Skip to main content

Advertisement

Log in

Is There an Inflammatory Profile of Perinatal Depression?

  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

To synthesize and critically examine recent evidence regarding associations between immune system activity and perinatal depression.

Recent Findings

Despite a significant number of studies assessing potential immunological markers of perinatal depression, it does not appear that levels of any individual pro- or anti-inflammatory marker is a useful predictor of perinatal depression. Some recent studies have observed differences in overall immune system functioning and adaptation across this period, taking into account multiple pro- and anti- inflammatory markers. Furthermore, there is evidence for interactions between depression and maternal psychosocial factors. Immune system functioning may be a mechanism through which social determinants of health contribute to risk for perinatal depression.

Summary

There is substantial evidence implicating dysregulated immune activity in perinatal depression, yet little clarity regarding a consistent immune profile, especially based on analysis of circulating peripheral cytokines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gavin NI, et al. Perinatal depression: a systematic review of prevalence and incidence. Obstet Gynecol. 2005;106:1071–83. https://doi.org/10.1097/01.AOG.0000183597.31630.db.

    Article  PubMed  Google Scholar 

  2. Lindahl V, Pearson JL, Colpe L. Prevalence of suicidality during pregnancy and the postpartum. Arch Womens Ment Health. 2005;8:77–87 Epub 2005 May 11.

    Article  CAS  PubMed  Google Scholar 

  3. Biaggi A, Conroy S, Pawlby S, Pariante CM. Identifying the women at risk of antenatal anxiety and depression: A systematic review. J Affect Disord. 2016;191:62–77. https://doi.org/10.1016/j.jad.2015.11.014.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Leigh B, Milgrom J. Risk factors for antenatal depression, postnatal depression and parenting stress. BMC Psychiatry. 2008;8:24. https://doi.org/10.1186/1471-244X-8-24.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pariante CM. Why are depressed patients inflamed? A reflection on 20 years of research on depression, glucocorticoid resistance and inflammation. Eur Neuropsychopharmacol. 2017;27:554–9.

    Article  CAS  PubMed  Google Scholar 

  6. Miller AH, Raison CL. The role of inflammation in depression: from evolutionary imperative to modern treatment target. Nat Rev Immunol. 2015;16:22. https://doi.org/10.1038/nri.2015.5.

    Article  CAS  Google Scholar 

  7. Raison CL, Capuron L, Miller AH. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 2006;27:24–31. https://doi.org/10.1016/j.it.2005.11.006.

    Article  CAS  PubMed  Google Scholar 

  8. Osborne LM, Monk C. Perinatal depression—The fourth inflammatory morbidity of pregnancy?: Theory and literature review. Psychoneuroendocrinology. 2013;38:1929–52. https://doi.org/10.1016/j.psyneuen.2013.03.019.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Beurel E, Toups M, Nemeroff CB. The bidirectional relationship of depression and inflammation: double trouble. Neuron. 2020;107:234–56. https://doi.org/10.1016/j.neuron.2020.06.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Luckheeram RV, Zhou R, Verma AD, Xia B. CD4<sup>+</sup>T Cells: differentiation and functions. Clin Dev Immunol. 2012;925135. https://doi.org/10.1155/2012/925135.

  11. Mor G, Cardenas I, Abrahams V, Guller S. Inflammation and pregnancy: the role of the immune system at the implantation site. Ann N Y Acad Sci. 2011;1221:80–7. https://doi.org/10.1111/j.1749-6632.2010.05938.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pazos M, Sperling RS, Moran TM, Kraus TA. The influence of pregnancy on systemic immunity. Immunol Res. 2012;54:254–61. https://doi.org/10.1007/s12026-012-8303-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Maxwell AJ, et al. Reproductive immunology.  In: Mor G, editor. Academic Press; 2021. p. 1–21.

  14. Abu-Raya B, Michalski C, Sadarangani M, Lavoie PM. Maternal immunological adaptation during normal pregnancy. Front Immunol. 2020;11:575197. https://doi.org/10.3389/fimmu.2020.575197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Denney JM, et al. Longitudinal modulation of immune system cytokine profile during pregnancy. Cytokine. 2011;53:170–7. https://doi.org/10.1016/j.cyto.2010.11.005.

    Article  CAS  PubMed  Google Scholar 

  16. Dan JM, et al. Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection. Science. 2021;371. https://doi.org/10.1126/science.abf4063.

  17. Watanabe M, et al. Changes in T, B, and NK lymphocyte subsets during and after normal pregnancy. Am J Reprod Immunol. 1997;37:368–77. https://doi.org/10.1111/j.1600-0897.1997.tb00246.x.

