Chen G, Wu D, Guo W, Cao Y, Huang D, Wang H, Wang T, Zhang X, Chen H, Yu H, Zhang X, Zhang M, Wu S, Song J, Chen T, Han M, Li S, Luo X, Zhao J, Ning Q. Clinical and immunological features of severe and moderate coronavirus disease 2019. J Clin Invest. 2020;130(5):2620–9.
CAS
PubMed
PubMed Central
Article
Google Scholar
Zhou P, Yang X, Wang Xg HB, Zhang L, Zhang W, Hr S, Zhu Y, Li B, Cl H, Hd C, Chen J, Luo Y, Guo H, Rd J, Mq L, Chen Y, Shen X, Wang X, Zheng X, et al. A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature. 2020;579(7798):270–3.
CAS
PubMed
PubMed Central
Article
Google Scholar
• Chu H, Chan Jf, Wang Y, Yuen Tt, Chai Y, Hou Y, Shuai H, Yang D, Hu B, Huang X, Zhang X, Cai Jp, Zhou J, Yuan S, Kok Kh, To Kk, Chan Ih, Zhang Aj, Sit Ky, Au Wk, Yuen Ky. Comparative replication and immune activation profiles of Sars-Cov-2 and Sars-Cov in human lungs: an ex vivo study with implications for the pathogenesis of Covid-19. Clin Infect Dis. 2020;71(6):1400-1409. This reference provides an important comparison between the two coronaviruses acounting for the increased infectivity of Sars-Cov2.
Sternberg A, Naujokat C. Structural features of coronavirus Sars-Cov-2 spike protein: targets for vaccination. Life Sci. 2020;257:118056.
CAS
PubMed
PubMed Central
Article
Google Scholar
• Sungnak W, Huang N, Becavin C, Berg M, Queen R, Litvinukova M, Talavera-Lopez C, Maatz H, Reichart D, Sampaziotis F, Worlock Kb, Yoshida M, Barnes Jl, Network Hcalb. Sars-Cov-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes. Nat Med. 2020;26(5):681-687.This paper explains the predilection for the nasal passage as the entry point for Sars-Cov2 Infection.
Hou Yj, Okuda K, Edwards Ce, Martinez Dr, Asakura T, Dinnon Kh, 3rd, Kato T, Lee Re, Yount Bl, Mascenik Tm, Chen G, Olivier Kn, Ghio A, Tse Lv, Leist Sr, Gralinski Le, Schafer A, Dang H, Gilmore R, Nakano S, Sun L, Fulcher Ml, Livraghi-Butrico A, Nicely Ni, Cameron M, Cameron C, Kelvin Dj, De Silva A, Margolis Dm, Markmann A, Bartelt L, Zumwalt R, Martinez Fj, Salvatore Sp, Borczuk A, Tata Pr, Sontake V, Kimple A, Jaspers I, O'neal Wk, Randell Sh, Boucher Rc, Baric Rs 2020 Sars-Cov-2 reverse genetics reveals a variable infection gradient in the respiratory tract. Cell 182(2):429-446 E14.
Bunyavanich S, Do A, Vicencio A. Nasal gene expression of angiotensin-converting enzyme 2 in children and adults. Jama. 2020;323(23):2427–9.
CAS
PubMed
PubMed Central
Article
Google Scholar
Castagnoli R, Votto M, Licari A, Brambilla I, Bruno R, Perlini S, Rovida F, Baldanti F, Gl M. Severe acute respiratory syndrome coronavirus 2 (Sars-Cov-2) infection in children and adolescents: a systematic review. Jama Pediatr. 2020;174(9):882–9.
