Bliuc D, Tran T, Adachi JD, Atkins GJ, Berger C, van den Bergh J, Cappai R, Eisman JA, van Geel T, Geusens P, Goltzman D, Hanley DA, Josse R, Kaiser S, Kovacs CS, Langsetmo L, Prior JC, Nguyen TV, Solomon LB, et al. Cognitive decline is associated with an accelerated rate of bone loss and increased fracture risk in women: a prospective study from the Canadian Multicentre Osteoporosis Study. J Bone Miner Res. 2021;36:2106–15. https://doi.org/10.1002/jbmr.4402.
Article
PubMed
Google Scholar
Ogawa Y, Kaneko Y, Sato T, Shimizu S, Kanetaka H, Hanyu H. Sarcopenia and muscle functions at various stages of Alzheimer disease. Front Neurol. 2018;9:710. https://doi.org/10.3389/fneur.2018.00710.
Article
PubMed
PubMed Central
Google Scholar
Burns JM, Johnson DK, Watts A, Swerdlow RH, Brooks WM. Reduced lean mass in early Alzheimer disease and its association with brain atrophy. Arch Neurol. 2010;67(4):428–33. https://doi.org/10.1001/archneurol.2010.38.
Article
PubMed
PubMed Central
Google Scholar
Sui SX, Pasco JA. Obesity and brain function: the brain-body crosstalk. Medicina (Kaunas). 2020;56(10) https://doi.org/10.3390/medicina56100499.
Pasco JA, Williams LJ, Jacka FN, Stupka N, Brennan-Olsen SL, Holloway KL, Berk M. Sarcopenia and the common mental disorders: a potential regulatory role of skeletal muscle on brain function? Curr Osteoporos Rep. 2015;13(5):351–7. https://doi.org/10.1007/s11914-015-0279-7.
Article
PubMed
Google Scholar
Papachristou E, Ramsay SE, Lennon LT, Papacosta O, Iliffe S, Whincup PH, Wannamethee SG. The relationships between body composition characteristics and cognitive functioning in a population-based sample of older British men. BMC Geriatr. 2015;15:172. https://doi.org/10.1186/s12877-015-0169-y.
CAS
Article
PubMed
PubMed Central
Google Scholar
Sui SX, Ridding MC, Hordacre B. Obesity is associated with reduced plasticity of the human, motor cortex. Brain Sci. 2020;10(9):579. https://doi.org/10.3390/brainsci10090579.
Article
PubMed Central
Google Scholar
Willette AAK, D. Does the brain shrink as the waist expands? Ageing Res Rev. 2015;20:86–97. https://doi.org/10.1016/j.arr.2014.03.007.
Article
PubMed
Google Scholar
Luchsinger JAG, D. R. Adiposity and Alzheimer's disease. Curr Opin Clin Nutr Metab Care. 2009;12(1):15–21. https://doi.org/10.1097/MCO.0b013e32831c8c71.
Article
PubMed
PubMed Central
Google Scholar
Lu B, Nagappan G, Lu Y. BDNF and synaptic plasticity, cognitive function, and dysfuction. Handb Exp Pharmacol. 2014;220:223–50.
CAS
Article
Google Scholar
Matthews VB, Astrom MB, Chan MH, Bruce CR, Krabbe KS, Prelovsek O, Akerstrom T, Yfanti C, Broholm C, Mortensen OH, Penkowa M, Hojman P, Zankari A, Watt MJ, Bruunsgaard H, Pedersen BK, Febbraio MA. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia. 2009;52(7):1409–18. https://doi.org/10.1007/s00125-009-1364-1.
CAS
Article
PubMed
Google Scholar
Lima Giacobbo B, Doorduin J, Klein HC, Dierckx R, Bromberg E, de Vries EFJ. Brain-derived neurotrophic factor in brain disorders: focus on neuroinflammation. Mol Neurobiol. 2019;56(5):3295–312. https://doi.org/10.1007/s12035-018-1283-6.
CAS
Article
PubMed
Google Scholar
Yadav VK, Oury F, Suda N, Liu ZW, Gao XB, Confavreux C, Klemenhagen KC, Tanaka KF, Gingrich JA, Guo XE, Tecott LH, Mann JJ, Hen R, Horvath TL, Karsenty G. A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell. 2009;138(5):976–89.
CAS
Article
Google Scholar
Gerosa L, Lombardi G. Bone-to-brain: a round trip in the adaptation to mechanical stimuli. Front Physiol. 2021;12:623893. https://doi.org/10.3389/fphys.2021.623893.
Article
PubMed
PubMed Central
Google Scholar
Chandrasekaran B, Pesola AJ, Rao CR, Arumugam A. Does breaking up prolonged sitting improve cognitive functions in sedentary adults? A mapping review and hypothesis formulation on the potential physiological mechanisms. BMC Musculoskelet Disord. 2021;22(1):274. https://doi.org/10.1186/s12891-021-04136-5.
Article
PubMed
PubMed Central
Google Scholar
Wallace IJ, Hainline C, Lieberman DE. Sports and the human brain: an evolutionary perspective. Handb Clin Neurol. 2018;158:3–10. https://doi.org/10.1016/B978-0-444-63954-7.00001-X.
Article
PubMed
Google Scholar
Baker R, Coenen P, Howie E, Williamson A, Straker L. The short term musculoskeletal and cognitive effects of prolonged sitting during office computer work. Int J Environ Res Public Health. 2018;15(8) https://doi.org/10.3390/ijerph15081678.
