Skip to main content

Advertisement

Log in

Recent Advances in Neuroimaging Biomarkers in Geriatric Psychiatry

  • Geriatric Disorders (H Lavretsky, Section Editor)
  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

Neuroimaging, both structural and functional, serve as useful adjuncts to clinical assessment, and can provide objective, reliable means of assessing disease presence and process in the aging population. In the following review we briefly explain current imaging methodologies. Then, we analyze recent developments in developing neuroimaging biomarkers for two highly prevalent disorders in the elderly population- Alzheimer’s disease (AD) and late-life depression (LLD). In AD, efforts are focused on early diagnosis through in vivo visualization of disease pathophysiology. In LLD, recent imaging evidence supports the role of white matter ischemic changes in the pathogenesis of depression in the elderly, the “vascular hypothesis.” Finally, we discuss potential roles for neuroimaging biomarkers in geriatric psychiatry in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Jack CR, Vemuri P, Wiste HJ, et al. Shapes of the trajectories of 5 major biomarkers of Alzheimer disease. Arch Neurol. 2012;69(7):856–67.

    Article  PubMed  Google Scholar 

  2. Raichle ME, Snyder AZ. A default mode of brain function: a brief history of an evolving idea. NeuroImage. 2007;37(4):1083–90. discussion 1097–9.

    Article  PubMed  Google Scholar 

  3. Alzheimer’s Association. 2012 Alzheimer’s disease facts and figures. Available at: http://www.alz.org/documents_custom/2012_facts_figures_fact_sheet.pdf.

  4. Alzheimer A, Stelzmann RA, Schnitzlein HN, Murtagh FR. An English translation of Alzheimer’s 1907 Paper “Uber eine eigenartige Erkankung der Hirnrinde”. Clin Anat. 1995;1:429–31.

    Google Scholar 

  5. Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 1991;82:239–59.

    Article  PubMed  CAS  Google Scholar 

  6. Whitwell JL, Josephs KA, Murray ME, et al. MRI correlates of neurofibrillary tangle pathology at autopsy: a voxel-based morphometry study. Neurology. 2008;71(10):743–9.

    Article  PubMed  CAS  Google Scholar 

  7. Vemuri P, Wiste HJ, Weigand SD, et al. MRI and CSF biomarkers in normal, MCI, and AD subjects: predicting future clinical change. Neurology. 2009;73(4):294–301.

    Article  PubMed  CAS  Google Scholar 

  8. Hua X, Leow AD, Parikshak N, et al. Tensor-based morphometry as a neuroimaging biomarker for Alzheimer’s disease: an MRI study of 676 AD, MCI, and normal subjects. NeuroImage. 2008;43(3):458–69.

    Article  PubMed  Google Scholar 

  9. Zhang Y, Schuff N, Du A-T, et al. White matter damage in frontotemporal dementia and Alzheimer’s disease measured by diffusion MRI. Brain. 2009;132:2579–92.

    Article  PubMed  Google Scholar 

  10. Kantarci K, Avula R, Senjem ML, et al. Dementia with Lewy bodies and Alzheimer disease: neurodegenerative patterns characterized by DTI. Neurology. 2010;74(22):1814–21.

    Article  PubMed  CAS  Google Scholar 

  11. Huang H, Fan X, Weiner M, et al. Distinctive disruption patterns of white matter tracts in Alzheimer’s disease with full diffusion tensor characterization. Neurobiol Aging. 2012;33(9):2029–45.

    Article  PubMed  Google Scholar 

  12. Klunk WE, Engler H, Nordberg A, et al. Imaging brain amyloid in Alzheimer ’ s disease with Pittsburgh compound-B. Ann Neurol. 2004;55:306–19.

    Article  PubMed  CAS  Google Scholar 

  13. Grimmer T, Riemenschneider M, Förstl H, et al. Beta amyloid in Alzheimer’s disease: increased deposition in brain is reflected in reduced concentration in cerebrospinal fluid. Biol Psych. 2009;65(11):927–34.

    Article  CAS  Google Scholar 

  14. Barthel H, Gertz H-J, Dresel S, et al. Cerebral amyloid-β PET with florbetaben (18F) in patients with Alzheimer’s disease and healthy controls: a multicentre phase 2 diagnostic study. Lancet Neurol. 2011;10(5):424–35.

