Skip to main content

Advertisement

Log in

Tracking of Oral and Craniofacial Stem Cells in Tissue Development, Regeneration, and Diseases

  • Regenerative Biology and Medicine in Osteoporosis (S Bryant and M Krebs, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The craniofacial region hosts a variety of stem cells, all isolated from different sources of bone and cartilage. However, despite scientific advancements, their role in tissue development and regeneration is not entirely understood. The goal of this review is to discuss recent advances in stem cell tracking methods and how these can be advantageously used to understand oro-facial tissue development and regeneration.

Recent Findings

Stem cell tracking methods have gained importance in recent times, mainly with the introduction of several molecular imaging techniques, like optical imaging, computed tomography, magnetic resonance imaging, and ultrasound. Labelling of stem cells, assisted by these imaging techniques, has proven to be useful in establishing stem cell lineage for regenerative therapy of the oro-facial tissue complex.

Summary

Novel labelling methods complementing imaging techniques have been pivotal in understanding craniofacial tissue development and regeneration. These stem cell tracking methods have the potential to facilitate the development of innovative cell-based therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Weismann IL. Stem cells: units of development, units of regeneration and units in evolution. Cell. 2000;100:157–68.

    Article  Google Scholar 

  2. •• Zhang G, Li Q, Yuan Q, Zhang S. Spatial distributions, characteristics, and applications of craniofacial stem cells. Stem Cells Int. 2020;2020:8868593. https://doi.org/10.1155/2020/8868593A review paper highlighting the properties and distribution of craniofacial stem cells in the head and neck region.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhang W, Yelick PC. Craniofacial tissue engineering. Cold Spring Harb Perspect Med. 2018;8(1):1–18. https://doi.org/10.1101/cshperspect.a025775.

    Article  CAS  Google Scholar 

  4. Yi DK, Nanda SS, Kim K, Tamil SS. Recent progress in nanotechnology for stem cell differentiation, labeling, tracking and therapy. J Mater Chem B. 2017;5(48):9429–51. https://doi.org/10.1039/c7tb02532g.

    Article  CAS  PubMed  Google Scholar 

  5. Maria OM, Khosravi R, Mezey E, Tran SD. Cells from bone marrow that evolve into oral tissues and their clinical applications. Oral Dis. 2007;13(1):11–6. https://doi.org/10.1111/j.1601-0825.2006.01324.x.

    Article  CAS  PubMed  Google Scholar 

  6. Tran SD, Sumita Y, Khalili S. Bone marrow-derived cells: a potential approach for the treatment of xerostomia. Int J Biochem Cell Biol. 2011;43(1):5–9. https://doi.org/10.1016/j.biocel.2010.10.010.

    Article  CAS  PubMed  Google Scholar 

  7. Kawecki F, Clafshenkel WP, Fortin M, Auger FA, Fradette J. Biomimetic tissue-engineered bone substitutes for maxillofacial and craniofacial repair: the potential of cell sheet technologies. Adv Healthc Mater. 2018;7(6):e1700919. https://doi.org/10.1002/adhm.201700919.

    Article  CAS  PubMed  Google Scholar 

  8. Ramamoorthi M, Bakkar M, Jordan J, Tran SD. Osteogenic potential of dental mesenchymal stem cells in preclinical studies: a systematic review using modified ARRIVE and CONSORT guidelines. Stem Cells Int. 2015;378368:1–28. https://doi.org/10.1155/2015/378368.

    Article  Google Scholar 

  9. Zhao H, Chai Y. Stem cells in teeth and craniofacial bones. J Dent Res. 2015;94(11):1495–501. https://doi.org/10.1177/0022034515603972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang Y, Mao H, Yi Z. Stem cell motion-tracking by using deep neural networks with multi-output. Neural Comput & Applic. 2017;31(8):3455–67. https://doi.org/10.1007/s00521-017-3291-2.

    Article  Google Scholar 

  11. Aghali A, Armani HE. Photoencapsulated-mesenchymal stromal cells in biodegradable thiol-acrylate hydrogels enhance regeneration of craniofacial bone tissue defects. Regen Med. 2020;15(9):2115–27.