PubMed
Article
Google Scholar
• Ziegler Cgk, Allon Sj, Nyquist Sk, Mbano Im, Miao Vn, Tzouanas Cn, Cao Y, Yousif As, Bals J, Hauser Bm, Feldman J, Muus C, Wadsworth Mh, 2nd, Kazer Sw, Hughes Tk, Doran B, Gatter Gj, Vukovic M, Taliaferro F, Mead Be, Guo Z, Wang Jp, Gras D, Plaisant M, Ansari M, Angelidis I, Adler H, Sucre Jms, Taylor Cj, Lin B, Waghray A, Mitsialis V, Dwyer Df, Buchheit Km, Boyce Ja, Barrett Na, Laidlaw Tm, Carroll Sl, Colonna L, Tkachev V, Peterson Cw, Yu A, Zheng Hb, Gideon Hp, Winchell Cg, Lin Pl, Bingle Cd, Snapper Sb, Kropski Ja, Theis Fj, Schiller Hb, Zaragosi Le, Barbry P, Leslie A, Kiem Hp, Flynn Jl, Fortune Sm, Berger B, Finberg Rw, Kean Ls, Garber M, Schmidt Ag, Lingwood D, Shalek Ak, Ordovas-Montanes J, Lung-Network@Humancellatlas.Org Hcalbnea, Network Hcalb. Sars-Cov-2 receptor Ace2 is an interferon-stimulated gene in human airway epithelial cells and is detected in specific cell subsets across tissues. Cell. 2020;181(5):1016-1035 E19. This Paper Describes The Key Receptor For Sars-Cov2 And Its Expression In Lung And Other Tissues.
• Roche Ja, Roche R (2020) A hypothesized role for dysregulated bradykinin signaling in COVID-19 respiratory complications. Faseb J 34(6):7265-7269. An interesting hypothesis ascribing both the kallikrein/kinin signaling as well as the immune sytem to the damage caused by Sars-Cov2
Fl VDV, Mg N, Van Deuren M, Jw VDM, De Mast Q, Rj B, Van Der Hoeven H. Kallikrein-Kinin blockade in patients with Covid-19 to prevent acute respiratory distress syndrome. Elife. 2020;9.
Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, Yang P, Sarao R, Wada T, Leong-Poi H, Ma C, Fukamizu A, Cc H, Hein L, Uhlig S, As S, Jiang C, Jm P. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436(7047):112–6.
CAS
PubMed
PubMed Central
Article
Google Scholar
•• Kumar R, Rathi H, Haq A, Wimalawansa Sj, Sharma A. Putative roles of vitamin D in modulating immune response and immunopathology associated with Covid-19. Virus Res. 2021;292:198235. A good review of the mechanisms by which vitamin d might modulate the immune response to Covid-19 infection.
Sa W, Cf W, Cg M, Rc W. A cytokine/bradykinin storm comparison: what is the relationship between hypertension and Covid-19? Am J Hypertens. 2021;34(4):304–6.
Article
CAS
Google Scholar
Xu J, Yang J, Chen J, Luo Q, Zhang Q, Zhang H. Vitamin D alleviates lipopolysaccharideinduced acute lung injury via regulation of the reninangiotensin system. Mol Med Rep. 2017;16(5):7432–8.
CAS
PubMed
PubMed Central
Article
Google Scholar
Channappanavar R, Perlman S. Pathogenic human coronavirus infections: causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 2017;39(5):529–39.
CAS
PubMed
PubMed Central
Article
Google Scholar
Cm C, Ll P, Cheng V, Ks C, If H, Mm W, Chan K, Ws L, Bs T, Vl C, Wl N, Tc S, Pw N, Ki L, Dm T, Js P, Ky Y. Initial viral load and the outcomes of SARS. Cmaj. 2004;171(11):1349–52.
Article
Google Scholar
Md O, Wb P, Pg C, Sj C, Ji K, Chae J, Ss P, Ec K, Hs O, Ej K, Ey N, Na S, Dk K, Lee S, Song K, Bang J, Es K, Hb K, Sw P, Nj K. Viral load kinetics of MERS coronavirus infection. N Engl J Med. 2016;375(13):1303–5.
Article
Google Scholar
Je K, Cookenham T, Ad R, Sc M, Dl W. Type I interferons regulate cytolytic activity of memory Cd8(+) T cells in the lung airways during respiratory virus challenge. Immunity. 2010;33(1):96–105.
Article
CAS
Google Scholar
Sl F, Cookson B. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun. 2005;73(4):1907–16.
