Skip to main content

Advertisement

Log in

Individualizing antipsychotic drug therapy in schizophrenia: The promise of pharmacogenetics

  • Published:
Current Psychiatry Reports Aims and scope Submit manuscript

Abstract

The first- and second-generation antipsychotic drugs have become mainstay drug treatment for schizophrenia. However, patients who receive antipsychotic drugs differ with respect to treatment response and drug-induced adverse events. The biological predictors of treatment response are being researched worldwide, with emphasis on molecular genetic predictors of treatment response. Because of the rapid and exciting developments in the field, we reviewed the recent studies of the molecular genetic basis of treatment response in schizophrenia. The accumulating data suggest that DNA information in the pathways for drug metabolism and drug target sites may be an important predictor of treatment response in schizophrenia. The data suggest that clinicians may soon be using a patient’s genotype to decide initial choice of antipsychotic drug treatment in schizophrenia. The pharmacogenetics of schizophrenia can improve the prospects of individualized treatment and drug discovery. Pharmacogenetic investigations of schizophrenia susceptibility loci, and genes controlling drug target site receptors, drug-metabolizing enzymes, the blood-brain barrier systems, and epigenetic mechanisms could lead to a molecular classification of treatment response and adverse events of psychotropic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Malhotra AK, Murphy GM, Jr, Kennedy JL: Pharmacogenetics of psychotropic drug response. Am J Psychiatry 2004; 161:780–796.

    Article  PubMed  Google Scholar 

  2. Correll CU, Penzner JB, Parikh UH, et al.: Recognizing and monitoring adverse events of second-generation antipsychotics in children and adolescents. Child Adolesc Psychiatr Clin N Am 2006, 15:177–206.

    Article  PubMed  Google Scholar 

  3. Meltzer HY, Davidson M, Glassman AH, Vieweg WV: Assessing cardiovascular risks versus clinical benefits of atypical antipsychotic drug treatment. J Clin Psychiatry 2002, 63(Suppl 9):25–29.

    PubMed  Google Scholar 

  4. Kane JM: Tardive dyskinesia circa 2006. Am J Psychiatry 2006, 163:1316–1318.

    Article  PubMed  Google Scholar 

  5. Lieberman JA, Stroup TS, McEvoy JP, et al.: Effectiveness of antipsychotic drugs in patients with chronicschizophrenia. N Engl J Med 2005, 353:1209–1223.

    Article  PubMed  CAS  Google Scholar 

  6. Kane JM, Freeman HL: Towards more effective antipsychotic treatment. Br J Psychiatry Suppl 1994, 25:22–31.

    PubMed  Google Scholar 

  7. Nnadi CU, Goldberg JF, Malhotra AK: Genetics and psychopharm acology: prospects for individualized treatment. Essent Psychopharmacol 2005, 6:193–208.

    PubMed  Google Scholar 

  8. McEvoy JP, Lieberman JA, Stroup TS, et al.: Effectiveness of clozapine versus olanzapine, quetiapine, and risperidone in patients with chronic schizophrenia who did not respond to prior atypical antipsychotic treatment. Am J Psychiatry 2006, 163:600–610.

    Article  PubMed  Google Scholar 

  9. Athanasiou MC, Malhotra AK, Xu C, Stephens JC: Discovery and utilization of haplotypes for pharmacogenetic studies of psychotropic drug response. Psychiatr Genet 2002, 12:89–96.

    Article  PubMed  Google Scholar 

  10. Lane HY, Lee CC, Liu YC, Chang WH: Pharmacogenetic studies of response to risperidone and other newer atypical antipsychotics. Pharmacogenomics 2005, 6:139–149.

    Article  PubMed  CAS  Google Scholar 

  11. Yamanouchi Y, Iwata N, Suzuki T, et al.: Effect of DRD2, 5-HT2A, and COMT genes on antipsychotic response to risperidone. Pharmacogenomics J 2003, 3:356–361.

    Article  PubMed  CAS  Google Scholar 

  12. Lane HY, Lee CC, Chang YC, et al.: Effects of dopamine D2 receptor Ser311Cys polymorphism and clinical factors on risperidone efficacy for positive and negative symptoms and social function. Int J Neuropsychopharmacol 2004, 7:461–470.

    Article  PubMed  CAS  Google Scholar 

  13. Schafer M, Rujescu D, Giegling I, et al.: Association of short-term response to haloperidol treatment with a polym orphism in the dopamine D(2) receptor gene. Am J Psychiatry 2001, 158:802–804.

