Kierdorf U, Clemen G: Ultrastructural aspects of cartilage formation, mineralization, and degeneration during primary antler growth in fallow deer (Dama dama). Anat Anz 1998, 180:501–510.

    CAS  Google Scholar 

  3. Messner K: Postnatal development of the cruciate ligament insertions in the rat knee: morphological evaluation and immunohistochemical study of collagens types I and II. Acta Anat (Basel) 1997, 160:261–268.

    CAS  Google Scholar 

  4. McCarty DJ: Crystals and arthritis. Dis Mon 1994, 40:255–299.

    PubMed  CAS  Google Scholar 

  5. Dieppe PD: Apatites and miscellaneous crystals. In Primer on the Rheumatic Diseases, edn 11. Edited by Klippel JH. Atlanta,GA: Arthritis Foundation; 1997:222–226.

    Google Scholar 

  6. Woodard JC, Riser WH, Morrone AA, Khan SR: Articular chondrocalcinosis of the humeral head in greyhounds. Am J Vet Res 1995, 56:473–480.

    PubMed  CAS  Google Scholar 

  7. Boskey AL, Bullough PG: Cartilage calcification: normal and aberrant. Scan Electron Microsc 1984:943-952.

  8. Karpouzas GA, Terkeltaub RA: New developments in the pathogenesis of articular cartilage calcification. Curr Rheumatol Rep 1999, 1:121–127.

    PubMed  CAS  Google Scholar 

  9. Sampson HW, Davis RW, Dufner DC: Spondyloarthropathy in progressive ankylosis mice: ultrastructural features of the intervertebral disk. Acta Anat (Basel) 1991, 141:36–41.

    CAS  Google Scholar 

  10. Feinberg J, Boachie-Adjei O, Bullough PG, Boskey AL: The distribution of calcific deposits in intervertebral discs of the lumbosacral spine. Clin Orthop 1990, 254:303–310.

    PubMed  Google Scholar 

  11. Yang BY, Sartoris DJ, Resnick D, Clopton P: Calcium pyrophosphate dihydrate crystal deposition disease: frequency of tendon calcification about the knee. J Rheumatol 1996, 23:883–888.

    PubMed  CAS  Google Scholar 

  12. Larson PL, Weinstock MA, Welch RH: Calcification of the auricular cartilage: a case report and literature review. Cutis 1992, 50:55–57.

    PubMed  CAS  Google Scholar 

  13. Kirsch T, Claassen H: Matrix vesicles mediate mineralization of human thyroid cartilage. Calcif Tissue Int 2000, 66:292–297. This original paper describes the calcification of human thyroid cartilage, and provides an excellent review of the role of matrix vesicles in biomineralizaiton.

    Article  PubMed  CAS  Google Scholar 

  14. Luo G, Ducy P, McKee MD, et al.: Spontaneous calcification of arteries and cartilage in mice lacking matrix GLA protein. Nature 1999, 386:78–81.

    Article  Google Scholar 

  15. Rosenthal AK: Formation of calcium pyrophosphate crystals: biologic implications. Curr Opin Rheumatol 2000, 12:219–222. This study reviews the current concepts of calcium pyrophosphate deposition crystals, including the biologic basis for pyrophosphate accumulation in tissues.

    Article  PubMed  CAS  Google Scholar 

  16. Ryan LM, Cheung HS: The role of crystals in osteoarthritis. Rheum Dis Clin North Am 1999, 25:257–267.

    Article  PubMed  CAS  Google Scholar 

  17. Hayes A, Harris B, Dieppe PA, Clift SE: Wear of articular cartilage: the effect of crystals. Proc Inst Mech Eng [H] 1993, 207:41–58.

    CAS  Google Scholar 

  18. Boskey AL, Spevak L, Doty SB, Binderman I: Growth plate proteins and biomineralization. In The Growth Plate 2001. Edited by Boyan BD, Shapiro I, Anderson HC. Philadelphia: IOS Press; In press.