    Article  CAS  PubMed  Google Scholar 

  18. Moher D, et al. Improving the quality of reports of meta-analyses of randomised controlled trials: the QUOROM statement. The Lancet. 1999;354:1896–900.

    Article  CAS  Google Scholar 

  19. Stroup DF, et al. Meta-analysis of observational studies in epidemiology: a proposal for reporting. JAMA. 2000;283:2008–12.

    Article  CAS  PubMed  Google Scholar 

  20. Nazzari S, et al. The biological underpinnings of perinatal depressive symptoms: A multi-systems approach. J Affect Disord. 2020;274:1004–12. https://doi.org/10.1016/j.jad.2020.05.023.

    Article  CAS  PubMed  Google Scholar 

  21. Nazzari S, Molteni M, Valtorta F, Comai S, Frigerio A. Prenatal IL-6 levels and activation of the tryptophan to kynurenine pathway are associated with depressive but not anxiety symptoms across the perinatal and the post-partum period in a low-risk sample. Brain Behav Immun. 2020;89:175–83. https://doi.org/10.1016/j.bbi.2020.06.015.

    Article  CAS  PubMed  Google Scholar 

  22. Osborne LM, et al. Innate immune activation and depressive and anxious symptoms across the peripartum: An exploratory study. Psychoneuroendocrinology. 2019;99:80–6. https://doi.org/10.1016/j.psyneuen.2018.08.038.

    Article  PubMed  Google Scholar 

  23. Sha Q, et al. Cytokines and tryptophan metabolites can predict depressive symptoms in pregnancy. Transl Psychiatry. 2022;12:35. https://doi.org/10.1038/s41398-022-01801-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Gustafsson HC, et al. Maternal prenatal depression predicts infant negative affect via maternal inflammatory cytokine levels. Brain Behav Immun. 2018;73:470–81. https://doi.org/10.1016/j.bbi.2018.06.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Bianciardi E, et al. Inflammatory markers of perinatal depression in women with and without history of trauma. Riv Psichiatr. 2021;56:237–45. https://doi.org/10.1708/3681.36671.

    Article  PubMed  Google Scholar 

  26. Jallo N, Brown L, Elswick RK Jr, Kinser P, Salisbury AL. Happiness in Pregnant African American Women: What Are the Biobehavioral Correlates? J Perinat Neonatal Nurs. 2021;35:19–28. https://doi.org/10.1097/JPN.0000000000000529. PMID: 33528183.

    Article  PubMed  Google Scholar 

  27. Karlsson L, et al. Cytokine profile and maternal depression and anxiety symptoms in mid-pregnancy-the FinnBrain Birth Cohort Study. Arch Womens Ment Health. 2017;20:39–48. https://doi.org/10.1007/s00737-016-0672-y.

    Article  PubMed  Google Scholar 

  28. Keane JM, et al. Identifying a biological signature of prenatal maternal stress. JCI Insight. 2021;6. https://doi.org/10.1172/jci.insight.143007.

  29. Kleih TS, et al. Exposure to childhood maltreatment and systemic inflammation across pregnancy: The moderating role of depressive symptomatology. Brain Behav Immun. 2022;101:397–409. https://doi.org/10.1016/j.bbi.2022.02.004.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Miller ES, et al. Antenatal depression, psychotropic medication use, and inflammation among pregnant women. Arch Womens Ment Health. 2018;21:785–90. https://doi.org/10.1007/s00737-018-0855-9.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Nazzari S, et al. Neuroendocrine and immune markers of maternal stress during pregnancy and infant cognitive development. Dev Psychobiol. 2020;62:1100–10. https://doi.org/10.1002/dev.21967.

    Article  CAS  PubMed  Google Scholar 

  32. Osborne S, et al. Increased maternal inflammation and poorer infant neurobehavioural competencies in women with a history of major depressive disorder from the psychiatry research and motherhood - Depression (PRAM-D) study. Brain Behav Immun. 2022;99:223–30. https://doi.org/10.1016/j.bbi.2021.09.020.

    Article  PubMed  Google Scholar 

  33. Saadat N, et al. Psychosocial and behavioral factors affecting inflammation among pregnant African American women. Brain Behav Immun Health. 2022;22:100452. https://doi.org/10.1016/j.bbih.2022.100452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Szpunar MJ, Malaktaris A, Baca SA, Hauger RL, Lang AJ. Are alterations in estradiol, cortisol, and inflammatory cytokines associated with depression during pregnancy and postpartum? An exploratory study. Brain Behav Immun Health. 2021;16:100309. https://doi.org/10.1016/j.bbih.2021.100309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Weis KL, Yuan TT, Walker KC, Gibbons TF, Chan W. Associations between physiological biomarkers and psychosocial measures of pregnancy-specific anxiety and depression with support intervention. Int J Environ Res Public Health. 2021;18. https://doi.org/10.3390/ijerph18158043.