    Article  CAS  Google Scholar 

  12. Saltz A, Kandalam U. Mesenchymal stem cells and alginate microcarriers for craniofacial bone tissue engineering: a review. J Biomed Mater Res A. 2016;104(5):1276–84. https://doi.org/10.1002/jbm.a.35647.

    Article  CAS  PubMed  Google Scholar 

  13. • Srinivasan A, Teo N, Poon KJ, Tiwari P, Ravichandran A, Wen F, et al. Comparative craniofacial bone regeneration capacities of mesenchymal stem cells derived from human neural crest stem cells and bone marrow. ACS Biomater Sci Eng. 2021;7(1):207–21. https://doi.org/10.1021/acsbiomaterials.0c00878An important study demonstrating the osteogenetic ability of craniofacial BMMSCs which deems them suitable for bone tissue engineering.

    Article  CAS  PubMed  Google Scholar 

  14. Yang M, Zhang H, Gangolli R. Advances of using mesenchymal stem cells derived from bone marrow and dental tissue in craniofacial tissue engineering. Curr Stem Cell Res T. 2014;9:150–61.

    Article  CAS  Google Scholar 

  15. Ransom RC, Carter AC, Salhotra A, Leavitt T, Marecic O, Murphy MP, Lopez ML, Wei Y, Marshall CD, Shen EZ, Jones RE, Sharir A, Klein OD, Chan CKF, Wan DC, Chang HY, Longaker MT. Mechanoresponsive stem cells acquire neural crest fate in jaw regeneration. Nature. 2018;563(7732):514–21. https://doi.org/10.1038/s41586-018-0650-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. • Debnath S, Yallowitz AR, McCormick J, Lalani S, Zhang T, Xu R, et al. Discovery of a periosteal stem cell mediating intramembranous bone formation. Nature. 2018;562(7725):133–9. https://doi.org/10.1038/s41586-018-0554-8One of the premier studies identifying periosteal skeletal stem cell populations and demonstrating the ability of bone to contain multiple varieties of stem cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ortinau LC, Wang H, Lei K, Deveza L, Jeong Y, Hara Y, Grafe I, Rosenfeld SB, Lee D, Lee B, Scadden DT, Park D. Identification of functionally distinct Mx1+alphaSMA+ periosteal skeletal stem cells. Cell Stem Cell. 2019;25(6):784–96. https://doi.org/10.1016/j.stem.2019.11.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Akintoye SO, Lam T, Shi S, Brahim J, Collins MT, Robey PG. Skeletal site-specific characterization of orofacial and iliac crest human bone marrow stromal cells in same individuals. Bone. 2006;38(6):758–68. https://doi.org/10.1016/j.bone.2005.10.027.

    Article  CAS  PubMed  Google Scholar 

  19. Du Y, Jiang F, Liang Y, Wang Y, Zhou W, Pan Y, et al. The angiogenic variation of skeletal site-specific human BMSCs from same alveolar cleft patients: a comparative study. J Mol Histol. 2016;47(2):153–68. https://doi.org/10.1007/s10735-016-9662-7.

    Article  CAS  PubMed  Google Scholar 

  20. Kanawa M, Igarashi A, Fujimoto K, Higashi Y, Kurihara H, Sugiyama M, Saskianti T, Kato Y, Kawamoto T. Genetic markers can predict chondrogenic differentiation potential in bone marrow-derived mesenchymal stromal cells. Stem Cells Int. 2018;9530932:1–10. https://doi.org/10.1155/2018/9530932.

    Article  CAS  Google Scholar 

  21. • Zhang D, Zhang S, Wang J, Li Q, Xue H, Sheng R, et al. LepR-expressing stem cells are essential for alveolar bone regeneration. J Dent Res. 2020;99(11):1279–86. https://doi.org/10.1177/0022034520932834A study showing a quiescent population of skeletal stem cells that can contribute to intramembranous bone formation in the alveolar bone.

    Article  CAS  PubMed  Google Scholar 

  22. Cui D, Li H, Xu X, Ye L, Zhou X, Zheng L, Zhou Y. Mesenchymal stem cells for cartilage regeneration of TMJ osteoarthritis. Stem Cells Int. 2017;5979741:1–12. https://doi.org/10.1155/2017/5979741.