Article
CAS
Google Scholar
Channappanavar R, Ar F, Vijay R, Mack M, Zhao J, Dk M, Perlman S. Dysregulated type I interferon and inflammatory monocyte-macrophage responses cause lethal pneumonia in Sars-Cov-infected mice. Cell Host Microbe. 2016;19(2):181–93.
CAS
PubMed
PubMed Central
Article
Google Scholar
Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, Zhang L, Fan G, Xu J, Gu X, Cheng Z, Yu T, Xia J, Wei Y, Wu W, Xie X, Yin W, Li H, Liu M, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395(10223):497–506.
CAS
PubMed
PubMed Central
Article
Google Scholar
• Zhang H, Wang Cy, Zhou P, Yue H, Du R. Histopathologic changes and Sars-Cov-2 immunostaining in the lung of a patient with Covid-19. Ann Intern Med. 2020;173(4):324. One of the first histopathologic reports of the changes in the lungs caused by Sars-Cov-2
Zhao J, Zhao J, Perlman S. T cell responses are required for protection from clinical disease and for virus clearance in severe acute respiratory syndrome coronavirus-infected mice. J Virol. 2010;84(18):9318–25.
CAS
PubMed
PubMed Central
Article
Google Scholar
Ga V, Pj B, Van Den Worm S, Wj S. Group 2 coronaviruses prevent immediate early interferon induction by protection of viral Rna from host cell recognition. Virology. 2007;361(1):18–26.
Article
CAS
Google Scholar
• Grant Ra, Morales-Nebreda L, Markov Ns, Swaminathan S, Querrey M, Guzman Er, Abbott Da, Donnelly Hk, Donayre A, Goldberg Ia, Klug Zm, Borkowski N, Lu Z, Kihshen H, Politanska Y, Sichizya L, Kang M, Shilatifard A, Qi C, Lomasney Jw, Argento Ac, Kruser Jm, Malsin Es, Pickens Co, Smith Sb, Walter Jm, Pawlowski Ae, Schneider D, Nannapaneni P, Abdala-Valencia H, Bharat A, Gottardi Cj, Budinger Grs, Misharin Av, Singer Bd, Wunderink Rg, Investigators Nss. Circuits between infected macrophages and T cells in Sars-Cov-2 pneumonia. Nature. 2021; 590(7847):635-641. This article focuses on the mechanisms of communication between the infected macrophages and the T cells that are recruited and activated during Sars-Cov-2 infections.
Liao M, Liu Y, Yuan J, Wen Y, Xu G, Zhao J, Cheng L, Li J, Wang X, Wang F, Liu L, Amit I, Zhang S, Zhang Z. Single-cell landscape of bronchoalveolar immune cells in patients with Covid-19. Nat Med. 2020;26(6):842–4.
CAS
PubMed
Article
Google Scholar
• Kloc M, Ghobrial Rm, Lipinska-Opalka A, Wawrzyniak A, Zdanowski R, Kalicki B, Kubiak Jz. Effects Of vitamin D on macrophages and myeloid-derived suppressor cells (Mdscs) hyperinflammatory response in the lungs of Covid-19 patients. Cell Immunol. 2021;360:104259. This study calls attention to the role of myeloid suppressor cells in Covid-19 Infections, and the role of vitamin D in suppressing their actions
•• Teymoori-Rad M, Marashi Sm. Vitamin D and Covid-19: from potential therapeutic effects to unanswered questions. Rev Med Virol. 2021;31(2):E2159. This is a very good review of the potential benefit of vitamin D In Covid-19 infections but also points out the gaps of our knowledge.
Hw K, Jk N, Kroll M, Bi C, Mf H. Sars-Cov-2 positivity rates associated with circulating 25-hydroxyvitamin D levels. Plos One. 2020;15(9):E0239252.
Article
CAS
Google Scholar
Benskin L. The influence of vitamin D on Covid-19 outcomes. Chapter 4 In Covid-19 and nutraceuticals: a guidebook. Bohr Publishers And New Century Health Publishers, Pages 1-35. 2021
Jj C, Vieth R, Jc U, Mf H, Wb G, Madronich S, Cf G, Giovannucci E. Epidemic influenza and vitamin D. Epidemiol Infect. 2006;134(6):1129–40.