    Article  PubMed  CAS  Google Scholar 

  15. Fleisher AS, Chen K, Liu X, et al. Using positron emission tomography and florbetapir F18 to image cortical amyloid in patients with mild cognitive impairment or dementia due to Alzheimer disease. Arch Neurol. 2011;68(11):1404–11.

    Article  PubMed  Google Scholar 

  16. Villemagne VL, Ong K, Mulligan RS, et al. Amyloid imaging with (18)F-florbetaben in Alzheimer disease and other dementias. J Nucl Med. 2011;52(8):1210–7.

    Article  PubMed  Google Scholar 

  17. Camus V, Payoux P, Barré L, et al. Using PET with 18F-AV-45 (florbetapir) to quantify brain amyloid load in a clinical environment. Eur J Nucl Med Mol Imaging. 2012;39(4):621–31.

    Article  PubMed  CAS  Google Scholar 

  18. •• Clark CM, Schneider JA, Bedell BJ, et al. Use of Florbetapir-PET for imaging. JAMA. 2011;305(3):275–83. This well-designed study showed that florbetapir-PET imaging, based on a novel fluorine-based radioatracer, was highly correlated with the presence and density of β-amyloid. Given the greatly enhanced half-life of fluorine compounds over the carbon-based Pittsburgh Compound B, this and related studies have opened up new opportunities for in vivo imaging of β-amyloid pathology in Alzheimer's disease.

    Article  PubMed  CAS  Google Scholar 

  19. Choi SR, Schneider JA, Bennett DA, et al. Correlation of amyloid PET ligand florbetapir F 18 binding with Aβ aggregation and neuritic plaque deposition in postmortem brain tissue. Alzheimer Dis Assoc Dis. 2012;26(1):8–16.

    Article  CAS  Google Scholar 

  20. Landau SM, Breault C, Joshi AD, et al. Amyloid-β imaging with Pittsburgh compound B and florbetapir: comparing radiotracers and quantification methods. J Nucl Med. 2013;54(1):70–7.

    Article  PubMed  CAS  Google Scholar 

  21. Bokde ALW, Lopez-Bayo P, Born C, et al. Functional abnormalities of the visual processing system in subjects with mild cognitive impairment: an fMRI study. Psych Res. 2008;163(3):248–59.

    Article  Google Scholar 

  22. Woodard JL, Seidenberg M, Nielson KA. Semantic memory activation in amnestic mild cognitive impairment. Brain. 2009;132(Pt 8):2068–78.

    Article  PubMed  CAS  Google Scholar 

  23. Yassa MA, Stark SM, Bakker A, Albert MS, Gallagher M, Stark CEL. High-resolution structural and functional MRI of hippocampal CA3 and dentate gyrus in patients with amnestic Mild Cognitive Impairment. NeuroImage. 2010;51(3):1242–52.

    Article  PubMed  Google Scholar 

  24. Jacobs HIL, Van Boxtel MPJ, Heinecke A. Functional integration of parietal lobe activity in early Alzheimer disease. Neurology. 2012;78(5):352–60.

    Article  PubMed  CAS  Google Scholar 

  25. Buckner RL, Snyder AZ, Shannon BJ, et al. Molecular, structural, and functional characterization of Alzheimer’s disease: evidence for a relationship between default activity, amyloid, and memory. J Neurosci. 2005;25(34):7709–17.

    Article  PubMed  CAS  Google Scholar 

  26. Hedden T, Van Dijk KRA, Becker JA, et al. Disruption of functional connectivity in clinically normal older adults harboring amyloid burden. J Neurosci. 2009;29(40):12686–94.

    Article  PubMed  CAS  Google Scholar 

  27. Mormino EC, Smiljic A, Hayenga AO, et al. Relationships between β-amyloid and functional connectivity in different components of the default mode network in aging. Cereb Cortex. 2011;21(10):2399–407.

    Article  PubMed  Google Scholar 

  28. Drzezga A, Becker JA, Van Dijk KRA, et al. Neuronal dysfunction and disconnection of cortical hubs in non-demented subjects with elevated amyloid burden. Brain. 2011;134(Pt 6):1635–46.

    Article  PubMed  Google Scholar 

  29. Qi Z, Wu X, Wang Z, et al. Impairment and compensation coexist in amnestic MCI default mode network. NeuroImage. 2010;50(1):48–55.