    Article  CAS  Google Scholar 

  23. • Lin Y, Umebayashi M, Abdallah M-N, Dong G, Roskies MG, Zhao YF, et al. Combination of polyetherketoneketone scaffold and human mesenchymal stem cells from temporomandibular joint synovial fluid enhances bone regeneration. Sci Rep. 2019;9(1):1–12. https://doi.org/10.1038/s41598-018-36778-2Demonstrated research from our laboratory, which shows an attractive scaffolding system that can be used to characterize human synovial fluid MSCs to evaluate their osteogenic potential.

    Article  CAS  Google Scholar 

  24. Liu Z, Long X, Li J, Wei L, Gong Z, Fang W. Differentiation of temporomandibular joint synovial mesenchymal stem cells into neuronal cells in vitro: an in vitro study. Cell Biol Int. 2011;35(1):87–91. https://doi.org/10.1042/CBI20100144.

    Article  PubMed  Google Scholar 

  25. Liu W, Sun Y, He Y, Zhang H, Zheng Y, Yao Y, Zhang Z. IL-1beta impedes the chondrogenic differentiation of synovial fluid mesenchymal stem cells in the human temporomandibular joint. Int J Mol Med. 2017;39(2):317–26. https://doi.org/10.3892/ijmm.2016.2832.

    Article  PubMed  Google Scholar 

  26. Fan Y, Cui C, Li P, Bi R, Lyu P, Li Y, Zhu S. Fibrocartilage stem cells in the temporomandibular joint: insights from animal and human studies. Front Cell Dev Biol. 2021;665995:1–9. https://doi.org/10.3389/fcell.2021.665995.

    Article  Google Scholar 

  27. Embree MC, Chen M, Pylawka S, Kong D, Iwaoka GM, Kalajzic I, Yao H, Shi C, Sun D, Sheu TJ, Koslovsky DA, Koch A, Mao JJ. Exploiting endogenous fibrocartilage stem cells to regenerate cartilage and repair joint injury. Nat Commun. 2016;7(13073):1–13. https://doi.org/10.1038/ncomms13073.

    Article  CAS  Google Scholar 

  28. • Bi R, Yin Q, Mei J, Chen K, Luo X, Fan Y, et al. Identification of human temporomandibular joint fibrocartilage stem cells with distinct chondrogenic capacity. Osteoarthr Cartil. 2020;28(6):842–52. https://doi.org/10.1016/j.joca.2020.02.835A study identifying TMJ fibrocartilage stem cells with chondrogenic repair capacity through the expression of SOX9 gene.

    Article  CAS  Google Scholar 

  29. Maruyama T, Jeong J, Sheu TJ, Hsu W. Stem cells of the suture mesenchyme in craniofacial bone development, repair and regeneration. Nat Commun. 2016;7:10526. https://doi.org/10.1038/ncomms10526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Maruyama T, Stevens R, Boka A, DiRienzo L, Chang C, Yu IH-M, et al. BMPR1A maintains skeletal stem cell properties in craniofacial development and craniosynostosis. Sci Transl Med. 2021;13:1–12.

    Article  Google Scholar 

  31. Ebrahimi M, Botelho M. Adult stem cells of orofacial origin: current knowledge and limitation and future trend in regenerative medicine. Tissue Eng Regen Med. 2017;14(6):719–33. https://doi.org/10.1007/s13770-017-0078-6.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Guo J, Weng J, Rong Q, Zhang X, Zhu S, Huang D, Li X, Chen SL. Investigation of multipotent postnatal stem cells from human maxillary sinus membrane. Sci Rep. 2015;5(1):11660. https://doi.org/10.1038/srep11660.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ferro F, Spelat R, Baheney CS. Dental pulp stem cell (DPSC) isolation, characterization, and differentiation. Methods Mol Biol. 2014;1210:91–115. https://doi.org/10.1007/978-1-4939-1435-7_8.

    Article  PubMed  Google Scholar 

  34. Bakkar M, Liu Y, Fang D, Stegen C, Su X, Ramamoorthi M, et al. A simplified and systematic method to isolate, culture, and characterize multiple types of human dental stem cells from a single tooth. Methods Mol Biol. 2017;1553:191–207. https://doi.org/10.1007/978-1-4939-6756-8_15.