Baker R, Coenen P, Howie E, Lee J, Williamson A, Straker L. A detailed description of the short-term musculoskeletal and cognitive effects of prolonged standing for office computer work. Ergonomics. 2018;61(7):877–90. https://doi.org/10.1080/00140139.2017.1420825.
Article
PubMed
Google Scholar
Baker R, Coenen P, Howie E, Lee J, Williamson A, Straker L. Musculoskeletal and cognitive effects of a movement intervention during prolonged standing for office work. Hum Factors. 2018;60(7):947–61. https://doi.org/10.1177/0018720818783945.
Article
PubMed
Google Scholar
Kang SH, Lee J, Jin S. Effect of standing desk use on cognitive performance and physical workload while engaged with high cognitive demand tasks. Appl Ergon. 2021;92:103306. https://doi.org/10.1016/j.apergo.2020.103306.
Article
PubMed
Google Scholar
Heiland EG, Tarassova O, Fernstrom M, English C, Ekblom O, Ekblom MM. Frequent, short physical activity breaks reduce prefrontal cortex activation but preserve working memory in middle-aged adults: ABBaH study. Front Hum Neurosci. 2021;15:719509. https://doi.org/10.3389/fnhum.2021.719509.
CAS
Article
PubMed
PubMed Central
Google Scholar
Meule A. Reporting and interpreting working memory performance in n-back tasks. Front Psychol. 2017;8:352. https://doi.org/10.3389/fpsyg.2017.00352.
Article
PubMed
PubMed Central
Google Scholar
Stute K, Hudl N, Stojan R, Voelcker-Rehage C. Shedding Light on the effects of moderate acute exercise on working memory performance in healthy older adults: an fNIRS study. Brain Sci. 2020;10(11) https://doi.org/10.3390/brainsci10110813.
Rodriguez-Gomez I, Manas A, Losa-Reyna J, Rodriguez-Manas L, Chastin SFM, Alegre LM, Garcia-Garcia FJ, Ara I. Associations between sedentary time, physical activity and bone health among older people using compositional data analysis. PLoS One. 2018;13(10):e0206013. https://doi.org/10.1371/journal.pone.0206013.
CAS
Article
PubMed
PubMed Central
Google Scholar
Nakamura M, Hamada T, Tanaka A, Nishi K, Kume K, Goto Y, Beppu M, Hijioka H, Higashi Y, Tabata H, Mori K, Mishima Y, Uchino Y, Yamashiro K, Matsumura Y, Makizako H, Kubozono T, Tabira T, Takenaka T, et al. Association of oral hypofunction with frailty, sarcopenia, and mild cognitive impairment: a cross-sectional study of community-dwelling Japanese older adults. J Clin Med. 2021;10(8) https://doi.org/10.3390/jcm10081626.
Da Silva JD, Ni SC, Lee C, Elani H, Ho K, Thomas C, Kuwajima Y, Ishida Y, Kobayashi T, Ishikawa-Nagai S. Association between cognitive health and masticatory conditions: a descriptive study of the national database of the universal healthcare system in Japan. Aging (Albany NY). 2021;13(6):7943–52. https://doi.org/10.18632/aging.202843.
Article
Google Scholar
Chuhuaicura P, Dias FJ, Arias A, Lezcano MF, Fuentes R. Mastication as a protective factor of the cognitive decline in adults: a qualitative systematic review. Int Dent J. 2019;69(5):334–40. https://doi.org/10.1111/idj.12486.
Article
PubMed
Google Scholar
Lin CS. Revisiting the link between cognitive decline and masticatory dysfunction. BMC Geriatr. 2018;18(1):5. https://doi.org/10.1186/s12877-017-0693-z.
Article
PubMed
PubMed Central
Google Scholar
Bauer J, Morley JE, Schols AMWJ, Ferrucci L, Cruz-Jentoft AJ, Dent E, Baracos VE, Crawford JA, Doehner W, Heymsfield SB, Jatoi A, Kalantar-Zadeh K, Lainscak M, Landi F, Laviano A, Mancuso M, Muscaritoli M, Prado CM, Strasser F, et al. Sarcopenia: a time for action. An SCWD position paper. J Cachexia Sarcopenia Muscle. 2019;10(5):956–61. https://doi.org/10.1002/jcsm.12483.
Article
PubMed
PubMed Central
Google Scholar
Fielding RA, Vellas B, Evans WJ, Bhasin S, Morley JE, Newman AB, Abellan van Kan G, Andrieu S, Bauer J, Breuille D, Cederholm T, Chandler J, De Meynard C, Donini L, Harris T, Kannt A, Keime Guibert F, Onder G, Papanicolaou D, et al. Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International working group on sarcopenia. J Am Med Dir Assoc. 2011;12(4):249–56. https://doi.org/10.1016/j.jamda.2011.01.003.
Article
PubMed
Google Scholar
Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, Cooper C, Landi F, Rolland Y, Sayer AA, Schneider SM, Sieber CC, Topinkova E, Vandewoude M, Visser M, Zamboni M. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31. https://doi.org/10.1093/ageing/afy169.
Article
PubMed
Google Scholar
Studenski SA, Peters KW, Alley DE, Cawthon PM, McLean RR, Harris TB, Ferrucci L, Guralnik JM, Fragala MS, Kenny AM, Kiel DP, Kritchevsky SB, Shardell MD, Dam TT, Vassileva MT. The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci. 2014;69(5):547–58. https://doi.org/10.1093/gerona/glu010.