    Article  PubMed  Google Scholar 

  30. Sorg C, Riedl V, Muhlau M, et al. Selective changes of resting-state networks in individuals at risk for Alzheimer’s disease. Proc Natl Acad Sci USA. 2007;104(47):1–6.

    Article  Google Scholar 

  31. Wang K, Liang M, Wang L, et al. Altered functional connectivity in early Alzheimer’s disease: a resting-state fMRI study. Hum Brain Mapp. 2007;28(10):967–78.

    Article  PubMed  Google Scholar 

  32. Langbaum JBS, Chen K, Lee W, et al. Categorical and correlational analyses of baseline fluorodeoxyglucose positron emission tomography images from the Alzheimer’s Disease Neuroimaging Initiative (ADNI). NeuroImage. 2009;45(4):1107–16.

    Article  PubMed  Google Scholar 

  33. Fluid C, Biomarkers PET, Shaffer JL, et al. Predicting cognitive decline in subjects at risk for Alzheimer disease by using combined. Radiology. 2013;266(2):583–91.

    Article  Google Scholar 

  34. Tolboom N, Van der Flier WM, Yaqub M, et al. Relationship of cerebrospinal fluid markers to 11C-PiB and 18F-FDDNP binding. J Nucl Med. 2009;50(9):1464–70.

    Article  PubMed  CAS  Google Scholar 

  35. • Weigand SD, Vemuri P, Wiste HJ, et al. Transforming cerebrospinal fluid Aβ42 measures into calculated Pittsburgh Compound B units of brain Aβ amyloid. Alzheimers Dement. 2011;7(2):133–41. Subjects from the Alzheimer's Disease Neuroimaging Initiative (ADNI) underwent PiB-PET imaging and lumbar punctures at the same time. Neuroimaging and CSF biomarkers were both used to develop a regression model by which CSF Aβ42 can be transformed into units of PIB PET. Brain Aβ amyloid load can thus be ascertained at baseline by either CSF or amyloid PET imaging.

    Article  PubMed  CAS  Google Scholar 

  36. Salloway S, Mintzer J, Weiner MF, Cummings JL. Disease-modifying therapies in Alzheimer’s disease. Alzheimers Dement. 2008;4(2):65–79.

    Article  PubMed  CAS  Google Scholar 

  37. •• Jack CR, Knopman DS, Jagust WJ, et al. Hypothetical model of dynamic biomarkers of the Alzheimer’s pathological cascade. Lancet Neurol. 2010;9(1):1–20. Jack and colleagues propose a new hypothetical model of AD development, from asymptomatic to dementia, as an orderly sequence of biomarkers. In this model, amyloid biomarkers including PiB-PET change first, followed later by neurodegenerative biomarkers like structural MRI and cognitive symptoms. Biomarkers change dynamically, and correlate with disease severity, with MRI findings correlating best.

    Article  Google Scholar 

  38. •• McKhann GM, Knopman DS, Chertkow H, et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer's Association workgroups on diagnostic guidelines for Alzheimer's disease. Alzheimers Dement. 2011;7(3):263–9. New guidelines for the diagnosis of AD, for the first time utilizing biomarkers (including neuroimaging), albeit in a supporting role to clinical assessment, in the diagnostic process.

    Article  PubMed  Google Scholar 

  39. Duckworth K. Depression in older persons: Fact Sheet. 2009;1(800):1–3. Available at: http://www.nami.org/Template.cfm?Section=Depression&Template=/ContentManagement/ContentDisplay.cfm&ContentID=88876.

  40. Andreescu C, Butters MA, Begley A, et al. Gray matter changes in late life depression—a structural MRI analysis. Neuropsychopharmacology. 2008;33(11):2566–72.

    Article  PubMed  Google Scholar 

  41. Dotson VM, Davatzikos C, Kraut MA, Resnick SM. Depressive symptoms and brain volumes in older adults: a longitudinal magnetic resonance imaging study. J Psych Neurosci. 2009;34(5):367–75.

    Google Scholar 

  42. Goveas JS, Espeland MA, Hogan P, et al. Depressive symptoms, brain volumes and subclinical cerebrovascular disease in postmenopausal women: the Women’s Health Initiative MRI Study. J Affect Disord. 2011;132(1–2):275–84.

