Skip to main content

Advertisement

Log in

Impact of Cinacalcet and Etelcalcetide on Bone Mineral and Cardiovascular Disease in Dialysis Patients

  • KIDNEY AND BONE (T NICKOLAS AND NV DAVID, SECTION EDITORS)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purposes of Review

With chronic kidney disease (CKD) progression, secondary hyperparathyroidism (sHPT) and mineral and bone metabolism disease (MBD) almost inevitably develop and result in renal osteodystrophy and cardiovascular disease (CVD). Together with active vitamin D, calcimimetics are the main therapy for sHPT in CKD. This review provides an overview of the therapeutic effects of oral cinacalcet and intravenous etelcalcetide on CKD-MBD and vascular disease, with a focus on pediatric dialysis patients.

Recent Findings

Randomized controlled trials in adults and children demonstrate efficient lowering of parathyroid hormone (PTH) by the calcimimetics together with a reduction in serum calcium and phosphate when combined with low-dose active vitamin D, while therapy with active vitamin D analogs alone increases serum calcium and phosphate. Cinacalcet and etelcalcetide both improve bone formation and correct adynamic bone, i.e., have a direct bone anabolic effect. They decrease serum calciprotein particles, which are involved in endothelial dysfunction, atherogenesis, and vascular calcification. Clinical trials in adults suggest a modest slowing of the progression of cardiovascular calcification with cinacalcet.

Summary

Calcimimetic agents represent a major pharmacological tool for improved control of CKD-MBD, by efficiently counteracting sHPT and allowing for better control of calcium/phosphate and bone homeostasis. Albeit definite evidence is lacking, the beneficial effects of calcimimetics on CVD are promising. Routine use of cinacalcet has been suggested in children.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Update Work Group. KDIGO 2017 Clinical practice guideline update for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int Suppl. 2017;7:1–59.

  2. Cannata-Andía JB, Martín-Carro B, Martín-Vírgala J, Rodríguez-Carrio J, Bande-Fernández JJ, Alonso-Montes C, et al. Chronic kidney disease—mineral and bone disorders: pathogenesis and management. Calcif Tissue Int [Internet]. 2021 [cited 2022 Aug 25];108:410–22. Available from: https://doi.org/10.1007/s00223-020-00777-1

  3. Lalayiannis AD, Crabtree NJ, Ferro CJ, Askiti V, Mitsioni A, Biassoni L, et al. Routine serum biomarkers, but not dual-energy X-ray absorptiometry, correlate with cortical bone mineral density in children and young adults with chronic kidney disease. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc - Eur Ren Assoc. 2021;36:1872–81.

    CAS  Google Scholar 

  4. Klaus G, Watson A, Edefonti A, Fischbach M, Rönnholm K, Schaefer F, et al. Prevention and treatment of renal osteodystrophy in children on chronic renal failure: European guidelines. Pediatr Nephrol Berl Ger. 2006;21:151–9.

    Article  CAS  Google Scholar 

  5. Ketteler M, Block GA, Evenepoel P, Fukagawa M, Herzog CA, McCann L, et al. Executive summary of the 2017 KDIGO chronic kidney disease–mineral and bone disorder (CKD-MBD) guideline update: what’s changed and why it matters. Kidney Int [Internet]. 2017 [cited 2018 Oct 1];92:26–36. Available from: http://www.sciencedirect.com/science/article/pii/S0085253817302491

  6. Hannan FM, Kallay E, Chang W, Brandi ML, Thakker RV. The calcium-sensing receptor in physiology and in calcitropic and noncalcitropic diseases. Nat Rev Endocrinol. 2018;15:33–51.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Alexander ST, Hunter T, Walter S, Dong J, Maclean D, Baruch A, et al. Critical cysteine residues in both the calcium-sensing receptor and the allosteric activator AMG 416 underlie the mechanism of action. Mol Pharmacol [Internet]. 2015 [cited 2018 May 6];88:853–65. Available from: http://molpharm.aspetjournals.org/content/88/5/853.