Article
CAS
Google Scholar
Jj C, Zasloff M, Cf G, Scragg R, Giovannucci E. On the epidemiology of influenza. Virol J. 2008;5:29.
Article
Google Scholar
Aa G, Jm M, Ca C Jr. Association between serum 25-hydroxyvitamin D level and upper respiratory tract infection in the third national health and nutrition examination survey. Arch Intern Med. 2009;169(4):384–90.
Article
Google Scholar
Laaksi I, Jp R, Tuohimaa P, Auvinen A, Haataja R, Pihlajamaki H, Ylikomi T. An association of serum vitamin D concentrations < 40 Nmol/L with acute respiratory tract infection in young Finnish men. Am J Clin Nutr. 2007;86(3):714–7.
CAS
PubMed
Article
Google Scholar
Wayse V, Yousafzai A, Mogale K, Filteau S. Association of subclinical vitamin D deficiency with severe acute lower respiratory infection in Indian children under 5 y. Eur J Clin Nutr. 2004;58(4):563–7.
CAS
PubMed
Article
Google Scholar
• Hernandez Jl, Nan D, Fernandez-Ayala M, Garcia-Unzueta M, Hernandez-Hernandez Ma, Lopez-Hoyos M, Munoz-Cacho P, Olmos Jm, Gutierrez-Cuadra M, Ruiz-Cubillan Jj, Crespo J, Martinez-Taboada Vm. Vitamin D status in hospitalized patients with Sars-Cov-2 infection. J Clin Endocrinol Metab. 2021;106(3):E1343-E1353. This study links vitamin D Status of patients with Sars-Cov-2 infection to their risk of ICU admission and mortality.
Ali N. Role Of vitamin D in preventing of Covid-19 infection, progression and severity. J Infect Public Health. 2020;13(10):1373–80.
PubMed
PubMed Central
Article
Google Scholar
Bassatne A, Basbous M, Chakhtoura M, El Zein O, Rahme M, El-Hajj Fuleihan G. The link between Covid-19 and vitamin D (Vivid): a systematic review and meta-analysis. Metabolism. 2021;119:154753.
CAS
PubMed
PubMed Central
Article
Google Scholar
• Maghbooli Z, Sahraian Ma, Ebrahimi M, Pazoki M, Kafan S, Tabriz Hm, Hadadi A, Montazeri M, Nasiri M, Shirvani A, Holick Mf. Vitamin d sufficiency, a serum 25-hydroxyvitamin D at least 30 Ng/Ml reduced Risk for adverse clinical outcomes in patients with Covid-19 infection. Plos One. 2020;15(9):E0239799. This study makes the point that the level of 25ohd needed to reduce the morbidity and mortality from Covid-19 infection is likely greater than 30ng/Ml, and so higher than what is considered optimal for bone health at least by some studies.
•• Jolliffe Da, Camargo Ca, Jr., Sluyter Jd, Aglipay M, Aloia Jf, Ganmaa D, Bergman P, Bischoff-Ferrari Ha, Borzutzky A, Damsgaard Ct, Dubnov-Raz G, Esposito S, Gilham C, Ginde Aa, Golan-Tripto I, Goodall Ec, Grant Cc, Griffiths Cj, Hibbs Am, Janssens W, Khadilkar Av, Laaksi I, Lee Mt, Loeb M, Maguire Jl, Majak P, Mauger Dt, Manaseki-Holland S, Murdoch Dr, Nakashima A, Neale Re, Pham H, Rake C, Rees Jr, Rosendahl J, Scragg R, Shah D, Shimizu Y, Simpson-Yap S, Trilok-Kumar G, Urashima M, Martineau Ar 2021 Vitamin D supplementation to prevent acute respiratory infections: a systematic review and meta-analysis of aggregate data from randomised controlled trials. Lancet Diabetes Endocrinol 9(5):276-292. This Is A Very Large Meta-Analysis Of The Impact Of Vitamin D Levels And Supplementation On A Wide Variety Of Acute Respiratory Infections.