    Article  CAS  PubMed  Google Scholar 

  35. de Mendonça CA, Bueno DF, Martins MT, Kerkis I, Kerkis A, Fanganiello RD, et al. Reconstruction of large cranial defects in nonimmunosuppressed experimental design with human dental pulp stem cells. J Craniofac Surg. 2008;19(1):204–10. https://doi.org/10.1097/scs.0b013e31815c8a54.

    Article  Google Scholar 

  36. Giuliani A, Manescu A, Langer M, Rustichelli F, Desiderio V, Paino F, de Rosa A, Laino L, d'Aquino R, Tirino V, Papaccio G. Three years after transplants in human mandibles, histological and in-line holotomography revealed that stem cells regenerated a compact rather than a spongy bone: biological and clinical implications. Stem Cells Transl Med. 2013;2(4):316–24. https://doi.org/10.5966/sctm.2012-0136.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. • Tanikawa DYS, Pinheiro CCG, Almeida MCA, Oliveira CRGCM, Coudry RDA, Rocha D, et al. Deciduous dental pulp stem cells for maxillary alveolar reconstruction in cleft lip and palate patients. Stem Cells Int. 2020;6234167:1–9. https://doi.org/10.1155/2020/6234167A study which reported the first time use of deciduous dental pulp stem cells in reconstruction of alveolar defects, illustrating the usefulness of DMSCs.

    Article  CAS  Google Scholar 

  38. Vyas T. Stem cell in modern dentistry: a review article. Int J Res Health Allied Sci. 2017;3(5):51–9.

    Google Scholar 

  39. Iohara K, Zheng L, Wake H, Ito M, Nabekura J, Wakita H, Nakamura H, Into T, Matsushita K, Nakashima M. A novel stem cell source for vasculogenesis in ischemia: subfraction of side population cells from dental pulp. Stem Cells. 2008;26(9):2408–18. https://doi.org/10.1634/stemcells.2008-0393.

    Article  PubMed  Google Scholar 

  40. Gomes JA, Geraldes Monteiro B, Melo GB, Smith RL, Cavenaghi Pereira da Silva M, Lizier NF, et al. Corneal reconstruction with tissue-engineered cell sheets composed of human immature dental pulp stem cells. Invest Ophthalmol Vis Sci. 2010;51(3):1408–14. https://doi.org/10.1167/iovs.09-4029.

    Article  PubMed  Google Scholar 

  41. Botelho J, Cavacas MA, Machado V, Mendes JJ. Dental stem cells: recent progresses in tissue engineering and regenerative medicine. Ann Med. 2017;49(8):644–51. https://doi.org/10.1080/07853890.2017.1347705.

    Article  PubMed  Google Scholar 

  42. Gronthos S, Mankani M, Brahim J, Gehron Robby P, Shi S. Postnatal human dental pulp stem cells (DPSCs) in vitro and in vivo. PNAS. 2000;97(25):13625–30.

    Article  CAS  Google Scholar 

  43. Gronthos S, Brahim J, Li W, Fisher LW, Cherman N, Boyde A, DenBesten P, Robey PG, Shi S. Stem cell properties of human dental pulp stem cells. J Dent Res. 2002;81(8):531–5. https://doi.org/10.1177/154405910208100806.

    Article  CAS  PubMed  Google Scholar 

  44. Téclès O, Laurent P, Zygouritsas S, Burger AS, Camps J, Dejou J, About I. Activation of human dental pulp progenitor/stem cells in response to odontoblast injury. Arch Oral Biol. 2005;50(2):103–8. https://doi.org/10.1016/j.archoralbio.2004.11.009.

    Article  CAS  PubMed  Google Scholar 

  45. Kaukua N, Shahidi MK, Konstantinidou C, Dyachuk V, Kaucka M, Furlan A, An Z, Wang L, Hultman I, Ährlund-Richter L, Blom H, Brismar H, Lopes NA, Pachnis V, Suter U, Clevers H, Thesleff I, Sharpe P, Ernfors P, et al. Glial origin of mesenchymal stem cells in a tooth model system. Nature. 2014;513(7519):551–4. https://doi.org/10.1038/nature13536.