  8. Chen P, Narayanan A, Wu B, Gisleskog PO, Gibbs JP, Chow AT, et al. Population pharmacokinetic and pharmacodynamic modeling of etelcalcetide in patients with chronic kidney disease and secondary hyperparathyroidism receiving hemodialysis. Clin Pharmacokinet. 2018;57:71–85.

    Article  CAS  PubMed  Google Scholar 

  9. Goodman WG, Hladik GA, Turner SA, Blaisdell PW, Goodkin DA, Liu W, et al. The Calcimimetic agent AMG 073 lowers plasma parathyroid hormone levels in hemodialysis patients with secondary hyperparathyroidism. J Am Soc Nephrol JASN. 2002;13:1017–24.

    Article  CAS  PubMed  Google Scholar 

  10. Lindberg JS, Moe SM, Goodman WG, Coburn JW, Sprague SM, Liu W, et al. The Calcimimetic AMG 073 reduces parathyroid hormone and calcium x phosphorus in secondary hyperparathyroidism. Kidney Int. 2003;63:248–54.

    Article  CAS  PubMed  Google Scholar 

  11. Quarles LD, Sherrard DJ, Adler S, Rosansky SJ, McCary LC, Liu W, et al. The Calcimimetic AMG 073 as a Potential treatment for secondary hyperparathyroidism of end-stage renal disease. J Am Soc Nephrol [Internet]. American Society of Nephrology; 2003 [cited 2022 Sep 18];14:575–83. Available from: http://jasn.asnjournals.org/content/14/3/575

  12. Block GA, Martin KJ, de Francisco ALM, Turner SA, Avram MM, Suranyi MG, et al. Cinacalcet for secondary hyperparathyroidism in patients receiving hemodialysis. N Engl J Med. 2004;350:1516–25. RCT which reported benefic effects of cinacalcet on PTH.

    Article  CAS  PubMed  Google Scholar 

  13. Lindberg JS, Culleton B, Wong G, Borah MF, Clark RV, Shapiro WB, et al. Cinacalcet HCl, an oral calcimimetic agent for the treatment of secondary hyperparathyroidism in hemodialysis and peritoneal dialysis: a randomized, double-blind, multicenter study. J Am Soc Nephrol JASN. 2005;16:800–7.

    Article  CAS  PubMed  Google Scholar 

  14. Messa P, Macário F, Yaqoob M, Bouman K, Braun J, von Albertini B, et al. The OPTIMA study: assessing a new cinacalcet (Sensipar/Mimpara) treatment algorithm for secondary hyperparathyroidism. Clin J Am Soc Nephrol CJASN. 2008;3:36–45.

    Article  CAS  PubMed  Google Scholar 

  15. Akiba T, Akizawa T, Tsukamoto Y, Uchida E, Iwasaki M, Koshikawa S, et al. Dose determination of cinacalcet hydrochloride in Japanese hemodialysis patients with secondary hyperparathyroidism. Ther Apher Dial Off Peer-Rev J Int Soc Apher Jpn Soc Apher Jpn Soc Dial Ther. 2008;12:117–25.

    CAS  Google Scholar 

  16. Malluche HH, Monier-Faugere M-C, Wang G, Frazã OJM, Charytan C, Coburn JW, et al. An assessment of cinacalcet HCl effects on bone histology in dialysis patients with secondary hyperparathyroidism. Clin Nephrol. 2008;69:269–78.

    Article  CAS  PubMed  Google Scholar 

  17. Schaefer RM, Bover J, Dellanna F, Sanz D, Asensio C, Sánchez González MC, et al. Efficacy of cinacalcet administered with the first meal after dialysis: the SENSOR Study. Clin Nephrol. 2008;70:126–34.

    Article  CAS  PubMed  Google Scholar 

  18. Raggi P, Chertow GM, Torres PU, Csiky B, Naso A, Nossuli K, et al. The ADVANCE study: a randomized study to evaluate the effects of cinacalcet plus low-dose vitamin D on vascular calcification in patients on hemodialysis. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc - Eur Ren Assoc. 2011;26:1327–39.

    CAS  Google Scholar 

  19. EVOLVE Trial Investigators, Chertow GM, Block GA, Correa-Rotter R, Drüeke TB, Floege J, et al. Effect of cinacalcet on cardiovascular disease in patients undergoing dialysis. N Engl J Med. 2012;367:2482–94. The EVOLVE trial randomizing 3883 hemodialysis patients to cinacalcet versus placebo demonstrated a clinical fracture risk reduction after adjustment.