  36. Leff Gelman P, et al. The cytokine profile of women with severe anxiety and depression during pregnancy. BMC Psychiatry. 2019;19:104. https://doi.org/10.1186/s12888-019-2087-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. McCormack C, et al. Maternal childhood adversity and inflammation during pregnancy: Interactions with diet quality and depressive symptoms. Brain Behav Immun. 2021;91:172–80. https://doi.org/10.1016/j.bbi.2020.09.023.

    Article  CAS  PubMed  Google Scholar 

  38. Walsh K, et al. Associations Among Child Abuse, Depression, and Interleukin-6 in Pregnant Adolescents: Paradoxical Findings. Psychosom Med. 2016;78:920–30. https://doi.org/10.1097/PSY.0000000000000344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Okun ML, Luther JF, Wisniewski SR, Wisner KL. Disturbed sleep and inflammatory cytokines in depressed and nondepressed pregnant women: an exploratory analysis of pregnancy outcomes. Psychosom Med. 2013;75:670–81. https://doi.org/10.1097/PSY.0b013e31829cc3e7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Latendresse G, Ruiz RJ, Wong B. Psychological distress and SSRI use predict variation in inflammatory cytokines during pregnancy. Open J Obstet Gynecol. 2013;3:184–91. https://doi.org/10.4236/ojog.2013.31A034.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Petralia MC, et al. Retrospective follow-up analysis of the transcriptomic patterns of cytokines, cytokine receptors and chemokines at preconception and during pregnancy, in women with post-partum depression. Exp Ther Med. 2019;18:2055–62. https://doi.org/10.3892/etm.2019.7774.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Paul S, Corwin EJ. Identifying clusters from multidimensional symptom trajectories in postpartum women. Res Nurs Health. 2019;42:119–27. https://doi.org/10.1002/nur.21935.

    Article  PubMed  Google Scholar 

  43. Bränn E, et al. Longitudinal assessment of inflammatory markers in the peripartum period by depressive symptom trajectory groups. Brain Behav Immun Health. 2022;22:100468. https://doi.org/10.1016/j.bbih.2022.100468.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Miller ES, et al. Plasma and cerebrospinal fluid inflammatory cytokines in perinatal depression. Am J Obstet Gynecol. 2019;220(271):e271-271.e210. https://doi.org/10.1016/j.ajog.2018.12.015.

    Article  CAS  Google Scholar 

  45. Lahti-Pulkkinen M, et al. Maternal depression and inflammation during pregnancy. Psychol Med. 2020;50:1839–51. https://doi.org/10.1017/S0033291719001909.

    Article  PubMed  Google Scholar 

  46. Freedman R, et al. Maternal Prenatal Depression in Pregnancies With Female and Male Fetuses and Developmental Associations With C-reactive Protein and Cortisol. Biol Psychiatry Cogn Neurosci Neuroimaging. 2021;6:310–20. https://doi.org/10.1016/j.bpsc.2020.08.003.

    Article  PubMed  Google Scholar 

  47. Bränn E, et al. Inflammatory markers in late pregnancy in association with postpartum depression-A nested case-control study. Psychoneuroendocrinology. 2017;79:146–59. https://doi.org/10.1016/j.psyneuen.2017.02.029.

    Article  CAS  PubMed  Google Scholar 

  48. Finy MS, Christian LM. Pathways linking childhood abuse history and current socioeconomic status to inflammation during pregnancy. Brain Behav Immun. 2018;74:231–40. https://doi.org/10.1016/j.bbi.2018.09.012.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Miller ES, Hoxha D, Pinheiro E, Grobman WA, Wisner KL. The association of serum C-reactive protein with the occurrence and course of postpartum depression. Arch Womens Ment Health. 2019;22:129–32. https://doi.org/10.1007/s00737-018-0841-2.

    Article  PubMed  Google Scholar 

  50. Camacho-Arroyo I, et al. Chemokine profile in women with moderate to severe anxiety and depression during pregnancy. BMC Pregnancy Childbirth. 2021;21:807. https://doi.org/10.1186/s12884-021-04225-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gillespie SL, et al. Racial discrimination and stress across the life course: associations with prenatal inflammation, perceived stress, and depressive symptoms. Nurs Res. 2021;70:S21–30. https://doi.org/10.1097/NNR.0000000000000525.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Edvinsson Å, et al. Lower inflammatory markers in women with antenatal depression brings the M1/M2 balance into focus from a new direction. Psychoneuroendocrinology. 2017;80:15–25. https://doi.org/10.1016/j.psyneuen.2017.02.027.