Article
PubMed
PubMed Central
Google Scholar
Chen LK, Woo J, Assantachai P, Auyeung TW, Chou MY, Iijima K, Jang HC, Kang L, Kim M, Kim S, Kojima T, Kuzuya M, Lee JSW, Lee SY, Lee WJ, Lee Y, Liang CK, Lim JY, Lim WS, et al. Asian Working Group for Sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Dir Assoc. 2020;21(3):300–307.e302. https://doi.org/10.1016/j.jamda.2019.12.012.
Article
PubMed
Google Scholar
Bhasin S, Travison TG, Manini TM, Patel S, Pencina KM, Fielding RA, Magaziner JM, Newman AB, Kiel DP, Cooper C, Guralnik JM, Cauley JA, Arai H, Clark BC, Landi F, Schaap LA, Pereira SL, Rooks D, Woo J, et al. Sarcopenia definition: the position statements of the sarcopenia definition and outcomes consortium. J Am Geriatr Soc. 2020;68(7):1410–8. https://doi.org/10.1111/jgs.16372.
Article
PubMed
Google Scholar
Zanker J, Scott D, Reijnierse EM, Brennan-Olsen SL, Daly RM, Girgis CM, Grossmann M, Hayes A, Henwood T, Hirani V, Inderjeeth CA, Iuliano S, Keogh JWL, Lewis JR, Maier AB, Pasco JA, Phu S, Sanders KM, Sim M, et al. Establishing an operational definition of sarcopenia in Australia and New Zealand: Delphi method based consensus statement. J Nutr Health Aging. 2019;23(1):105–10. https://doi.org/10.1007/s12603-018-1113-6.
CAS
Article
PubMed
Google Scholar
Mayhew AJ, Amog K, Phillips S, Parise G, McNicholas PD, de Souza RJ, Thabane L, Raina P. The prevalence of sarcopenia in community-dwelling older adults, an exploration of differences between studies and within definitions: a systematic review and meta-analyses. Age Ageing. 2019;48(1):48–56. https://doi.org/10.1093/ageing/afy106.
CAS
Article
PubMed
Google Scholar
Pasco JA, Nicholson GC, Kotowicz MA. Cohort profile: Geelong Osteoporosis Study. Int J Epidemiol. 2012;41(6):1565–75. https://doi.org/10.1093/ije/dyr148.
Article
PubMed
Google Scholar
Sui SX, Holloway-Kew KL, Hyde NK, Williams LJ, Tembo MC, Leach S, Pasco JA. Definition-specific prevalence estimates for sarcopenia in an Australian population: the Geelong Osteoporosis Study. JCSM Cli Rep. 2020;5(4):89–98. https://doi.org/10.1002/crt2.22.
Article
Google Scholar
Sui SX, Holloway-Kew KL, Hyde NK, Williams LJ, Tembo MC, Leach S, Pasco JA. Prevalence of sarcopenia employing population-specific cut-points: cross-sectional data from the Geelong Osteoporosis Study, Australia. J Clin Med. 2021;10(2) https://doi.org/10.3390/jcm10020343.
Sui SX, Williams LJ, Holloway-Kew KL, Hyde NK, Pasco JA. Skeletal muscle health and cognitive function: a narrative review. Int J Mol Sci. 2020;22(1) https://doi.org/10.3390/ijms22010255.
Sui SX, Holloway-Kew KL, Hyde NK, Williams LJ, Leach S, Pasco JA. Muscle strength and gait speed rather than lean mass are better indicators for poor cognitive function in older men. Sci Rep. 2020;10(1):10367. https://doi.org/10.1038/s41598-020-67251-8. This study investigated sarcopenia parameters in relation to domains of cognition. The main finding was that muscle strength and gait speed are better than muscle mass as indicators of poor cognitive function. Poor performance in cognition could increase risk of falls, injuries, and hospitalizations, and provide early warning of the development of cognitive decline or dementia
CAS
Article
PubMed
PubMed Central
Google Scholar
Sui SX, Williams LJ, Holloway-Kew KL, Hyde NK, Leach S, Pasco JA. Associations between muscle quality and cognitive function in older men: cross-sectional data from the Geelong Osteoporosis Study. J Clin Densitom. 2021;25:133–40. https://doi.org/10.1016/j.jocd.2021.03.007. This original study provided data that confirmed an association between upper limb muscle quality and cognitive function, overall and in specific domains, in older men
Article
PubMed
Google Scholar
Sui SX, Williams LJ, Holloway-Kew KL, Hyde NK, Anderson KB, Tembo MC, Addinsall AB, Leach S, Pasco JA. Skeletal muscle density and cognitive function: a cross-sectional study in men. Calcif Tissue Int. 2020;108:165–75. https://doi.org/10.1007/s00223-020-00759-3. This original research is the world’s first to report a link between low muscle density (a proxy measure for fat infiltration into muscle) and poor cognition in the domains of psychomotor function and visual learning. This study also examined the role of inflammation, general adiposity, age, and lifestyle factors in this association
CAS
Article
PubMed
Google Scholar
Pasco JA, Stuart AL, Sui SX, Holloway-Kew KL, Hyde NK, Tembo MC, Rufus-Membere P, Kotowicz MA, Williams LJ. Dynapenia and low cognition: a cross-sectional association in postmenopausal women. J Clin Med. 2021;10(2):173. https://doi.org/10.3390/jcm10020173. This study provides original data that describe a cross-sectional association between lower limb muscle strength and global cognitive function in postmenopausal women
Article
PubMed Central
Google Scholar
Stenholm S, Harris TB, Rantanen T, Visser M, Kritchevsky SB, Ferrucci L. Sarcopenic obesity: definition, cause and consequences. Curr Opin Clin Nutr Metab Care. 2008;11(6):693–700. https://doi.org/10.1097/MCO.0b013e328312c37d.