  19. Glimcher MJ: The nature of the mineral phase in bone: biological and clinical implications. In Metabolic Bone Disease. Edited by Avioli LV, Krane SM. New York: Academic Press; 1996:23–52.

    Google Scholar 

  20. Dieppe PA, Crocker P, Huskisson EC, Willoughby DA: Apatite deposition disease: a new arthropathy. Lancet 1976, 1:266–269.

    Article  PubMed  CAS  Google Scholar 

  21. Scotchford CA, Ali SY: Association of magnesium whitlockite crystals with lipid components of the extracellular matrix in human articular cartilage. Osteoarthritis Cartilage 1997, 5:107–119.

    Article  PubMed  CAS  Google Scholar 

  22. Benhamou CL, Laoussadi S, Geslin N, et al.: Calcium oxalate microcrystalline arthropathy in primary oxalosis. Rev Rhum Mal Osteoartic 1985, 52:267–271.

    PubMed  CAS  Google Scholar 

  23. Paul H, Reginato AJ, Schumacher HR: Morphological characteristics of monosodium urate: a transmission electron microscopic study of intact natural and synthetic crystals. Ann Rheum Dis 1983, 42:75–81.

    Article  PubMed  CAS  Google Scholar 

  24. Jaccard YB, Gerster JC, Calame L: Mixed monosodium urate and calcium pyrophosphate crystal-induced arthropathy: a review of seventeen cases. Rev Rhum 1996, 63:331–335.

    CAS  Google Scholar 

  25. Pons-Estel BA, Gimenez C, Sacnun M, et al.: Familial osteoarthritis and Milwaukee shoulder associated with calcium pyrophosphate and apatite crystal deposition. J Rheumatol 2000, 27:471–480. This paper describes a large Italian family with chondrocalcinosis in which one of the first reported searches for candidate genes was unsuccessful.

    PubMed  CAS  Google Scholar 

  26. Hamada J, Ono W, Tamai K, et al.: Analysis of calcium deposits in calcific periarthritis. J Rheumatol 2001, 28:809–813. This recent paper demonstrates the use of a variety of physicochemical techniques for the analysis of deposits in cartilage and other tissues.

    PubMed  CAS  Google Scholar 

  27. Blair JM, Sorensen LB, Arnsdorf MF, Lal R: The application of atomic force microscopy for the detection of microcrystals in synovial fluid from patients with recurrent synovitis. Semin Arthritis Rheum 1995, 24:359–369.

    Article  PubMed  CAS  Google Scholar 

  28. Gokhale J, Robey PG, Boskey AL: The biochemistry of bone. Osteoporosis. Edited by Marcus R, Feldman D, Kelsey J. New York: Academic Press; 2001, 1:107–109.

    Google Scholar 

  29. Johnsson MS, Nancollas GH: The role of brushite and octacalcium phosphate in apatite formation. Crit Rev Oral Biol Med 1992, 3:61–82.

    PubMed  CAS  Google Scholar 

  30. Mandel GS, Halverson PB, Mandel NS: Calcium pyrophosphate crystal deposition: the effect of monosodium urate and apatite crystals in a kinetic study using a gelatin matrix model. Scanning Microsc 1988, 2:1189–1198.

    PubMed  CAS  Google Scholar 

  31. Geider S, Dussol B, Nitsche S, et al.: Calcium carbonate crystals promote calcium oxalate crystallization by heterogeneous or epitaxial nucleation: possible involvment in the control of urinary lithogenesis. Calcif Tissue Int 1996, 59:33–37.

    Article  PubMed  CAS  Google Scholar 

  32. Grover PK, Ryall RL: Urate and calcium oxalate stones: from repute to rhetoric to reality. Miner Electrolyte Metab 1994, 20:361–370.