    Article  CAS  PubMed  Google Scholar 

  46. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, Shi S. SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A. 2003;100(10):5807–12. https://doi.org/10.1073/pnas.0937635100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Martinez Saez D, Sasaki RT, Neves AD, da Silva MC. Stem cells from human exfoliated deciduous teeth: a growing literature. Cells Tissues Organs. 2016;202(5-6):269–80. https://doi.org/10.1159/000447055.

    Article  PubMed  Google Scholar 

  48. Wang J, Wang X, Sun Z, Wang X, Yang H, Shi S, Wang S. Stem cells from human-exfoliated deciduous teeth can differentiate into dopaminergic neuron-like cells. Stem Cells Dev. 2010;19(9):1375–83. https://doi.org/10.1089/scd.2009.0258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Nakamura S, Yamada Y, Katagiri W, Sugito T, Ito K, Ueda M. Stem cell proliferation pathways comparison between human exfoliated deciduous teeth and dental pulp stem cells by gene expression profile from promising dental pulp. J Endod. 2009;35(11):1536–42. https://doi.org/10.1016/j.joen.2009.07.024.

    Article  PubMed  Google Scholar 

  50. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, et al. Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet. 2004;364(9429):149–55. https://doi.org/10.1016/s0140-6736(04)16627-0.

    Article  CAS  PubMed  Google Scholar 

  51. Yao S, Pan F, Prpic V, Wise GE. Differentiation of stem cells in the dental follicle. J Dent Res. 2008;87(8):767–71. https://doi.org/10.1177/154405910808700801.

    Article  CAS  PubMed  Google Scholar 

  52. Sonoyama W, Liu Y, Fang D, Yamaza T, Seo B-M, Zhang C, et al. Mesenchymal stem cell-mediated functional tooth regeneration in swine. PLoS One. 2006;1(1):1–8. https://doi.org/10.1371/journal.pone.0000079.

    Article  CAS  Google Scholar 

  53. Ikeda E, Yagi K, Kojima M, Yagyuu T, Ohshima A, Sobajima S, Tadokoro M, Katsube Y, Isoda K, Kondoh M, Kawase M, Go MJ, Adachi H, Yokota Y, Kirita T, Ohgushi H. Multipotent cells from the human third molar: feasibility of cell-based therapy for liver disease. Differentiation. 2008;76(5):495–505. https://doi.org/10.1111/j.1432-0436.2007.00245.x.

    Article  CAS  PubMed  Google Scholar 

  54. Honda MJ, Imaizumi M, Tsuchiya S, Morsczeck C. Dental follicle stem cells and tissue engineering. J Oral Sci. 2010;52(4):541–52. https://doi.org/10.2334/josnusd.52.541.

    Article  PubMed  Google Scholar 

  55. Fawzy El-Sayed KM, Dörfer CE. Gingival mesenchymal stem/progenitor cells: a unique tissue engineering gem. Stem Cells Int. 2016;7154327:1–17. https://doi.org/10.1155/2016/7154327.

    Article  CAS  Google Scholar 

  56. Matsubara T, Suardita K, Ishii M, Sugiyama M, Igarashi A, Oda R, Nishimura M, Saito M, Nakagawa K, Yamanaka K, Miyazaki K, Shimizu M, Bhawal UK, Tsuji K, Nakamura K, Kato Y. Alveolar bone marrow as a cell source for regenerative medicine: differences between alveolar and iliac bone marrow stromal cells. J Bone Miner Res. 2005;20(3):399–409. https://doi.org/10.1359/jbmr.041117.

    Article  CAS  PubMed  Google Scholar 

  57. Baum BJ, Tran SD. Synergy between genetic and tissue engineering: creating an artificial salivary gland. Periodontol. 2000;41:218–23. https://doi.org/10.1111/j.1600-0757.2006.00160.x.

    Article  Google Scholar 

  58. Holmberg KV, Hoffman MP. Anatomy, biogenesis and regeneration of salivary glands. Monogr Oral Sci. 2014;24:1–13. https://doi.org/10.1159/000358776.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Emmerson E, Knox SM. Salivary gland stem cells: a review of development, regeneration and cancer. Genesis. 2018;56(5):1–36. https://doi.org/10.1002/dvg.23211.