    Article  PubMed  Google Scholar 

  43. Chang C-C, Yu S-C, McQuoid DR, et al. Reduction of dorsolateral prefrontal cortex gray matter in late-life depression. Psych Res. 2011;193(1):1–6.

    Article  Google Scholar 

  44. Butters MA, Aizenstein HJ, Hayashi KM, et al. Three-dimensional surface mapping of the caudate nucleus in late-life depression. Am J Geriatric Psych. 2009;17(1):4–12.

    Article  Google Scholar 

  45. Burke J, McQuoid DR, Payne ME, Steffens DC, Krishnan RR, Taylor WD. Amygdala volume in late-life depression: relationship with age of onset. Am J Geriatric Psych. 2011;19(9):771–6.

    Article  Google Scholar 

  46. Gerritsen L, Comijs HC, Van der Graaf Y, Knoops AJG, Penninx BWJH, Geerlings MI. Depression, hypothalamic pituitary adrenal axis, and hippocampal and entorhinal cortex volumes–the SMART Medea study. Biol Psych. 2011;70(4):373–80.

    Article  Google Scholar 

  47. Sachs-Ericsson N, Corsentino E, Moxley J, et al. A longitudinal study of differences in late- and early-onset geriatric depression: depressive symptoms and psychosocial, cognitive, and neurological functioning. Aging Ment Health. 2013;17:1–11.

    Article  PubMed  Google Scholar 

  48. Steffens DC, McQuoid DR, Payne ME, Potter GG. Change in hippocampal volume on magnetic resonance imaging and cognitive decline among older depressed and nondepressed subjects in the neurocognitive outcomes of depression in the elderly study. Am J Geriatric Psych. 2011;19(1):4–12.

    Article  Google Scholar 

  49. Sawyer K, Corsentino E, Sachs-Ericsson N, Steffens DC. Depression, hippocampal volume changes, and cognitive decline in a clinical sample of older depressed outpatients and non-depressed controls. Aging Ment Health. 2012;16(6):753–62.

    Article  PubMed  Google Scholar 

  50. Greenstein AS, Paranthaman R, Burns A, et al. Cerebrovascular damage in late-life depression is associated with structural and functional abnormalities of subcutaneous small arteries. Hypertension. 2010;56(4):734–40.

    Article  PubMed  CAS  Google Scholar 

  51. Hickie I, Scott E, Mitchell P, Wilhelm K, Austin MP, Bennett B. Subcortical hyperintensities on magnetic resonance imaging: clinical correlates and prognostic significance in patients with severe depression. Biol Psych. 1995;37(3):151–60.

    Article  CAS  Google Scholar 

  52. Krishnan KR, Hays JC, Blazer DG. MRI-defined vascular depression. Am J Psych. 1997;154(4):497–501.

    CAS  Google Scholar 

  53. Alexopoulos GS, Meyers BS, Young RC, Kakuma T, Silbersweig D, Charlson M. Clinically defined vascular depression. Am J Psych. 1997;154(4):562–5.

    CAS  Google Scholar 

  54. Teodorczuk A, Firbank MJ, Pantoni L, et al. Relationship between baseline white-matter changes and development of late-life depressive symptoms: 3-year results from the LADIS study. Psychol Med. 2010;40(4):603–10.

    Article  PubMed  CAS  Google Scholar 

  55. Delaloye C, Moy G, De Bilbao F, et al. Neuroanatomical and neuropsychological features of elderly euthymic depressed patients with early- and late-onset. J Neurol Sci. 2010;299(1–2):19–23.

    Article  PubMed  Google Scholar 

  56. Sheline YI, Pieper CF, Barch DM, et al. Support for the vascular depression hypothesis in late-life depression. Arch General Psych. 2010;67(3):277–86.

    Article  Google Scholar 

  57. Gunning-Dixon FM, Walton M, Cheng J, et al. MRI signal hyperintensities and treatment remission of geriatric depression. J Affect Disord. 2010;126(3):395–401.

    Article  PubMed  Google Scholar 

  58. Sneed JR, Culang-Reinlieb ME, Brickman AM, et al. MRI signal hyperintensities and failure to remit following antidepressant treatment. J Affect Disord. 2011;135(1–3):315–20.