    PubMed  CAS  Google Scholar 

  33. Letellier SR, Lochhead MJ, Campbell AA, Vogel V: Oriented growth of calcium oxalate monohydrate crystals beneath phospholipid monolayers. Biochim Biophys Acta 1998, 1380:31–45.

    PubMed  CAS  Google Scholar 

  34. Khan SR: Calcium phosphate/calcium oxalate crystal association in urinary stones: implications for heterogeneous nucleation of calcium oxalate. J Urol 1997, 157:376–383.

    Article  PubMed  CAS  Google Scholar 

  35. Boskey AL, Bullough PG, Vigorita V, Di Carlo E: Calciumacidic phospholipid-phosphate complexes in human hydroxyapatite-containing pathologic deposits. Am J Pathol 1988, 133:22–29.

    PubMed  CAS  Google Scholar 

  36. Ballock RT, Zhou X, Mink LM, et al.: Both retinoic acid and 1,25(OH)2 vitamin D3 inhibit thyroid hormone-induced terminal differentiaton of growth plate chondrocytes. J Orthop Res 2001, 19:43–49.

    Article  PubMed  CAS  Google Scholar 

  37. Gibson G: Active role of chondrocyte apoptosis in endochondral ossification. Microsc Res Tech 1998, 43:191–204.

    Article  PubMed  CAS  Google Scholar 

  38. Johnson K, Jung A, Murphy A, et al.: Mitochondrial oxidative phosphorylation is a downstream regulator of nitric oxide effects on chondrocyte matrix synthesis and mineralization. Arthritis Rheum 2000, 43:1560–1570. This article provides new insights into the cellular regulation of chondrocyte activity.

    Article  PubMed  CAS  Google Scholar 

  39. Johnson K, Hashimoto S, Lotz M, et al.: Interleukin-1 induces pro-mineralizing activity of cartilage tissue transglutaminase and factor XIIIa. Am J Pathol 2001, 159:149–163.

    PubMed  CAS  Google Scholar 

  40. Anderson HC: Mineralization by matrix vesicles. Scan Electron Microsc 1984:953–964.

  41. Boskey AL, Boyan B, Schwartz Z: Matrix vesicles promote mineralization in a gelatin gel. Calcif Tissue Int 1997, 60:309–315.

    Article  PubMed  CAS  Google Scholar 

  42. Wu LN, Genge BR, Dunkelberger DG, et al.: Physicochemical characterization of the nucleational core of matrix vesicles. J Biol Chem 1997, 272:4404–4411.

    Article  PubMed  CAS  Google Scholar 

  43. Derfus BA, Camacho NP, Olmez U, et al.: Transforming growth factor beta-1 stimulates articular chondrocyte elaboration of matrix vesicles capable of greater calcium pyrophosphate precipitation. Osteoarthritis Cartilage 2001, 9:189–194.

    Article  PubMed  CAS  Google Scholar 

  44. Fedde KN, Blair L, Silverstein J, et al.: Alkaline phosphatase knock-out mice recapitulate the metabolic and skeletal defects of infantile hypophosphatasia. J Bone Miner Res 1999, 14:2015–2026.

    Article  PubMed  CAS  Google Scholar 

  45. Jung A, Bisaz S, Fleisch H: The binding of pyrophosphate and two diphosphonates by hydroxyapatite crystals. Calcif Tissue Res 1973, 11:269–280.

    Article  PubMed  CAS  Google Scholar 

  46. Johnson K, Hashimoto S, Lotz M, et al.: Up regulated expression of the phosphodiesterase nucleotide pyrophosphatase family member PC-1 is a marker and pathogenic factor for knee meniscal cartilage matrix calcification. Arthritis Rheum 2001, 44:1071–1081.

    Article  PubMed  CAS  Google Scholar 

  47. Ho AM, Johnson MD, Kingsley DM: Role of the mouse ank gene in control of tissue calcification and arthritis. Science 2000, 289:265–270. A key manuscript describing the identification of the function of the ank gene, and its effect on calcification.