Article
PubMed
PubMed Central
Google Scholar
Tolea MI, Chrisphonte S, Galvin JE. Sarcopenic obesity and cognitive performance. Clin Interv Aging. 2018;13:1111–9. https://doi.org/10.2147/cia.S164113.
Article
PubMed
PubMed Central
Google Scholar
Wang H, Hai S, Liu YX, Cao L, Liu Y, Liu P, Yang Y, Dong BR. Associations between sarcopenic obesity and cognitive impairment in elderly chinese community-dwelling individuals. J Nutr Health Aging. 2019;23(1):14–20. https://doi.org/10.1007/s12603-018-1088-3.
CAS
Article
PubMed
Google Scholar
Low S, Goh KS, Ng TP, Ang SF, Moh A, Wang J, Ang K, Subramaniam T, Sum CF, Lim SC. The prevalence of sarcopenic obesity and its association with cognitive performance in type 2 diabetes in Singapore. Clin Nutr. 2020;39(7):2274–81. https://doi.org/10.1016/j.clnu.2019.10.019.
Article
PubMed
Google Scholar
Batsis JA, Haudenschild C, Roth RM, Gooding TL, Roderka MN, Masterson T, Brand J, Lohman MC, Mackenzie TA. Incident impaired cognitive function in sarcopenic obesity: data from the National Health and Aging Trends Survey. J Am Med Dir Assoc. 2021;22(4):865–872.e865. https://doi.org/10.1016/j.jamda.2020.09.008.
Article
PubMed
Google Scholar
Tou NX, Wee SL, Pang BWJ, Lau LK, Jabbar KA, Seah WT, Chen KK, Ng TP. Associations of fat mass and muscle function but not lean mass with cognitive impairment: the Yishun Study. PLoS One. 2021;16(8):e0256702. https://doi.org/10.1371/journal.pone.0256702.
CAS
Article
PubMed
PubMed Central
Google Scholar
Pasco JA, Kotowiczm MA. Osteopaenia – a marker of low bone mass and fracture risk. Hard Tissue. 2013;2(1):10.
Article
Google Scholar
WHO (2004) Scientific group on the assessment of osteoporosis at primary health care level. Paper presented at the World Health Organization, Geneva.
Pasco JA, Seeman E, Henry MJ, Merriman EN, Nicholson GC, Kotowicz MA. The population burden of fractures originates in women with osteopenia, not osteoporosis. Osteoporos Int. 2006;17(9):1404–9. https://doi.org/10.1007/s00198-006-0135-9.
CAS
Article
PubMed
Google Scholar
Pasco JA, Mohebbi M, Holloway KL, Brennan-Olsen SL, Hyde NK, Kotowicz MA. Musculoskeletal decline and mortality: prospective data from the Geelong Osteoporosis Study. J Cachexia Sarcopenia Muscle. 2017;8(3):482–9. https://doi.org/10.1002/jcsm.12177.
Article
PubMed
Google Scholar
Kang HG, Park HY, Ryu HU, Suk SH. Bone mineral loss and cognitive impairment: the PRESENT project. Medicine (Baltimore). 2018;97(41):e12755. https://doi.org/10.1097/MD.0000000000012755.
Article
Google Scholar
Sheppard PAS, Choleris E, Galea LAM. Structural plasticity of the hippocampus in response to estrogens in female rodents. Mol Brain. 2019;12(1):22. https://doi.org/10.1186/s13041-019-0442-7.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lv X-L, Zhang J, Gao W-Y, Xing W-M, Yang Z-X, Yue Y-X, Wang Y-Z, Wang G-F. Association between osteoporosis, bone mineral density levels and Alzheimer's disease: a systematic review and meta-analysis. Int J Gerontol. 2018;12(2):76–83. https://doi.org/10.1016/j.ijge.2018.03.007.
Article
Google Scholar
Ebrahimpur M, Sharifi F, Shadman Z, Payab M, Mehraban S, Shafiee G, Heshmat R, Fahimfar N, Mehrdad N, Khashayar P, Nabipour I, Larijani B, Ostovar A. Osteoporosis and cognitive impairment interwoven warning signs: community-based study on older adults-Bushehr Elderly Health (BEH) Program. Arch Osteoporos. 2020;15(1):140. https://doi.org/10.1007/s11657-020-00817-1.
Article
PubMed
Google Scholar
Lee SH, Park SY, Jang MU, Kim Y, Lee J, Kim C, Kim YJ, Sohn JH. Association between osteoporosis and cognitive impairment during the acute and recovery phases of ischemic stroke. Medicina (Kaunas). 2020;56(6) https://doi.org/10.3390/medicina56060307.
Bliuc D, Tran T, Adachi JD, Atkins GJ, Berger C, van den Bergh J, Cappai R, Eisman JA, van Geel T, Geusens P, Goltzman D, Hanley DA, Josse R, Kaiser S, Kovacs CS, Langsetmo L, Prior JC, Nguyen TV, Solomon LB, et al. Cognitive decline is associated with an accelerated rate of bone loss and increased fracture risk in women: a prospective study from the Canadian Multicentre Osteoporosis Study. J Bone Miner Res. 2021;36(11):2106–15. https://doi.org/10.1002/jbmr.4402.
Article
PubMed
Google Scholar
Başgöz B, İnce S, Safer U, Naharcı M, Taşçı İ. Low bone density and osteoporosis among older adults with Alzheimer's disease, vascular dementia, and mixed dementia: a cross-sectional study with prospective enrollment. Turk J Phys Med Rehabil. 2020;66(2):193–200. https://doi.org/10.5606/tftrd.2020.3803.