    Article  Google Scholar 

  60. • Rocchi C, Barazzuol L, Coppes RP. The evolving definition of salivary gland stem cells. NPJ Regen Med. 2021;6(1):1–8. https://doi.org/10.1038/s41536-020-00115-xA recent review paper highlighting the several cell types present within the salivary gland epithelium and their ability to act as progenitor cells.

    Article  Google Scholar 

  61. Redman RS. On approaches to the functional restoration of salivary glands damaged by radiation therapy for head and neck cancer, with a review of related aspects of salivary gland morphology and development. Biotech Histochem. 2008;83(3-4):103–30. https://doi.org/10.1080/10520290802374683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Weng PL, Aure MH, Ovitt CE. Concise review: a critical evaluation of criteria used to define salivary gland stem cells. Stem Cells. 2019;37(9):1144–50. https://doi.org/10.1002/stem.3046.

    Article  PubMed  PubMed Central  Google Scholar 

  63. • Aure MH, Symonds JM, Mays JW, Hoffman MP. Epithelial cell lineage and signaling in murine salivary glands. J Dent Res. 2019;98(11):1186–94. https://doi.org/10.1177/0022034519864592A pivotal review explaining the recent advances in understanding the stem cell lineages in salivary glands and the factors responsible for signalling which can be used to develop regenerative therapies.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Emmerson E, May AJ, Berthoin L, Cruz-Pacheco N, Nathan S, Mattingly AJ, et al. Salivary glands regenerate after radiation injury through SOX2-mediated secretory cell replacement. EMBO Mol Med. 2018;10(3):1–18. https://doi.org/10.15252/emmm.201708051.

    Article  CAS  Google Scholar 

  65. Emmerson E, May AJ, Nathan S, Cruz-Pacheco N, Lizama CO, Maliskova L, et al. SOX2 regulates acinar cell development in the salivary gland. Elife. 2017;6:1–22. https://doi.org/10.7554/eLife.26620.

    Article  Google Scholar 

  66. Chatzeli L, Gaete M, Tucker AS. Fgf10 and Sox9 are essential for the establishment of distal progenitor cells during mouse salivary gland development. Development. 2017;144(12):2294–305. https://doi.org/10.1242/dev.146019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Maria OM, Maria AM, Cai Y, Tran SD. Cell surface markers CD44 and CD166 localized specific populations of salivary acinar cells. Oral Dis. 2012;18(2):162–8. https://doi.org/10.1111/j.1601-0825.2011.01858.x.

    Article  CAS  PubMed  Google Scholar 

  68. Kwak M, Alston N, Ghazizadeh S. Identification of stem cells in the secretory complex of salivary glands. J Dent Res. 2016;95(7):776–83. https://doi.org/10.1177/0022034516634664.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Ninche N, Kwak M, Ghazizadeh S. Diverse epithelial cell populations contribute to the regeneration of secretory units in injured salivary glands. Development. 2020;147(19):1–12. https://doi.org/10.1242/dev.192807.

    Article  CAS  Google Scholar 

  70. Weng PL, Aure MH, Maruyama T, Ovitt CE. Limited regeneration of adult salivary glands after severe injury involves cellular plasticity. Cell Rep. 2018;24(6):1464–70. https://doi.org/10.1016/j.celrep.2018.07.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Jin Q, Yuan K, Lin W, Niu C, Ma R, Huang Z. Comparative characterization of mesenchymal stem cells from human dental pulp and adipose tissue for bone regeneration potential. Artif Cells Nanomed Biotechnol. 2019;47(1):1577–84. https://doi.org/10.1080/21691401.2019.1594861.

    Article  CAS  PubMed  Google Scholar 

  72. Wang J, Jokerst JV. Stem cell imaging: tools to improve cell delivery and viability. Stem Cells Int. 2016;9240652:1–17. https://doi.org/10.1155/2016/9240652.

    Article  CAS  Google Scholar 

  73. Lee JK, Jin HK, Endo S, Schuchman EH, Carter JE. Bae J-s. Intracerebral transplantation of bone marrow-derived mesenchymal stem cells reduces amyloid-beta deposition and rescues memory deficits in Alzheimer’s disease mice by modulation of immune responses. Stem Cells. 2010;28(2):329–43. https://doi.org/10.1002/stem.277.