  20. Martin KJ, Bell G, Pickthorn K, Huang S, Vick A, Hodsman P, et al. Velcalcetide (AMG 416), a novel peptide agonist of the calcium-sensing receptor, reduces serum parathyroid hormone and FGF23 levels in healthy male subjects. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc - Eur Ren Assoc. 2014;29:385–92.

    CAS  Google Scholar 

  21. Martin KJ, Pickthorn K, Huang S, Block GA, Vick A, Mount PF, et al. AMG 416 (velcalcetide) is a novel peptide for the treatment of secondary hyperparathyroidism in a single-dose study in hemodialysis patients. Kidney Int [Internet]. 2014 [cited 2019 May 1];85:191–7. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0085253815561450

  22. Sprague SM, Wetmore JB, Gurevich K, Da Roza G, Buerkert J, Reiner M, et al. Effect of cinacalcet and vitamin D analogs on fibroblast growth factor-23 during the treatment of secondary hyperparathyroidism. Clin J Am Soc Nephrol CJASN. 2015;10:1021–30.

    Article  CAS  PubMed  Google Scholar 

  23. Floege J, Kubo Y, Floege A, Chertow GM, Parfrey PS. The effect of cinacalcet on calcific uremic arteriolopathy events in patients receiving hemodialysis: the EVOLVE trial. Clin J Am Soc Nephrol CJASN. 2015;10:800–7.

    Article  CAS  PubMed  Google Scholar 

  24. Wetmore JB, Gurevich K, Sprague S, Da Roza G, Buerkert J, Reiner M, et al. A randomized trial of cinacalcet versus vitamin D analogs as monotherapy in secondary hyperparathyroidism (PARADIGM). Clin J Am Soc Nephrol CJASN. 2015;10:1031–40.

    Article  CAS  PubMed  Google Scholar 

  25. Fukagawa M, Yokoyama K, Shigematsu T, Akiba T, Fujii A, Kuramoto T, et al. A phase 3, multicentre, randomized, double-blind, placebo-controlled, parallel-group study to evaluate the efficacy and safety of etelcalcetide (ONO-5163/AMG 416), a novel intravenous calcimimetic, for secondary hyperparathyroidism in Japanese haemodialysis patients. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc - Eur Ren Assoc. 2017;32:1723–30.

    CAS  Google Scholar 

  26. Block GA, Bushinsky DA, Cheng S, Cunningham J, Dehmel B, Drueke TB, et al. Effect of etelcalcetide vs cinacalcet on serum parathyroid hormone in patients receiving hemodialysis with secondary hyperparathyroidism: a randomized clinical trial. JAMA. 2017;317:156–64. RCT which reported noninferiority of etelcalcetide compared to cinacalcet in 343 patients.

    Article  CAS  PubMed  Google Scholar 

  27. Warady BA, Iles JN, Ariceta G, Dehmel B, Hidalgo G, Jiang X, et al. A randomized, double-blind, placebo-controlled study to assess the efficacy and safety of cinacalcet in pediatric patients with chronic kidney disease and secondary hyperparathyroidism receiving dialysis. Pediatr Nephrol Berl Ger. 2019;34:475–86.

    Article  Google Scholar 

  28. Eddington H, Chinnadurai R, Alderson H, Ibrahim ST, Chrysochou C, Green D, et al. A randomised controlled trial to examine the effects of cinacalcet on bone and cardiovascular parameters in haemodialysis patients with advanced secondary hyperparathyroidism. BMC Nephrol. 2021;22:106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wetmore JB, Liu S, Krebill R, Menard R, Quarles LD. Effects of cinacalcet and concurrent low-dose vitamin D on FGF23 levels in ESRD. Clin J Am Soc Nephrol CJASN. 2010;5:110–6.