    Article  PubMed  CAS  Google Scholar 

  14. Arranz MJ, Li T, Munro J, et al.: Lack of association between a polymorphism in the promoter region of the dopamine-2 receptor gene and clozapine response. Pharmacogenetics 1998, 8:481–484.

    Article  PubMed  CAS  Google Scholar 

  15. Grunder G, Landvogt C, Vernaleken I, et al.: The striatal and extrastriatal D2/D3 receptor-binding profile of clozapine in patients with schizophrenia. Neuropsychopharmacology 2006, 31:1027–1035.

    Article  PubMed  CAS  Google Scholar 

  16. Lencz T, Robinson DG, Xu K, et al.: DRD2 promoter region variation as a predict or of sustained response to antipsychotic medication in first-episode schizophrenia patients. Am J Psychiatry 2006, 163:529–531.

    Article  PubMed  Google Scholar 

  17. Arranz MJ, Munro J, Sham P, et al.: Meta-analysis of studies on genetic variation in 5-HT2A receptors and clozapine response. Schizophr Res 1998, 32:93–99.

    Article  PubMed  CAS  Google Scholar 

  18. Reynolds GP, Templeman LA, Zhang ZJ: The role of 5-HT2C receptor polymorphisms in the pharmacogenetics of antipsychotic drug treatment. Prog Neuropsychopharmacol Biol Psychiatry 2005, 29:1021–1028.

    Article  PubMed  CAS  Google Scholar 

  19. Reynolds GP, Arranz B, Templeman LA, et al.: Effect of 5-HT1A receptor gene polymorphism on negative and depressive symptom response to antipsychotic treatment of drug-naive psychotic patients. Am J Psychiatry 2006, 163:1826–1829.

    Article  PubMed  Google Scholar 

  20. Bishop JR, Ellingrod VL, Moline J, Miller D: Pilot study of the G-protein beta3 subunit gene (C825T) polymorphism and clinical response to olanzapine or olanzapine-related weight gain in persons with schizophrenia. Med Sci Monit 2006, 12:BR47–BR50.

    PubMed  CAS  Google Scholar 

  21. Strous RD, Greenbaum L, Kanyas K, et al.: Association of the dopamine receptor interacting protein gene, NEF3, with early response to antipsychotic medication. Int J Neuropsychopharmacol 2007, 10:321–333.

    Article  PubMed  CAS  Google Scholar 

  22. de Leon J, Susce MT, Murray-Carmichael E: The AmpliChip CYP450 genotyping test: integrating a new clinical tool. Mol Diagn Ther 2006, 10:135–151.

    PubMed  Google Scholar 

  23. Rasmussen JO, Christensen M, Svendsen JM, et al.: CYP2D6 gene test in psychiatric patients and healthy volunteers. Scand J Clin Lab Invest 2006, 66:129–136.

    PubMed  CAS  Google Scholar 

  24. Cho HY, Lee YB: Pharmacokinetics and bioe quivalence evaluation of risperidone in healthy male subjects with different CYP2D6 genotypes. Arch Pharm Res 2006, 29:525–533.

    Article  PubMed  CAS  Google Scholar 

  25. Nnadi CU, Goldberg JF, Malhotra AK: Pharmacogenetics in mood disorder. Curr Opin Psychiatry 2005, 18:33–39.

    PubMed  Google Scholar 

  26. van der Weide J, Hinrichs JW: The influence of cytochrome p450 pharmacogenetics on disposition of common antidepressant and antipsychotic medications. Clin Biochem Rev 2006, 27:17–25.

    PubMed  Google Scholar 

  27. Leabman MK, Huang CC, DeYoung J, et al.: Natural variation in human membrane transporter genes reveals evolutionary and functional constraints. Proc Natl Acad Sci U S A 2003, 100:5896–5901.

    Article  PubMed  CAS  Google Scholar 

  28. Tsai SJ, Hong CJ, Yu YW, et al.: Association study of a functional serotonin transporter gene polymorphism with schizophrenia, psychopathology and clozapine response. Schizophr Res 2000, 44:177–181.

    Article  PubMed  CAS  Google Scholar 

  29. Kaiser R, Tremblay PB, Schmider J, et al.: Serotonin transporter polymorphisms: no association with response to antipsychotic treatment, but associations with the schizoparanoid and residual subtypes of schizophrenia. Mol Psychiatry 2001, 6:179–185.