Article
PubMed
PubMed Central
Google Scholar
Lin SF, Fan YC, Pan WH, Bai CH. Bone and lean mass loss and cognitive impairment for healthy elder adults: analysis of the nutrition and health survey in Taiwan 2013-2016 and a validation study with structural equation modeling. Front Nutr. 2021;8:747877. https://doi.org/10.3389/fnut.2021.747877.
CAS
Article
PubMed
PubMed Central
Google Scholar
Pasco JA. Age-related changes in muscle and bone. In: Duque G, editor. Osteosarcopenia: Bone, Muscle and Fat Interactions. Springer Nature, 2019; pp 45–71.
Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, Seeman T, Tracy R, Kop WJ, Burke G, McBurnie MA. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56(3):M146–56. https://doi.org/10.1093/gerona/56.3.m146.
CAS
Article
PubMed
Google Scholar
Kelaiditi E, Cesari M, Canevelli M, Abellan van Kan G, Ousset PJ, Gillette-Guyonnet S, Ritz P, Duveau F, Soto ME, Provencher V, Nourhashemi F, Salva A, Robert P, Andrieu S, Rolland Y, Touchon J, Fitten JL, Vellas B. Cognitive frailty: rational and definition from an (I.A.N.A./I.A.G.G.) International Consensus Group. J Nutr Health Aging. 2013;17(9):726–34. https://doi.org/10.1007/s12603-013-0367-2.
CAS
Article
PubMed
Google Scholar
Feng L, Zin Nyunt MS, Gao Q, Feng L, Yap KB, Ng T-P. Cognitive frailty and adverse health outcomes: findings from the Singapore Longitudinal Ageing Studies (SLAS). J Am Med Di Ass. 2017;18(3):252–8. https://doi.org/10.1016/j.jamda.2016.09.015.
Article
Google Scholar
Kwan RYC, Leung AYM, Yee A, Lau LT, Xu XY, Dai DLK. Cognitive frailty and its association with nutrition and depression in community-dwelling older people. J Nutr Health Aging. 2019;23(10):943–8. https://doi.org/10.1007/s12603-019-1258-y.
CAS
Article
PubMed
Google Scholar
Ruan Q, Yu Z, Chen M, Bao Z, Li J, He W. Cognitive frailty, a novel target for the prevention of elderly dependency. Ageing Res Rev. 2015;20:1–10. https://doi.org/10.1016/j.arr.2014.12.004.
Article
PubMed
Google Scholar
De Roeck EE, van der Vorst A, Engelborghs S, Zijlstra GAR, Dierckx E, Consortium DS. Exploring cognitive frailty: prevalence and associations with other frailty domains in older people with different degrees of cognitive impairment. Gerontology. 2020;66(1):55–64. https://doi.org/10.1159/000501168.
Article
PubMed
Google Scholar
Butterfield DA, Perluigi M, Sultana R. Oxidative stress in Alzheimer's disease brain: new insights from redox proteomics. Eur J Pharmacol. 2006;545(1):39–50. https://doi.org/10.1016/j.ejphar.2006.06.026.
CAS
Article
PubMed
Google Scholar
Koltun DO, Marquart TA, Shenk KD, Elzein E, Li Y, Nguyen M, Kerwar S, Zeng D, Chu N, Soohoo D, Hao J, Maydanik VY, Lustig DA, Ng KJ, Fraser H, Zablocki JA. New fatty acid oxidation inhibitors with increased potency lacking adverse metabolic and electrophysiological properties. Bioorg Med Chem Lett. 2004;14(2):549–52. https://doi.org/10.1016/j.bmcl.2003.09.093.
CAS
Article
PubMed
Google Scholar
Kumar A. Editorial: Neuroinflammation and cognition. Front Aging Neurosci. 2018;10:413. https://doi.org/10.3389/fnagi.2018.00413.
Article
PubMed
PubMed Central
Google Scholar
Dibello V, Lozupone M, Manfredini D, Dibello A, Zupo R, Sardone R, Daniele A, Lobbezoo F, Panza F. Oral frailty and neurodegeneration in Alzheimer's disease. Neural Regen Res. 2021;16(11):2149–53. https://doi.org/10.4103/1673-5374.310672.
Article
PubMed
PubMed Central
Google Scholar
Slashcheva LD, Karjalahti E, Hassett LC, Smith B, Chamberlain AM. A systematic review and gap analysis of frailty and oral health characteristics in older adults: a call for clinical translation. Gerodontology. 2021;38(4):338–50. https://doi.org/10.1111/ger.12577.
Article
PubMed
Google Scholar
Dibello V, Zupo R, Sardone R, Lozupone M, Castellana F, Dibello A, Daniele A, De Pergola G, Bortone I, Lampignano L. Oral frailty and its determinants in older age: a systematic review. Lancet Healthy Longev. 2021;2(8):e507–20. This study reviews the contribution of oral health to frailty in individual over 60 years old, using a critical appraisal of the evidence. The findings suggest oral health factors as predictors of frailty in older population and how these factors may contribute to both cognitive and physical impairments
Article
Google Scholar
Han Y, You X, Xing W, Zhang Z, Zou W. Paracrine and endocrine actions of bone-the functions of secretory proteins from osteoblasts, osteocytes, and osteoclasts. Bone Res. 2018;6:16. https://doi.org/10.1038/s41413-018-0019-6.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kirk B, Feehan J, Lombardi G, Duque G. Muscle, bone, and fat crosstalk: the biological role of myokines, osteokines, and adipokines. Curr Osteoporos Rep. 2020;18(4):388–400. https://doi.org/10.1007/s11914-020-00599-y.