    Article  CAS  PubMed  Google Scholar 

  74. Edmundson M, Thanh NTK, Song B. Nanoparticles based stem cell tracking in regenerative medicine. Theranostics. 2013;3(8):573–82. https://doi.org/10.7150/thno.5477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Nguyen PK, Riegler J, Wu JC. Stem cell imaging: from bench to bedside. Cell Stem Cell. 2014;14(4):431–44. https://doi.org/10.1016/j.stem.2014.03.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. •• Rajendran RL, Jogalekar MP, Gangadaran P, Ahn BC. Noninvasive in vivo cell tracking using molecular imaging: a useful tool for developing mesenchymal stem cell-based cancer treatment. World J Stem Cells. 2020;12(12):1492–510. https://doi.org/10.4252/wjsc.v12.i12.1492A significant review that delves into the recent advances in the methods of stem cell tracking and their applications in cancer.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Du W, Tao H, Zhao S, He ZX, Li Z. Translational applications of molecular imaging in cardiovascular disease and stem cell therapy. Biochimie. 2015;116:43–51. https://doi.org/10.1016/j.biochi.2015.06.021.

    Article  CAS  PubMed  Google Scholar 

  78. Jurgielewicz P, Harmsen S, Wei E, Bachmann MH, Ting R, Aras O. New imaging probes to track cell fate: reporter genes in stem cell research. Cell Mol Life Sci. 2017;74(24):4455–69. https://doi.org/10.1007/s00018-017-2584-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Gu E, Chen WY, Gu J, Burridge P, Wu JC. Molecular imaging of stem cells: tracking survival, biodistribution, tumorigenicity, and immunogenicity. Theranostics. 2012;2(4):335–45. https://doi.org/10.7150/thno.3666.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Accomasso L, Gallina C, Turinetto V, Giachino C. Stem cell tracking with nanoparticles for regenerative medicine purposes: an overview. Stem Cells Int. 2016;2016:1–23. https://doi.org/10.1155/2016/7920358.

    Article  CAS  Google Scholar 

  81. • Nikzamir M, Akbarzadeh A, Panahi Y. An overview on nanoparticles used in biomedicine and their cytotoxicity. J Drug Deliv Sci Technol. 2021;61:102316:1-12. https://doi.org/10.1016/j.jddst.2020.102316 A recent review discussing the importance of using nanoparticles in stem cell tracking with notes on the types currently being used and their cytotoxicity.

    Article  CAS  Google Scholar 

  82. Yang X, Tian D-C, He W, Lv W, Fan J, Li H, Jin WN, Meng X. Cellular and molecular imaging for stem cell tracking in neurological diseases. Stroke Vasc Neurol. 2021;6(1):121–7. https://doi.org/10.1136/svn-2020-000408.

    Article  PubMed  Google Scholar 

  83. • Chen F, Jokerst JV. Stem cell tracking with nanoparticle-based ultrasound contrast agents. In: Basel MT, Bossmann SH, editors. Cell tracking: methods and protocols. New York: Springer Nature; 2020. https://doi.org/10.1007/978-1-0716-0364-2_13. A book chapter focusing on stem cell tracking with ultrasound contrast agents, with labelling protocols.

    Chapter  Google Scholar 

  84. Chen G, Zhang Y, Li C, Huang D, Wang Q, Wang Q. Recent advances in tracking the transplanted stem cells using near-infrared fluorescent nanoprobes: turning from the first to the second near-infrared window. Adv Healthc Mater. 2018;7(20):1–18. https://doi.org/10.1002/adhm.201800497.

    Article  CAS  Google Scholar 

  85. Liu Y, Li J, Tan YR, Xiong P, Zhong LP. Accuracy of diagnosis of salivary gland tumors with the use of ultrasonography, computed tomography, and magnetic resonance imaging: a meta-analysis. Oral Surg Oral Med Oral Pathol Oral Radiol. 2015;119(2):238–45. https://doi.org/10.1016/j.oooo.2014.10.020.