    Article  PubMed  CAS  Google Scholar 

  30. Kirchheiner J, Nickchen K, Sasse J, et al.: A 40-basepair VNTR polymorphism in the dopamine transporter (DAT1) gene and the rapid response to antidepressant treatment. Pharmacogenomics J 2007, 7:48–55.

    Article  PubMed  CAS  Google Scholar 

  31. Reyes CL, Ward A, Yu J, Chang G: The structures of MsbA: insight into ABC transporter-mediated multidrug efflux. FEBS Lett 2006, 580:1042–1048.

    Article  PubMed  CAS  Google Scholar 

  32. Boulton DW, DeVane CL, Liston HL, Markowitz JS: In vitro P-glycoprotein affinity for atypical and conventional antipsychotics. Life Sci 2002, 71:163–169.

    Article  PubMed  CAS  Google Scholar 

  33. Xing Q, Gao R, Li H, et al.: Polymorphisms of the ABCB1 gene are associated with the therapeutic response to risperidone in Chinese schizophrenia patients. Pharmacogenomics 2006, 7:987–993.

    Article  PubMed  CAS  Google Scholar 

  34. Yasui-Furukori N, Saito M, Nakagami T, et al.: Association between multidrug resistance 1 (MDR1) gene polymorphisms and therapeutic response to bromperidol in schizophrenic patients: a preliminary study. Prog Neuropsychopharmacol Biol Psychiatry 2006, 30:286–291.

    Article  PubMed  CAS  Google Scholar 

  35. Christians U, Schmitz V, Haschke M: Functional interactions between P-glycoprotein and CYP3A indrug metabolism. Expert Opin Drug Metab Toxicol 2005, 1:641–654.

    Article  PubMed  CAS  Google Scholar 

  36. de Leon J, Susce MT, Pan RM, et al.: Polymorphic variations in GSTM1, GSTT1, PgP, CYP2D6, CYP3A5, and dopamine D2 and D3 receptors and their association with tardive dyskinesia in severe mental illness. J Clin Psychopharmacol 2005, 25:448–456.

    Article  PubMed  Google Scholar 

  37. Correll CU, Frederickson AM, Kane JM, Manu P: Does antipsychotic polypharmacy increase the risk for metabolic syndrome? Schizophr Res 2007, 89:91–100.

    Article  PubMed  Google Scholar 

  38. Templeman LA, Reynolds GP, Arranz B, San L: Polymorphisms of the 5-HT2C receptor and leptin genes are associated with antipsychotic drug-induced weight gain in Caucasian subjects with a first-episode psychosis. Pharmacogenet Genomics 2005, 15:195–200.

    Article  PubMed  CAS  Google Scholar 

  39. Correll CU, Malhotra AK: Pharmacogenetics of antipsychotic-induced weight gain. Psychopharmacology (Berl) 2004, 174:477–489.

    CAS  Google Scholar 

  40. Liou YJ, Lai IC, Lin MW, et al.: Haplotype analysis of endothelial nitric oxide synthase (NOS3) genetic variants and tardive dyskinesia in patients with schizophrenia. Pharmacogenet Genomics 2006, 16:151–157.

    Article  PubMed  CAS  Google Scholar 

  41. Nackley AG, Shabalina SA, Tchivileva IE, et al.: Human catechol-O-methyltransferase haplotypes modulate protein expression by altering mRNA secondary structure. Science 2006, 314:1930–1933.

    Article  PubMed  CAS  Google Scholar 

  42. Kimchi-Sarfaty C, Oh JM, Kim IW, et al.: A “silent” polymorphism in the MDR1 gene changes substrate specificity. Science 2007, 315:466–467.

    Article  CAS  Google Scholar 

  43. Lencz T, Morgan TV, Athanasiou M, et al.: Converging evidence for a pseudoautosomal cytokine receptor gene locus in schizophrenia. Mol Psychiatry 2007, 12:572–580.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil K. Malhotra MD.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nnadi, C.U., Malhotra, A.K. Individualizing antipsychotic drug therapy in schizophrenia: The promise of pharmacogenetics. Curr Psychiatry Rep 9, 313–318 (2007). https://doi.org/10.1007/s11920-007-0038-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11920-007-0038-2

Keywords

Navigation