    Article  CAS  PubMed  Google Scholar 

  30. Prié D. FGF23 and cardiovascular risk. Ann Endocrinol. 2021;82:141–3.

    Article  Google Scholar 

  31. Goodman WG, Ward DT, Martin KJ, Drayer D, Moore C, Xu J, et al. Activation of the calcium receptor by calcimimetic agents is preserved despite modest attenuating effects of hyperphosphatemia. J Am Soc Nephrol [Internet]. American Society of Nephrology; 2022 [cited 2022 Aug 28];33:201–12. Available from: http://jasn.asnjournals.org/content/33/1/201

  32. Walter S, Baruch A, Dong J, Tomlinson JE, Alexander ST, Janes J, et al. Pharmacology of AMG 416 (Velcalcetide), a novel peptide agonist of the calcium-sensing receptor, for the treatment of secondary hyperparathyroidism in hemodialysis patients. J Pharmacol Exp Ther [Internet]. 2013 [cited 2018 May 6];346:229–40. Available from: http://jpet.aspetjournals.org/content/346/2/229

  33. Pereira L, Meng C, Marques D, Frazão JM.Old and new calcimimetics for treatment of secondary hyperparathyroidism: impact on biochemical and relevant clinical outcomes. Clin Kidney J [Internet]. 2018 [cited 2022 Aug 28];11:80–8. Available from.

  34. Russo D, Tripepi R, Malberti F, Di Iorio B, Scognamiglio B, Di Lullo L, et al. Etelcalcetide in patients on hemodialysis with severe secondary hyperparathyroidism. Multicenter Study in “Real Life.” J Clin Med. 2019;8:E1066.

  35. Nemeth EF, Heaton WH, Miller M, Fox J, Balandrin MF, Van Wagenen BC, et al. Pharmacodynamics of the type II calcimimetic compound cinacalcet HCl. J Pharmacol Exp Ther. 2004;308:627–35.

    Article  CAS  PubMed  Google Scholar 

  36. Colloton M, Shatzen E, Miller G, Stehman-Breen C, Wada M, Lacey D, et al. Cinacalcet HCl attenuates parathyroid hyperplasia in a rat model of secondary hyperparathyroidism. Kidney Int [Internet]. 2005 [cited 2022 Aug 26];67:467–76. Available from: https://www.sciencedirect.com/science/article/pii/S008525381550481X

  37. Kawata T, Imanishi Y, Kobayashi K, Onoda N, Okuno S, Takemoto Y, et al. Direct in vitro evidence of the suppressive effect of cinacalcet HCl on parathyroid hormone secretion in human parathyroid cells with pathologically reduced calcium-sensing receptor levels. J Bone Miner Metab. 2006;24:300–6.

    Article  CAS  PubMed  Google Scholar 

  38. Meola M, Petrucci I, Barsotti G. Long-term treatment with cinacalcet and conventional therapy reduces parathyroid hyperplasia in severe secondary hyperparathyroidism. Nephrol Dial Transplant [Internet]. 2009 [cited 2022 Oct 3];24:982–9. Available from: https://doi.org/10.1093/ndt/gfn654

  39. Nagano N. Pharmacological and clinical properties of calcimimetics: calcium receptor activators that afford an innovative approach to controlling hyperparathyroidism. Pharmacol Ther. 2006;109:339–65.

    Article  CAS  PubMed  Google Scholar 

  40. Ngamkam J, Vadcharavivad S, Areepium N, Auamnoy T, Takkavatakarn K, Katavetin P, et al. The impact of CASR A990G polymorphism in response to cinacalcet treatment in hemodialysis patients with secondary hyperparathyroidism. Sci Rep [Internet]. 2021 [cited 2022 Aug 27];11:18006. Available from: https://www.nature.com/articles/s41598-021-97587-8

  41. Vezzoli G, Terranegra A, Arcidiacono T, Biasion R, Coviello D, Syren ML, et al. R990G polymorphism of calcium-sensing receptor does produce a gain-of-function and predispose to primary hypercalciuria. Kidney Int. 2007;71:1155–62.

    Article  CAS  PubMed  Google Scholar 

  42. Moe SM, Wetherill L, Decker BS, Lai D, Abdalla S, Long J, et al. Calcium-sensing receptor genotype and response to cinacalcet in patients undergoing hemodialysis. Clin J Am Soc Nephrol CJASN. 2017;12:1128–38.