    Article  PubMed  CAS  Google Scholar 

  48. Hunter GK, Grynpas MD, Cheng PT, Pritzker KP: Effect of glycosaminoglycans on calcium pyrophosphate crystal formation in collagen gels. Calcif Tissue Int 1987, 41:164–170.

    Article  PubMed  CAS  Google Scholar 

  49. Chen CC, Boskey AL, Rosenberg LC: The inhibitory effect of cartilage proteoglycans on hydroxyapatite growth. Calcif Tissue Int 1983, 36:285–290.

    Article  Google Scholar 

  50. Boskey AL, Paschalis EP: Matrix proteins and biomineralization. In Engineering Bone. Edited by Davis JE. Toronto: emsquared; 2000:44–62.

    Google Scholar 

  51. Mandel GS, Halverson PB, Rathburn M, Mandel NS: Calcium pyrophosphate crystal deposition: a kinetic study using a type I collagen gel model. Scanning Microsc 1990, 4:175–179.

    PubMed  CAS  Google Scholar 

  52. Boskey AL, Karsenty G, McKee MD: Mineral characterization of bones and soft tissues in matrix gla protein deficient mice. In Chemistry and Biology of Mineralized Tissues. Edited by Goldberg M, Boskey A, Robinson C. Chicago: American Academy of Orthopaedic Surgeons; 2000:63–67.

    Google Scholar 

  53. Yagami K, Suh JY, Enomoto-Iwamoto M, et al.: Matrix GLA protein is a developmental regulator of chondrocyte mineralization and, when constitutively expressed, blocks endochondral and intramembranous ossification in the limb. J Cell Biol 1999, 147:1097–1108.

    Article  PubMed  CAS  Google Scholar 

  54. Sun Y, Kandel R: Deep zone articular chondrocytes in vitro express genes that show specific changes with mineralization. J Bone Miner Res 1999, 14:1916–1925.

    Article  PubMed  CAS  Google Scholar 

  55. Yang X, Chen L, Xu X, et al.: TGF-beta/Smad3 signals repress chondrocyte hypertrophic differentiation and are required for maintaining articular cartilage. J Cell Biol 2001, 153:35–46.

    Article  PubMed  CAS  Google Scholar 

  56. Masuda I, Iyama KI, Halligan BD, et al.: Variations in site and levels of expression of chondrocyte nucleotide pyrophosphohydrolase with aging. J Bone Miner Res 2001, 16:868–875.

    Article  PubMed  CAS  Google Scholar 

  57. Rosenthal AK, Henry LA: Thyroid hormones induce features of the hypertrophic phenotype and stimulate correlates of CPPD crystal formation in articular chondrocytes. J Rheumatol 1999, 26:395–401.

    PubMed  CAS  Google Scholar 

  58. Rosenthal AK, Henry LA: Retinoic acid stimulates pyrophosphate elaboration by cartilage and chondrocytes. Calcif Tissue Int 1996, 59:128–133.

    Article  PubMed  CAS  Google Scholar 

  59. Cheung HS, Kurup IV, Sallis JD, Ryan LM: Inhibition of calcium pyrophosphate dihydrate crystal formation in articular cartilage vesicles and cartilage by phosphocitrate. J Biol Chem 1996, 271:28082–28085.

    Article  PubMed  CAS  Google Scholar 

  60. Terkeltaub RA, Santoro DA, Mandel G, Mandel N: Serum and plasma inhibit neutrophil stimulation by hydroxyapatite crystals: evidence that serum alpha 2-HS glycoprotein is a potent and specific crystal-bound inhibitor. Arthritis Rheum 1988, 31:1081–1089.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Boskey, A.L. Pathogenesis of cartilage calcification: Mechanisms of crystal deposition in cartilage. Curr Rheumatol Rep 4, 245–251 (2002). https://doi.org/10.1007/s11926-002-0072-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11926-002-0072-3

Keywords

Navigation