    Article  CAS  PubMed  Google Scholar 

  53. Achtyes E, et al. Inflammation and kynurenine pathway dysregulation in post-partum women with severe and suicidal depression. Brain Behav Immun. 2020;83:239–47. https://doi.org/10.1016/j.bbi.2019.10.017.

    Article  CAS  PubMed  Google Scholar 

  54. Christian LM, Kowalsky JM, Mitchell AM, Porter K. Associations of postpartum sleep, stress, and depressive symptoms with LPS-stimulated cytokine production among African American and White women. J Neuroimmunol. 2018;316:98–106. https://doi.org/10.1016/j.jneuroim.2017.12.020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Bränn E, et al. Inflammatory markers in women with postpartum depressive symptoms. J Neurosci Res. 2020;98:1309–21. https://doi.org/10.1002/jnr.24312.

    Article  CAS  PubMed  Google Scholar 

  56. Buglione-Corbett R, et al. Expression of inflammatory markers in women with perinatal depressive symptoms. Arch Womens Ment Health. 2018;21:671–9. https://doi.org/10.1007/s00737-018-0834-1.

    Article  CAS  PubMed  Google Scholar 

  57. Min Z, Li Y, Ying H. Blood T-helper 17 cells and interleukin-17A correlate with the elevated risk of postpartum depression and anxiety. J Clin Lab Anal. 2022;e24559. https://doi.org/10.1002/jcla.24559.

  58. Osborne LM, et al. T-cell defects and postpartum depression. Brain Behav Immun. 2020;87:397–403. https://doi.org/10.1016/j.bbi.2020.01.007.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bublitz MH, Freeburg T, Sharp M, Salameh M, Bourjeily G. Childhood adversity, prenatal depression, and maternal inflammation across pregnancy. Obstet Med. 2022;15:25–30. https://doi.org/10.1177/1753495X211011910.

    Article  PubMed  Google Scholar 

  60. Grosse L, et al. Deficiencies of the T and natural killer cell system in major depressive disorder: T regulatory cell defects are associated with inflammatory monocyte activation. Brain Behav Immun. 2016;54:38–44.

    Article  CAS  PubMed  Google Scholar 

  61. Corwin EJ, et al. Bidirectional psychoneuroimmune interactions in the early postpartum period influence risk of postpartum depression. Brain Behav Immun. 2015;49:86–93. https://doi.org/10.1016/j.bbi.2015.04.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Simpson W, Steiner M, Coote M, Frey BN. Relationship between inflammatory biomarkers and depressive symptoms during late pregnancy and the early postpartum period: a longitudinal study. Brazilian Journal of Psychiatry. 2016;38:190–6.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Sherer ML, Posillico CK, Schwarz JM. The psychoneuroimmunology of pregnancy. Front Neuroendocrinol. 2018;51:25–35. https://doi.org/10.1016/j.yfrne.2017.10.006.

    Article  PubMed  Google Scholar 

  64. Werneburg S, Feinberg PA, Johnson KM, Schafer DP. A microglia-cytokine axis to modulate synaptic connectivity and function. Curr Opin Neurobiol. 2017;47:138–45. https://doi.org/10.1016/j.conb.2017.10.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Barrientos RM, Brunton PJ, Lenz KM, Pyter L, Spencer SJ. Neuroimmunology of the female brain across the lifespan: Plasticity to psychopathology. Brain Behav Immun. 2019;79:39–55. https://doi.org/10.1016/j.bbi.2019.03.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Haim A, et al. A survey of neuroimmune changes in pregnant and postpartum female rats. Brain Behav Immun. 2017;59:67–78. https://doi.org/10.1016/j.bbi.2016.09.026.

    Article  CAS  PubMed  Google Scholar 

  67. Posillico CK, Schwarz JM. An investigation into the effects of antenatal stressors on the postpartum neuroimmune profile and depressive-like behaviors. Behav Brain Res. 2016;298:218–28. https://doi.org/10.1016/j.bbr.2015.11.011.

    Article  PubMed  Google Scholar 

  68. Sherer ML, Posillico CK, Schwarz JM. An examination of changes in maternal neuroimmune function during pregnancy and the postpartum period. Brain Behav Immun. 2017;66:201–9. https://doi.org/10.1016/j.bbi.2017.06.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Hostinar CE, Nusslock R, Miller GE. Future directions in the study of early-life stress and physical and emotional health: implications of the neuroimmune network hypothesis. J Clin Child Adolesc Psychol. 2018;47:142–56. https://doi.org/10.1080/15374416.2016.1266647.