    Article  CAS  PubMed  Google Scholar 

  43. Bernardor J, Flammier S, Salles J-P, Amouroux C, Castanet M, Lienhardt A, et al. Off-label use of cinacalcet in pediatric primary hyperparathyroidism: a French multicenter experience. Front Pediatr. 2022;10: 926986.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Berger CE, Rathod H, Gillespie JI, Horrocks BR, Datta HK. Scanning electrochemical microscopy at the surface of bone-resorbing osteoclasts: evidence for steady-state disposal and intracellular functional compartmentalization of calcium. J Bone Miner Res Off J Am Soc Bone Miner Res. 2001;16:2092–102.

    Article  CAS  Google Scholar 

  45. Cianferotti L, Gomes AR, Fabbri S, Tanini A, Brandi ML. The calcium-sensing receptor in bone metabolism: from bench to bedside and back. Osteoporos Int [Internet]. 2015 [cited 2018 May 25];26:2055–71. Available from: http://link.springer.com/article/https://doi.org/10.1007/s00198-015-3203-1

  46. Mentaverri R, Yano S, Chattopadhyay N, Petit L, Kifor O, Kamel S, et al. The calcium sensing receptor is directly involved in both osteoclast differentiation and apoptosis. FASEB J [Internet]. 2006 [cited 2017 Nov 14];20:2562–4. Available from: http://www.fasebj.org/content/20/14/2562

  47. Nguyen-Yamamoto L, Bolivar I, Strugnell SA, Goltzman D. Comparison of active vitamin D compounds and a calcimimetic in mineral homeostasis. J Am Soc Nephrol JASN. 2010;21:1713–23.

    Article  CAS  PubMed  Google Scholar 

  48. Diepenhorst NA, Leach K, Keller AN, Rueda P, Cook AE, Pierce TL, et al. Divergent effects of strontium and calcium-sensing receptor positive allosteric modulators (calcimimetics) on human osteoclast activity: Divergent effects of Sr2+o and calcimimetics on human osteoclasts. Br J Pharmacol [Internet]. 2018 [cited 2018 May 5]; Available from: http://doi.wiley.com/https://doi.org/10.1111/bph.14344

  49. Chiu H-W, Hou Y-C, Lu C-L, Lu K-C, Liu W-C, Shyu J-F, et al. Cinacalcet improves bone parameters through regulation of osteoclast endoplasmic reticulum stress, autophagy, and apoptotic pathways in chronic kidney disease-mineral and bone disorder. J Bone Miner Res Off J Am Soc Bone Miner Res. 2022;37:215–25.

    Article  CAS  Google Scholar 

  50. Chertow GM, Pupim LB, Block GA, Correa-Rotter R, Drueke TB, Floege J, et al. Evaluation of cinacalcet therapy to lower cardiovascular events (EVOLVE): rationale and design overview. Clin J Am Soc Nephrol [Internet]. American Society of Nephrology; 2007 [cited 2022 Oct 3];2:898–905. Available from: http://cjasn.asnjournals.org/content/2/5/898

  51. Moe SM, Abdalla S, Chertow GM, Parfrey PS, Block GA, Correa-Rotter R, et al. Effects of cinacalcet on fracture events in patients receiving hemodialysis: the EVOLVE trial. J Am Soc Nephrol JASN. 2015;26:1466–75.

    Article  CAS  PubMed  Google Scholar 

  52. Li X, Yu L, Asuncion F, Grisanti M, Alexander S, Hensley K, et al. Etelcalcetide (AMG 416), a peptide agonist of the calcium-sensing receptor, preserved cortical bone structure and bone strength in subtotal nephrectomized rats with established secondary hyperparathyroidism. Bone [Internet]. 2017 [cited 2017 Nov 14];105:163–72. Available from: http://www.sciencedirect.com/science/article/pii/S8756328217303216

  53. Bartosova M, Zhang C, Schaefer B, Herzog R, Ridinger D, Damgov I, et al. Glucose derivative induced vasculopathy in children on chronic peritoneal dialysis. Circ Res [Internet]. American Heart Association; 2021 [cited 2021 Nov 11];129:e102–18. Available from:https://doi.org/10.1161/CIRCRESAHA.121.319310.