    Article  PubMed  CAS  Google Scholar 

  59. Gunning-Dixon FM, Hoptman MJ, Lim KO, et al. Macromolecular white matter abnormalities in geriatric depression: a magnetization transfer imaging study. Am J Geriatr Psychiatr. 2008;16(4):255–62.

    Article  Google Scholar 

  60. Shimony JS, Sheline YI, D’Angelo G, et al. Diffuse microstructural abnormalities of normal-appearing white matter in late life depression: a diffusion tensor imaging study. Biol Psych. 2009;66(3):245–52.

    Article  Google Scholar 

  61. Dalby RB, Chakravarty MM, Ahdidan J, et al. Localization of white-matter lesions and effect of vascular risk factors in late-onset major depression. Psychol Med. 2010;40(8):1389–99.

    Article  PubMed  CAS  Google Scholar 

  62. Alves GS, Karakaya T, Fußer F, et al. Association of microstructural white matter abnormalities with cognitive dysfunction in geriatric patients with major depression. Psych Res. 2012;203(2–3):194–200.

    Google Scholar 

  63. Allan CL, Sexton CE, Kalu UG, et al. Does the Framingham Stroke Risk Profile predict white-matter changes in late-life depression? Int Psychogeriatr. 2011:1–8.

  64. Forester BP, Harper DG, Jensen JE, et al. Phosphorus Magnetic Resonance Spectroscopy study of tissue specific changes in high energy phosphates before and after sertraline treatment of geriatric depression. Int J Geriatr Psych. 2009;24(2008):788–97.

    Article  Google Scholar 

  65. Venkatraman TN, Krishnan KRR, Steffens DC, Song AW, Taylor WD. Lobe and medial prefrontal Cortes in late-life. Psych Res. 2009;172(1):49–54.

    Article  CAS  Google Scholar 

  66. Brassen S, Kalisch R, Weber-Fahr W, Braus DF, Büchel C. Ventromedial prefrontal cortex processing during emotional evaluation in late-life depression: a longitudinal functional magnetic resonance imaging study. Biol Psych. 2008;64(4):349–55.

    Article  Google Scholar 

  67. Wang L, Ph D, Krishnan KR, et al. Depressive state- and disease-related alterations in neural responses to affective and executive challenges in geriatric depression. Am J Psych. 2008;165(July):863–71.

    Article  Google Scholar 

  68. Aizenstein HJ, Andreescu C, Edelman KL, et al. fMRI correlates of white matter hyperintensities in late-life depression. Am J Psych. 2011;168(10):1075–82.

    Article  Google Scholar 

  69. Wu M, Andreescu C, Butters MA, Tamburo R, Reynolds CF, Aizenstein H. Default-mode network connectivity and white matter burden in late-life depression. Psych Res. 2011;194(1):39–46.

    Article  Google Scholar 

  70. Alexopoulos GS, Hoptman MJ, Kanellopoulos D, Murphy CF, Lim KO, Gunning FM. Functional connectivity in the cognitive control network and the default mode network in late-life depression. J Affect Disord. 2012;139(1):56–65.

    Article  PubMed  Google Scholar 

  71. Smith GS, Kramer E, Ma Y, et al. The functional neuroanatomy of geriatric depression. Int J Geriatr Psychiatry. August 2008;2009:798–808.

    Google Scholar 

  72. Diaconescu AO, Kramer E, Hermann C, et al. Distinct functional networks associated with improvement of affective symptoms and cognitive function during citalopram treatment in geriatric depression. Hum Brain Mapp. 2011;32(10):1677–91.

    Article  PubMed  Google Scholar 

  73. Smith GS, Kahn A, Sacher J, et al. Serotonin transporter occupancy and the functional neuroanatomic effects of citalopram in geriatric depression. Am J Geriatric Psych. 2011;19(12):1016–25.

    Article  Google Scholar 

Download references

Conflict of Interest

Abhisek C. Khandai declares that he has no conflict of interest.

Howard J. Aizenstein declares that he has no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Howard J. Aizenstein.

Additional information

This article is part of the Topical Collection on Geriatric Disorders

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khandai, A.C., Aizenstein, H.J. Recent Advances in Neuroimaging Biomarkers in Geriatric Psychiatry. Curr Psychiatry Rep 15, 360 (2013). https://doi.org/10.1007/s11920-013-0360-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11920-013-0360-9

Keywords

Navigation