Drame M, Cofais C, Hentzien M, Proye E, Ps C, Demoustier-Tampere D, Destailleur M, Lotin M, Cantagrit E, Cebille A, Desprez A, Blondiau F, Kanagaratnam L, Godaert L. Relation between vitamin D and Covid-19 in aged people: a systematic review. Nutrients. 2021;13(4).
•• Nogues X, Ovejero D, Pineda-Moncusi M, Bouillon R, Arenas D, Pascual J, Ribes A, Guerri-Fernandez R, Villar-Garcia J, Rial A, Gimenez-Argente C, Cos Ml, Rodriguez-Morera J, Campodarve I, Quesada-Gomez Jm, Garcia-Giralt N. Calcifediol treatment and Covid-19-related outcomes. J Clin Endocrinol Metab. 2021;106(10):E4017-E4027. This is one of the most compelling clinical trials attesting to the benefits of vitamin D supplementation in vitamin D–deficient patients in preventing morbidity and mortality from Sars-Cov-2 Infection
Wb G, Lahore H, Sl M, Ca B, Cb F, Jl A, Hp B. Evidence that vitamin D supplementation could reduce risk of influenza and Covid-19 infections and deaths. Nutrients. 2020;12(4).
Teymoori-Rad M, Shokri F, Salimi V, Sm M. The interplay between vitamin D and viral infections. Rev Med Virol. 2019;29(2):e2032.
PubMed
Article
Google Scholar
Bk P, Ag C, Gaddis N, Db H, Pa C. Genetically predicted serum vitamin D and Covid-19: a Mendelian randomisation study. Bmj Nutr Prev Health. 2021;4(1):213–25.
Article
Google Scholar
De R, Ab J, Prosser C, Jl R, Vohra S. Vitamin D receptor polymorphisms and the risk of acute lower respiratory tract infection in early childhood. J Infect Dis. 2008;197(5):676–80.
Article
Google Scholar
Iwasaki A, Medzhitov R. Regulation of adaptive immunity by the innate immune system. Science. 2010;327(5963):291–5.
CAS
PubMed
PubMed Central
Article
Google Scholar
Hansdottir S, Mm M, Sl H, Lovan N, Dc L, Gw H. Respiratory epithelial cells convert inactive vitamin D to its active form: potential effects on host defense. J Immunol. 2008;181(10):7090–9.
CAS
PubMed
Article
Google Scholar
Hansdottir S, Mm M. Vitamin D effects on lung immunity and respiratory diseases. Vitam Horm. 2011;86:217–37.
CAS
PubMed
PubMed Central
Article
Google Scholar
Mathyssen C, Aelbrecht C, Serre J, Everaerts S, Maes K, Gayan-Ramirez G, Vanaudenaerde B, Janssens W. Local expression profiles of vitamin D-Related genes in airways of COPD patients. Respir Res. 2020;21(1):137.
CAS
PubMed
PubMed Central
Article
Google Scholar
Ag T, Zdrenghea M, Mr E, Laza-Stanca V, Mallia P, Sl J, La S. Vitamin D increases the antiviral activity of bronchial epithelial cells in vitro. Antiviral Res. 2017;137:93–101.
Article
CAS
Google Scholar
Zheng S, Yang J, Hu X, Li M, Wang Q, Rca D, Parekh D, Gao-Smith F, Dr T, Jin S. Vitamin D attenuates lung injury via stimulating epithelial repair, reducing epithelial cell apoptosis and inhibits Tgf-beta induced epithelial to mesenchymal transition. Biochem Pharmacol. 2020;177:113955.
CAS
PubMed
Article
Google Scholar
Chen H, Lu R, Yg Z, Sun J. Vitamin D receptor deletion leads to the destruction of tight and adherens junctions in lungs. Tissue Barriers. 2018;6(4):1–13.
PubMed
PubMed Central
Article
CAS
Google Scholar
Reichel H, Hp K, Barbers R, Aw N. Regulation of 1,25-dihydroxyvitamin D3 production by cultured alveolar macrophages from normal human donors and from patients with pulmonary sarcoidosis. J Clin Endocrinol Metab. 1987;65(6):1201–9.