  54. Freise C, Schaefer B, Bartosova M, Bayazit A, Bauer U, Pickardt T, et al. Arterial tissue transcriptional profiles associate with tissue remodeling and cardiovascular phenotype in children with end-stage kidney disease. Sci Rep [Internet]. Nature Publishing Group; 2019 [cited 2021 Jan 26];9:10316. Available from: https://www.nature.com/articles/s41598-019-46805-5

  55. Shroff R. Phosphate is a vascular toxin. Pediatr Nephrol [Internet]. 2013 [cited 2020 Jan 26];28:583–93. Available from: https://doi.org/10.1007/s00467-012-2347-x.

  56. Thompson B, Towler DA. Arterial calcification and bone physiology: role of the bone-vascular axis. Nat Rev Endocrinol. 2012;8:529–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Liu Y, Drozdov I, Shroff R, Beltran LE, Shanahan CM. Prelamin A accelerates vascular calcification via activation of the DNA damage response and senescence-associated secretory phenotype in vascular smooth muscle cells. Circ Res. 2013;112:e99-109.

    Article  CAS  PubMed  Google Scholar 

  58. Sanchis P, Ho CY, Liu Y, Beltran LE, Ahmad S, Jacob AP, et al. Arterial “inflammaging” drives vascular calcification in children on dialysis. Kidney Int [Internet]. 2019 [cited 2021 Jan 29];95:958–72. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6684370/

  59. Cozzolino M, Ciceri P, Galassi A, Mangano M, Carugo S, Capelli I, et al. The key role of phosphate on vascular calcification. Toxins. 2019;11.

  60. Kawata T, Nagano N, Obi M, Miyata S, Koyama C, Kobayashi N, et al. Cinacalcet suppresses calcification of the aorta and heart in uremic rats. Kidney Int. 2008;74:1270–7.

    Article  CAS  PubMed  Google Scholar 

  61. Joki N, Nikolov IG, Caudrillier A, Mentaverri R, Massy ZA, Drüeke TB. Effects of calcimimetic on vascular calcification and atherosclerosis in uremic mice. Bone. 2009;45(Suppl 1):S30-34.

    Article  CAS  PubMed  Google Scholar 

  62. Ari E, Kaya Y, Demir H, Asicioglu E, Eren Z, Celik E, et al. Cinacalcet may improve oxidative DNA damage in maintenance hemodialysis patients: an observational study. Int Urol Nephrol. 2014;46:1843–9.

    Article  CAS  PubMed  Google Scholar 

  63. Wu M, Tang R-N, Liu H, Pan M-M, Liu B-C. Cinacalcet ameliorates aortic calcification in uremic rats via suppression of endothelial-to-mesenchymal transition. Acta Pharmacol Sin. 2016;37:1423–31.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Odenwald T, Nakagawa K, Hadtstein C, Roesch F, Gohlke P, Ritz E, et al. Acute blood pressure effects and chronic hypotensive action of calcimimetics in uremic rats. J Am Soc Nephrol [Internet]. American Society of Nephrology; 2006 [cited 2022 Oct 3];17:655–62. Available from: http://jasn.asnjournals.org/content/17/3/655

  65. Wheeler DC, London GM, Parfrey PS, Block GA, Correa-Rotter R, Dehmel B, et al. Effects of cinacalcet on atherosclerotic and nonatherosclerotic cardiovascular events in patients receiving hemodialysis: the EValuation Of Cinacalcet HCl Therapy to Lower CardioVascular Events (EVOLVE) trial. J Am Heart Assoc. 2014;3: e001363.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Moe SM, Chertow GM, Parfrey PS, Kubo Y, Block GA, Correa-Rotter R, et al. Cinacalcet, fibroblast growth factor-23, and cardiovascular disease in hemodialysis: the evaluation of cinacalcet HCl therapy to lower cardiovascular events (EVOLVE) trial. Circulation. 2015;132:27–39.