Article
PubMed
Google Scholar
Pedersen BK. Physical activity and muscle-brain crosstalk. Nat Rev Endocrinol. 2019;15(7):383–92. https://doi.org/10.1038/s41574-019-0174-x.
Article
PubMed
Google Scholar
Miranda M, Morici JF, Zanoni MB, Bekinschtein P. Brain-derived neurotrophic factor: a key molecule for memory in the healthy and the pathological brain. Front Cell Neurosci. 2019;13:363. https://doi.org/10.3389/fncel.2019.00363.
CAS
Article
PubMed
PubMed Central
Google Scholar
El Hayek L, Khalifeh M, Zibara V, Abi Assaad R, Emmanuel N, Karnib N, El-Ghandour R, Nasrallah P, Bilen M, Ibrahim P, Younes J, Abou Haidar E, Barmo N, Jabre V, Stephan JS, Sleiman SF. Lactate mediates the effects of exercise on learning and memory through SIRT1-dependent activation of hippocampal brain-derived neurotrophic factor (BDNF). J Neurosci. 2019;39(13):2369–82. https://doi.org/10.1523/JNEUROSCI.1661-18.2019.
Article
PubMed
PubMed Central
Google Scholar
Shtaif B, Hornfeld SH, Yackobovitch-Gavan M, Phillip M, Gat-Yablonski G. Anxiety and cognition in cre- collagen type II sirt1 K/O male mice. Front Endocrinol (Lausanne). 2021;12:756909. https://doi.org/10.3389/fendo.2021.756909.
Article
Google Scholar
Azimi M, Gharakhanlou R, Naghdi N, Khodadadi D, Heysieattalab S. Moderate treadmill exercise ameliorates amyloid-beta-induced learning and memory impairment, possibly via increasing AMPK activity and up-regulation of the PGC-1alpha/FNDC5/BDNF pathway. Peptides. 2018;102:78–88. https://doi.org/10.1016/j.peptides.2017.12.027.
CAS
Article
PubMed
Google Scholar
Leuchtmann AB, Adak V, Dilbaz S, Handschin C. The role of the skeletal muscle secretome in mediating endurance and resistance training adaptations. Front Physiol. 2021;12:709807. https://doi.org/10.3389/fphys.2021.709807.
Article
PubMed
PubMed Central
Google Scholar
Hayashi N, Himi N, Nakamura-Maruyama E, Okabe N, Sakamoto I, Hasegawa T, Miyamoto O. Improvement of motor function induced by skeletal muscle contraction in spinal cord-injured rats. Spine J. 2019;19(6):1094–105. https://doi.org/10.1016/j.spinee.2018.12.012.
Article
PubMed
Google Scholar
Delezie J, Weihrauch M, Maier G, Tejero R, Ham DJ, Gill JF, Karrer-Cardel B, Ruegg MA, Tabares L, Handschin C. BDNF is a mediator of glycolytic fiber-type specification in mouse skeletal muscle. Proc Natl Acad Sci U S A. 2019;116(32):16111–20. https://doi.org/10.1073/pnas.1900544116.
CAS
Article
PubMed
PubMed Central
Google Scholar
Maderova D, Krumpolec P, Slobodova L, Schon M, Tirpakova V, Kovanicova Z, Klepochova R, Vajda M, Sutovsky S, Cvecka J, Valkovic L, Turcani P, Krssak M, Sedliak M, Tsai CL, Ukropcova B, Ukropec J. Acute and regular exercise distinctly modulate serum, plasma and skeletal muscle BDNF in the elderly. Neuropeptides. 2019;78:101961. https://doi.org/10.1016/j.npep.2019.101961.
CAS
Article
PubMed
Google Scholar
Belviranli M, Okudan N. Exercise training protects against aging-induced cognitive dysfunction via activation of the Hippocampal PGC-1alpha/FNDC5/BDNF pathway. NeuroMolecular Med. 2018;20(3):386–400. https://doi.org/10.1007/s12017-018-8500-3.
CAS
Article
PubMed
Google Scholar
Fukushima-Nakayama Y, Ono T, Hayashi M, Inoue M, Wake H, Ono T, Nakashima T. Reduced mastication impairs memory function. J Dent Res. 2017;96(9):1058–66. https://doi.org/10.1177/0022034517708771.
CAS
Article
PubMed
Google Scholar
Piancino MG, Tortarolo A, Polimeni A, Bramanti E, Bramanti P. Altered mastication adversely impacts morpho-functional features of the hippocampus: a systematic review on animal studies in three different experimental conditions involving the masticatory function. PLoS One. 2020;15(8):e0237872. https://doi.org/10.1371/journal.pone.0237872. This study reviews the contribution of mastication to the metabolic activity of the hippocampus in preclinical models. The findings of this research contribute with the 3Rs statements and describes recent evidence regarding potential mechanisms behind the negative impact of altered mastication on cognition
CAS
Article
PubMed
PubMed Central
Google Scholar
Sunariani J, Khoswanto C, Irmalia WR. Difference of brain-derived neurotrophic factor expression and pyramid cell count during mastication of food with varying hardness. J Appl Oral Sci. 2019;27:e20180182. https://doi.org/10.1590/1678-7757-2018-0182.
Article
PubMed
PubMed Central
Google Scholar
Seki M, Haino A, Ishikawa T, Inagawa H, Soma GI, Terada H, Nashimoto M. Mastication affects transcriptomes of mouse microglia. Anticancer Res. 2020;40(8):4719–27. https://doi.org/10.21873/anticanres.14473.