CAS
PubMed
Article
Google Scholar
Liu Pt, Stenger S, Li H, Wenzel L, Tan Bh, Krutzik Sr, Ochoa Mt, Schauber J, Wu K, Meinken C, Kamen Dl, Wagner M, Bals R, Steinmeyer A, Zugel U, Gallo Rl, Eisenberg D, Hewison M, Hollis Bw, Adams Js, Bloom Br, Modlin Rl. Toll-like receptor triggering of a vitamin D-mediated human antimicrobial response. Science. 2006;311(5768):1770-1773.
Overbergh L, Decallonne B, Valckx D, Verstuyf A, Depovere J, Laureys J, Rutgeerts O, Saint-Arnaud R, Bouillon R, Mathieu C. Identification and immune regulation of 25-hydroxyvitamin D-1-alpha-hydroxylase in murine macrophages. Clin Exp Immunol. 2000;120(1):139–46.
CAS
PubMed
PubMed Central
Article
Google Scholar
Fritsche J, Mondal K, Ehrnsperger A, Andreesen R, Kreutz M. Regulation of 25-hydroxyvitamin D3-1 alpha-hydroxylase and production of 1 alpha,25-dihydroxyvitamin D3 by human dendritic cells. Blood. 2003;102(9):3314–6.
CAS
PubMed
Article
Google Scholar
Hewison M, Freeman L, Sv H, Kn E, Bland R, Ag E, Md K, Pa M, Chakraverty R. Differential regulation of vitamin D receptor and its ligand in human monocyte-derived dendritic cells. J Immunol. 2003;170(11):5382–90.
CAS
PubMed
Article
Google Scholar
Sigmundsdottir H, Pan J, Gf D, Alt C, Habtezion A, Soler D, Ec B. DCs metabolize sunlight-induced vitamin D3 to ‘Program’ T cell attraction to the epidermal chemokine Ccl27. Nat Immunol. 2007;8(3):285–93.
CAS
PubMed
Article
Google Scholar
Guo X, Pg T. New fronts emerge in the influenza cytokine storm. Semin Immunopathol. 2017;39(5):541–50.
CAS
PubMed
PubMed Central
Article
Google Scholar
Takahashi K, Nakayama Y, Horiuchi H, Ohta T, Komoriya K, Ohmori H, Kamimura T. Human neutrophils express messenger Rna of vitamin D receptor and respond to 1alpha,25-dihydroxyvitamin D3. Immunopharmacol immunotoxicol. 2002;24(3):335–47.
CAS
PubMed
Article
Google Scholar
Gonzalez-Pardo V, D'elia N, Verstuyf A, Boland R, Russo De Boland A. Nfkappab pathway is down-regulated by 1alpha,25(Oh)(2)-vitamin D(3) in endothelial cells transformed by Kaposi sarcoma-associated herpes virus G protein coupled receptor. Steroids. 2012;77(11):1025–32.
CAS
PubMed
Article
Google Scholar
Hansdottir S, Mm M, Lovan N, Powers L, Gerke A, Gw H. Vitamin D decreases respiratory syncytial virus induction Of Nf-Kappab-linked chemokines and cytokines in airway epithelium while maintaining the antiviral state. J Immunol. 2010;184(2):965–74.
CAS
PubMed
Article
Google Scholar
Gs L, Zhang C, Cheng B, Lee C. Mechanisms of action of Vitamin D as supplemental therapy for pneumocystis pneumonia. Antimicrob Agents Chemother. 2017;61(10).
Af G, Borregaard N, Hp K. Human cathelicidin antimicrobial peptide (Camp) gene is a direct target of the vitamin D receptor and is strongly up-regulated in myeloid cells by 1,25-dihydroxyvitamin D3. Faseb J. 2005;19(9):1067–77.
Article
CAS
Google Scholar
Wang T, Fp N, Bourdeau V, Nagai Y, Wang Q, Liao J, Tavera-Mendoza L, Lin R, Jw H, Mader S, White J. Cutting edge: 1,25-dihydroxyvitamin D3 is a direct inducer of antimicrobial peptide gene expression. J Immunol. 2004;173(5):2909–12.