    Article  CAS  PubMed  Google Scholar 

  67. Wolf M, Block GA, Chertow GM, Cooper K, Fouqueray B, Moe SM, et al. Effects of etelcalcetide on fibroblast growth factor 23 in patients with secondary hyperparathyroidism receiving hemodialysis. Clin Kidney J [Internet]. 2019 [cited 2022 Oct 3];13:75–84. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7025329/

  68. Shoji T, Nakatani S, Kabata D, Mori K, Shintani A, Yoshida H, et al. Comparative effects of etelcalcetide and maxacalcitol on serum calcification propensity in secondary hyperparathyroidism: a randomized clinical trial. Clin J Am Soc Nephrol CJASN. 2021;16:599–612.

    Article  CAS  PubMed  Google Scholar 

  69. Hashimoto Y, Kato S, Kuro-O M, Miura Y, Itano Y, Ando M, et al. Impact of etelcalcetide on fibroblast growth factor-23 and calciprotein particles in patients with secondary hyperparathyroidism undergoing haemodialysis. Nephrol Carlton Vic. 2022;27:763–70.

    Article  CAS  Google Scholar 

  70. Bacchetta J, Schmitt CP, Ariceta G, Bakkaloglu S, Wan M, Vervloet MG, et al. Cinacalcet in pediatric dialysis: a position statement from the ESPN and the CKD-MBD working groupe of the ERA-EDTA. Nephrol Dial Transplant. accepted, in press;

  71. Warady BA, Ng E, Bloss L, Mo M, Schaefer F, Bacchetta J. Cinacalcet studies in pediatric subjects with secondary hyperparathyroidism receiving dialysis. Pediatr Nephrol Berl Ger. 2020; Pediatric RCTs which reported Significant reductions in PTH.

  72. Bernardor J, Schmitt CP, Flammier S, Zagozdzon I, Lalayiannis A, Koster-Kamphuis L, et al. The use of cinacalcet in infants on dialysis: data from a European survey. 2022.

  73. Bacchetta J, Plotton I, Ranchin B, Vial T, Nicolino M, Morel Y, et al. Precocious puberty and unlicensed paediatric drugs for severe hyperparathyroidism. Nephrol Dial Transplant Off Publ Eur Dial Transpl Assoc - Eur Ren Assoc. 2009;24:2595–8.

    CAS  Google Scholar 

  74. Bernardor J, Flammier S, Ranchin B, Gaillard S, Platel D, Peyruchaud O, et al. Inhibition of osteoclast differentiation by 1.25-D and the calcimimetic KP2326 reveals 1.25-D resistance in advanced CKD. J Bone Miner Res Off J Am Soc Bone Miner Res. 2020;35:2265–74

  75. Bacchetta J, Bardet C, Prié D. Physiology of FGF23 and overview of genetic diseases associated with renal phosphate wasting. Metabolism. 2019;

  76. Cinacalcet plus vitamin D versus vitamin D alone for the treatment of secondary hyperparathyroidism in patients undergoing dialysis: a meta-analysis of randomized controlled trials | SpringerLink [Internet]. [cited 2022 Oct 6]. Available from: https://link.springer.com/article/https://doi.org/10.1007/s11255-019-02271-6

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julie Bernardor.

Ethics declarations

Conflict of Interest

JBa has been and is an investigator for the Amgen-sponsored trials on the use of cinacalcet and etelcalcetide in pediatric dialysis. JBa is the coordinator of the Amgen-sponsored international registry on the use of cinacalcet in pediatric dialysis.

JBa received research grants from Amgen for the Renoclaste study (effects of etelcalcetide on human osteoclasts obtained from children with chronic kidney disease).

CPS has been and is the principal investigator for the Amgen-sponsored trials on the use of cinacalcet and etelcalcetide in pediatric dialysis and of the Amgen-sponsored international registry on the use of cinacalcet in pediatric dialysis.

Human and Animal Rights and Informed Consent

This article does not contain any new studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Kidney and Bone.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernardor, J., De Mul, A., Bacchetta, J. et al. Impact of Cinacalcet and Etelcalcetide on Bone Mineral and Cardiovascular Disease in Dialysis Patients. Curr Osteoporos Rep 21, 193–204 (2023). https://doi.org/10.1007/s11914-023-00782-x

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-023-00782-x

Keywords

Navigation