CAS
Article
PubMed
Google Scholar
Jiang H, Yin H, Wang L, Feng C, Bai Y, Huang D, Zhang Q, Liu H, Hu Y. Memory impairment of chewing-side preference mice is associated with 5-HT-BDNF signal pathway. Mol Cell Biochem. 2021;476(1):303–10. https://doi.org/10.1007/s11010-020-03907-3. This study suggests that unilateral posterior occlusion impacts the serotonin and brain-derived neurotrophic factor signaling pathways in a side-dependent fashion, resulting in cognitive impairment in a preclinical model
CAS
Article
PubMed
Google Scholar
de Siqueira Mendes FCC, Paixao L, Diniz DG, Anthony DC, Brites D, Diniz CWP, Sosthenes MCK. Sedentary life and reduced mastication impair spatial learning and memory and differentially affect dentate gyrus astrocyte subtypes in the aged mice. Front Neurosci. 2021;15:632216. https://doi.org/10.3389/fnins.2021.632216.
Article
PubMed
PubMed Central
Google Scholar
Flori L, Testai L, Calderone V. The "irisin system": from biological roles to pharmacological and nutraceutical perspectives. Life Sci. 2021;267:118954. https://doi.org/10.1016/j.lfs.2020.118954.
CAS
Article
PubMed
Google Scholar
Young MF, Valaris S, Wrann CD. A role for FNDC5/Irisin in the beneficial effects of exercise on the brain and in neurodegenerative diseases. Prog Cardiovasc Dis. 2019;62(2):172–8. https://doi.org/10.1016/j.pcad.2019.02.007.
Article
PubMed
PubMed Central
Google Scholar
Pesce M, La Fratta I, Paolucci T, Grilli A, Patruno A, Agostini F, Bernetti A, Mangone M, Paoloni M, Invernizzi M, de Sire A. From exercise to cognitive performance: role of irisin. Appl Sci. 2021;11(15):7120.
CAS
Article
Google Scholar
Cowan N. Working memory underpins cognitive development, learning, and education. Educ Psychol Rev. 2014;26(2):197–223. https://doi.org/10.1007/s10648-013-9246-y.
Article
PubMed
Google Scholar
Tsai CL, Pan CY, Tseng YT, Chen FC, Chang YC, Wang TC. Acute effects of high-intensity interval training and moderate-intensity continuous exercise on BDNF and irisin levels and neurocognitive performance in late middle-aged and older adults. Behav Brain Res. 2021;413:113472. https://doi.org/10.1016/j.bbr.2021.113472.
CAS
Article
PubMed
Google Scholar
Jodeiri Farshbaf M, Garasia S, Moussoki DPK, Mondal AK, Cherkowsky D, Manal N, Alvina K. Hippocampal injection of the exercise-induced myokine irisin suppresses acute stress-induced neurobehavioral impairment in a sex-dependent manner. Behav Neurosci. 2020;134(3):233–47. https://doi.org/10.1037/bne0000367.
CAS
Article
PubMed
Google Scholar
Islam MR, Valaris S, Young MF, Haley EB, Luo R, Bond SF, Mazuera S, Kitchen RR, Caldarone BJ, Bettio LEB, Christie BR, Schmider AB, Soberman RJ, Besnard A, Jedrychowski MP, Kim H, Tu H, Kim E, Choi SH, et al. Exercise hormone irisin is a critical regulator of cognitive function. Nat Metab. 2021;3(8):1058–70. https://doi.org/10.1038/s42255-021-00438-z.
CAS
Article
PubMed
Google Scholar
Choi SH, Bylykbashi E, Chatila ZK, Lee SW, Pulli B, Clemenson GD, Kim E, Rompala A, Oram MK, Asselin C, Aronson J, Zhang C, Miller SJ, Lesinski A, Chen JW, Kim DY, van Praag H, Spiegelman BM, Gage FH, Tanzi RE. Combined adult neurogenesis and BDNF mimic exercise effects on cognition in an Alzheimer's mouse model. Science. 2018;361(6406) https://doi.org/10.1126/science.aan8821.
Fraga VG, Ferreira CN, Oliveira FR, Candido AL, das Gracas Carvalho M, Reis FM, Caramelli P, De Souza LC, Gomes KB. Irisin levels are correlated with inflammatory markers in frontotemporal dementia. J Clin Neurosci. 2021;93:92–5. https://doi.org/10.1016/j.jocn.2021.09.005.
CAS
Article
PubMed
Google Scholar
Lourenco MV, Ribeiro FC, Sudo FK, Drummond C, Assuncao N, Vanderborght B, Tovar-Moll F, Mattos P, De Felice FG, Ferreira ST. Cerebrospinal fluid irisin correlates with amyloid-beta, BDNF, and cognition in Alzheimer's disease. Alzheimers Dement (Amst). 2020;12(1):e12034. https://doi.org/10.1002/dad2.12034.
Article
Google Scholar
Wang JS, Mazur CM, Wein MN. Sclerostin and osteocalcin: candidate bone-produced hormones. Front Endocrinol (Lausanne). 2021;12:584147. https://doi.org/10.3389/fendo.2021.584147.
Article
Google Scholar
Obri A, Khrimian L, Karsenty G, Oury F. Osteocalcin in the brain: from embryonic development to age-related decline in cognition. Nat Rev Endocrinol. 2018;14(3):174–82. https://doi.org/10.1038/nrendo.2017.181.