CAS
PubMed
Article
Google Scholar
•• Chung C, Silwal P, Kim I, Modlin Rl, Jo Ek. Vitamin D-cathelicidin axis: at the crossroads between protective immunity and pathological inflammation during infection. Immune Netw. 2020; 20(2):E12. A very good review of the numerous means by which cathelicidin can have both beneficial and pathological actions in infections: the junction of the innate immune and adaptive immune systems and how vitamin d serves to modulate these actions.
Jm Y, Dm S, Lee H, Yang C, Hs J, Kk K, Lee Z, Lee S, Jm K, Ek J. Vitamin D3 induces autophagy in human monocytes/macrophages via cathelicidin. Cell Host Microbe. 2009;6(3):231–43.
Article
CAS
Google Scholar
Wu S, Sun J. Vitamin D, vitamin D receptor, and macroautophagy in inflammation and infection. Discov Med. 2011;11(59):325–35.
PubMed
PubMed Central
Google Scholar
Wang T, Dabbas B, Laperriere D, Aj B, Soualhine H, Le T-M, Dionne S, Mj S, Bitton A, Eg S, Mader S, Ma B, White J. Direct and indirect induction by 1,25-dihydroxyvitamin D3 Of the Nod2/Card15-defensin beta2 innate immune pathway defective in Crohn disease. J Biol Chem. 2010;285(4):2227–31.
CAS
PubMed
Article
Google Scholar
Kim J, Yang Y, Jang S, Ys J. Human beta-defensin 2 plays a regulatory role in innate antiviral immunity and is capable of potentiating the induction of antigen-specific immunity. Virol J. 2018;15(1):124.
PubMed
PubMed Central
Article
CAS
Google Scholar
Jj O, Tewary P, De La Rosa G, Yang D. Alarmins initiate host defense. Adv Exp Med Biol. 2007;601:185–94.
Article
Google Scholar
Baeke F, Takiishi T, Korf H, Gysemans C, Mathieu C. Vitamin D: modulator of the immune system. Curr Opin Pharmacol. 2010;10(4):482–96.
CAS
PubMed
Article
Google Scholar
Sadeghi K, Wessner B, Laggner U, Ploder M, Tamandl D, Friedl J, Zugel U, Steinmeyer A, Pollak A, Roth E, Boltz-Nitulescu G, Spittler A. Vitamin D3 down-regulates monocyte Tlr expression and triggers hyporesponsiveness to pathogen-associated molecular patterns. Eur J Immunol. 2006;36(2):361–70.
CAS
PubMed
Article
Google Scholar
Cantorna Mt YS, Bruce D. The paradoxical effects of vitamin D on type 1 mediated immunity. Mol Aspects Med. 2008;29(6):369–75.
PubMed
PubMed Central
Article
CAS
Google Scholar
Pg H, Strickland D, Me W, Fl J. Regulation of immunological homeostasis in the respiratory tract. Nat Rev Immunol. 2008;8(2):142–52.
Article
CAS
Google Scholar
Van Etten E, Mathieu C. Immunoregulation by 1,25-dihydroxyvitamin D3: basic concepts. J Steroid Biochem Mol Biol. 2005;97(1-2):93–101.
PubMed
Article
CAS
Google Scholar
Daniel C, Na S, Zahn N, Radeke H, Jm S. Immune modulatory treatment of trinitrobenzene sulfonic acid colitis with calcitriol is associated with a change of a T helper (Th) 1/Th17 to a Th2 and regulatory T cell profile. J Pharmacol Exp Ther. 2008;324(1):23–33.
CAS
PubMed
Article
Google Scholar
Gregori S, Casorati M, Amuchastegui S, Smiroldo S, Am D, Adorini L. Regulatory T cells induced by 1 alpha,25-dihydroxyvitamin D3 and mycophenolate mofetil treatment mediate transplantation tolerance. J Immunol. 2001;167(4):1945–53.
CAS
PubMed
Article
Google Scholar
Sakaguchi S, Yamaguchi T, Nomura T, Ono M. Regulatory T cells and immune tolerance. Cell. 2008;133(5):775–87.
CAS
PubMed
Article
Google Scholar
Ay R. Regulatory T cells and Foxp3. Immunol Rev. 2011;241(1):260–8.
Article
Google Scholar