    Article  PubMed  Google Scholar 

  70. Danese A, et al. Elevated inflammation levels in depressed adults with a history of childhood maltreatment. Arch Gen Psychiatry. 2008;65:409–15. https://doi.org/10.1001/archpsyc.65.4.409.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Kiecolt-Glaser JK, et al. Childhood adversity heightens the impact of later-life caregiving stress on telomere length and inflammation. Psychosom Med. 2011;73:16–22. https://doi.org/10.1097/PSY.0b013e31820573b6.

    Article  PubMed  Google Scholar 

  72. Coelho R, Viola TW, Walss-Bass C, Brietzke E, Grassi-Oliveira R. Childhood maltreatment and inflammatory markers: a systematic review. Acta Psychiatr Scand. 2014;129:180–92. https://doi.org/10.1111/acps.12217.

    Article  CAS  PubMed  Google Scholar 

  73. Baumeister D, Akhtar R, Ciufolini S, Pariante CM, Mondelli V. Childhood trauma and adulthood inflammation: a meta-analysis of peripheral C-reactive protein, interleukin-6 and tumour necrosis factor-α. Mol Psychiatry. 2015;21:642. https://doi.org/10.1038/mp.2015.67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Meltzer-Brody S, et al. Adverse life events increase risk for postpartum psychiatric episodes: A population-based epidemiologic study. Depress Anxiety. 2018;35:160–7. https://doi.org/10.1002/da.22697. Epub 2017 Nov 24.

    Article  CAS  PubMed  Google Scholar 

  75. Choi KW, Sikkema KJ. Childhood maltreatment and perinatal mood and anxiety disorders: a systematic review. Trauma Violence Abuse. 2015;17:427–53. https://doi.org/10.1177/1524838015584369.

    Article  PubMed  Google Scholar 

  76. Maguire J, Mody I. GABA(A)R plasticity during pregnancy: relevance to postpartum depression. Neuron. 2008;59:207–13. https://doi.org/10.1016/j.neuron.2008.06.019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Morrison KE, et al. Preadolescent adversity programs a disrupted maternal stress reactivity in humans and mice. Biol Psychiat. 2017;81:693–701. https://doi.org/10.1016/j.biopsych.2016.08.027.

    Article  PubMed  Google Scholar 

  78. Carini LM, Murgatroyd CA, Nephew BC. Using chronic social stress to model postpartum depression in lactating rodents. JoVE J Vis Exp. 2013;e50324.

  79. McEWEN BS. Stress, Adaptation, and Disease: Allostasis and Allostatic Load. Ann N Y Acad Sci. 1998;840:33–44. https://doi.org/10.1111/j.1749-6632.1998.tb09546.x.

    Article  CAS  PubMed  Google Scholar 

  80. Juster R-P, McEwen BS, Lupien SJ. Allostatic load biomarkers of chronic stress and impact on health and cognition. Neurosci Biobehav Rev. 2010;35:2–16. https://doi.org/10.1016/j.neubiorev.2009.10.002.

    Article  PubMed  Google Scholar 

  81. Christian LM, Glaser R, Porter K, Iams JD. Stress-induced inflammatory responses in women: Effects of race and pregnancy. Psychosom Med. 2013;75:658–69. https://doi.org/10.1097/PSY.0b013e31829bbc89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Henrich J, Heine SJ, Norenzayan A. The weirdest people in the world? Behav Brain Sci. 2010;33:61–83. https://doi.org/10.1017/s0140525x0999152x. discussion 83–135.

    Article  PubMed  Google Scholar 

  83. Putnam KT, et al. Clinical phenotypes of perinatal depression and time of symptom onset: analysis of data from an international consortium. The Lancet Psychiatry. 2017;4:477–85. https://doi.org/10.1016/S2215-0366(17)30136-0.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Nishi D, et al. Plasma estradiol levels and antidepressant effects of omega-3 fatty acids in pregnant women. Brain Behav Immun. 2020;85:29–34.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Clare McCormack.

Ethics declarations

Conflicts of Interests/Competing Interests

The authors do not have existing conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McCormack, C., Abuaish, S. & Monk, C. Is There an Inflammatory Profile of Perinatal Depression?. Curr Psychiatry Rep 25, 149–164 (2023). https://doi.org/10.1007/s11920-023-01414-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11920-023-01414-y

Keywords

Navigation