CAS
Article
PubMed
PubMed Central
Google Scholar
Hiam D, Landen S, Jacques M, Voisin S, Alvarez-Romero J, Byrnes E, Chubb P, Levinger I, Eynon N. Osteocalcin and its forms respond similarly to exercise in males and females. Bone. 2021;144:115818. https://doi.org/10.1016/j.bone.2020.115818.
CAS
Article
PubMed
Google Scholar
Nicolini C, Michalski B, Toepp SL, Turco CV, D'Hoine T, Harasym D, Gibala MJ, Fahnestock M, Nelson AJ. A single bout of high-intensity interval exercise increases corticospinal excitability, brain-derived neurotrophic factor, and uncarboxylated osteolcalcin in sedentary, healthy males. Neuroscience. 2020;437:242–55. https://doi.org/10.1016/j.neuroscience.2020.03.042.
CAS
Article
PubMed
Google Scholar
Beeri MS, Leugrans SE, Delbono O, Bennett DA, Buchman AS. Sarcopenia is associated with incident Alzheimer's dementia, mild cognitive impairment, and cognitive decline. J Am Geriatr Soc. 2021;69(7):1826–35. https://doi.org/10.1111/jgs.17206.
Article
PubMed
Google Scholar
Stefanidou M, O'Donnell A, Himali JJ, DeCarli C, Satizabal C, Beiser AS, Seshadri S, Tan Z. Bone mineral density measurements and association with brain structure and cognitive function: the Framingham Offspring cohort. Alzheimer Dis Assoc Disord. 2021;35(4):291–7. https://doi.org/10.1097/WAD.0000000000000453.
Article
PubMed
PubMed Central
Google Scholar
Cui S, Xiong F, Hong Y, Jung JU, Li XS, Liu JZ, Yan R, Mei L, Feng X, Xiong WC. APPswe/Aβ regulation of osteoclast activation and RAGE expression in an age-dependent manner. J Bone Miner Res. 2011;26(5):1084–98. https://doi.org/10.1002/jbmr.299.
CAS
Article
PubMed
PubMed Central
Google Scholar
Yang M-W, Wang T-H, Yan P-P, Chu L-W, Yu J, Gao Z-D, Li Y-Z, Guo B-L. Curcumin improves bone microarchitecture and enhances mineral density in APP/PS1 transgenic mice. Phytomedicine. 2011;18(2):205–13. https://doi.org/10.1016/j.phymed.2010.05.011.
CAS
Article
PubMed
Google Scholar
Radde R, Bolmont T, Kaeser SA, Coomaraswamy J, Lindau D, Stoltze L, Calhoun ME, Jaggi F, Wolburg H, Gengler S, Haass C, Ghetti B, Czech C, Holscher C, Mathews PM, Jucker M. Abeta42-driven cerebral amyloidosis in transgenic mice reveals early and robust pathology. EMBO Rep. 2006;7(9):940–6. https://doi.org/10.1038/sj.embor.7400784.
CAS
Article
PubMed
PubMed Central
Google Scholar
Essex AL, Huot JR, Deosthale P, Wagner A, Figueras J, Davis A, Damrath J, Pin F, Wallace J, Bonetto A, Plotkin LI. TREM2 R47H variant causes distinct age- and sex-dependent musculoskeletal alterations in mice. J Bone Miner Res. 2022; https://doi.org/10.1002/jbmr.4572. This study shows a comprehensive anaysis of the musculoskeletal phenotype of mice expressing a gene variant that confers increased risk to developing AD, without central nervous phenotype
Ulrich JD, Ulland TK, Colonna M, Holtzman DM. Elucidating the Role of TREM2 in Alzheimer's Disease. Neuron. 2017;94(2):237–48. https://doi.org/10.1016/j.neuron.2017.02.042.
CAS
Article
PubMed
Google Scholar
Jay TR, Hirsch AM, Broihier ML, Miller CM, Neilson LE, Ransohoff RM, Lamb BT, Landreth GE. Disease progression-dependent effects of TREM2 deficiency in a mouse model of Alzheimer's disease. J Neurosci. 2017;37(3):637–47. https://doi.org/10.1523/JNEUROSCI.2110-16.2016.
CAS
Article
PubMed
PubMed Central
Google Scholar
Ransohoff RM. How neuroinflammation contributes to neurodegeneration. Science. 2016;353(6301):777–83. https://doi.org/10.1126/science.aag2590.
CAS
Article
PubMed
Google Scholar
Korvatska O, Leverenz JB, Jayadev S, McMillan P, Kurtz I, Guo X, Rumbaugh M, Matsushita M, Girirajan S, Dorschner MO, Kiianitsa K, Yu C-E, Brkanac Z, Garden GA, Raskind WH, Bird TD. R47H variant of TREM2 associated with Alzheimer disease in a large late-onset family: clinical, genetic, and neuropathological study. JAMA Neurology. 2015;72(8):920–7. https://doi.org/10.1001/jamaneurol.2015.0979.
Article
PubMed
PubMed Central
Google Scholar
De Spiegeleer A, Beckwée D, Bautmans I, Petrovic M, Bautmans I, Beaudart C, Beckwée D, Beyer I, Bruyère O, De Breucker S, De Cock A-M, Delaere A, de Saint-Hubert M, De Spiegeleer A, Gielen E, Perkisas S, Vandewoude M, the Sarcopenia Guidelines Development group of the Belgian Society of G, Geriatrics. Pharmacological interventions to improve muscle mass, muscle strength and physical performance in older people: an umbrella review of systematic reviews and meta-analyses. Drugs Aging. 2018;35(8):719–34. https://doi.org/10.1007/s40266-018-0566-y.
CAS
Article
PubMed
Google Scholar