    Article  PubMed  Google Scholar 

  86. Lee S, Yoon HI, Na JH, Jeon S, Lim S, Koo H, Han SS, Kang SW, Park SJ, Moon SH, Park JH, Cho YW, Kim BS, Kim SK, Lee T, Kim D, Lee S, Pomper MG, Kwon IC, Kim K. In vivo stem cell tracking with imageable nanoparticles that bind bioorthogonal chemical receptors on the stem cell surface. Biomaterials. 2017;139:12–29. https://doi.org/10.1016/j.biomaterials.2017.05.050.

    Article  CAS  PubMed  Google Scholar 

  87. Kundrotas G, Karabanovas V, Pleckaitis M, Juraleviciute M, Steponkiene S, Gudleviciene Z, Rotomskis R. Uptake and distribution of carboxylated quantum dots in human mesenchymal stem cells: cell growing density matters. J Nanobiotechnology. 2019;17(1):1–13. https://doi.org/10.1186/s12951-019-0470-6.

    Article  Google Scholar 

  88. Arranz A, Ripoll J. Advances in optical imaging for pharmacological studies. Front Pharmacol. 2015;6(189):1–7. https://doi.org/10.3389/fphar.2015.00189.

    Article  CAS  Google Scholar 

  89. An Z, Sabalic M, Bloomquist RF, Fowler TE, Streelman T, Sharpe PT. A quiescent cell population replenishes mesenchymal stem cells to drive accelerated growth in mouse incisors. Nat Commun. 2018;9(1):1–9. https://doi.org/10.1038/s41467-017-02785-6.

    Article  CAS  Google Scholar 

  90. Yang B, Qiu Y, Zhou N, Ouyang H, Ding J, Cheng B, Sun J. Application of stem cells in oral disease therapy: progresses and perspectives. Front Physiol. 2017;8(197):1–7. https://doi.org/10.3389/fphys.2017.00197.

    Article  Google Scholar 

  91. Mitsiadis TA, Woloszyk A, Jiménez-Rojo L. Nanodentistry: combining nanostructured materials and stem cells for dental tissue regeneration. Nanomedicine. 2012;7(11):1743–53. https://doi.org/10.2217/nnm.12.146.

    Article  CAS  PubMed  Google Scholar 

  92. Nguyen TT, Mui B, Mehrabzadeh M, Chea Y, Chaudhry Z, Chaudhry K, et al. Regeneration of tissues of the oral complex: current clinical trends and research advances. J Can Dent Assoc. 2013;79:1–9.

    Google Scholar 

  93. Schiraldi C, Stellavato A, D'Agostino A, Tirino V, d'Aquino R, Woloszyk A, et al. Fighting for territories: time-lapse analysis of dental pulp and dental follicle stem cells in co-culture reveals specific migratory capabilities. Eur Cell Mater. 2012;24:426–40. https://doi.org/10.22203/ecm.v024a30.

    Article  CAS  PubMed  Google Scholar 

  94. Zare S, Mehrabani D, Jalli R, Saeedi Moghadam M, Manafi N, Mehrabani G, Jamhiri I, Ahadian S. MRI-tracking of dental pulp stem cells in vitro and in vivo using dextran-coated superparamagnetic iron oxide nanoparticles. J Clin Med. 2019;8(9):1–14. https://doi.org/10.3390/jcm8091418.

    Article  CAS  Google Scholar 

  95. Souron JB, Petiet A, Decup F, Tran XV, Lesieur J, Poliard A, le Guludec D, Letourneur D, Chaussain C, Rouzet F, Opsahl Vital S. Pulp cell tracking by radionuclide imaging for dental tissue engineering. Tissue Eng Part C Methods. 2014;20(3):188–96. https://doi.org/10.1089/ten.TEC.2013.0148.

    Article  CAS  PubMed  Google Scholar 

  96. • Biz MT, Cucco C, Cavalcanti BN. Incorporation of AuNP-PLL nanocomplexes in DPSC: a new tool for 3D analysis in pulp regeneration. Clin Oral Investig. 2020;24(5):1761–7. https://doi.org/10.1007/s00784-019-03037-1 A study demonstrating the usefulness of Gold Nanoparticles in Micro - CT tracking of DPSCs, while maintaining cell viability for pulp regeneration.

    Article  PubMed  Google Scholar 

  97. Qiao Y, Gumin J, MacLellan CJ, Gao F, Bouchard R, Lang FF, et al. Magnetic resonance and photoacoustic imaging of brain tumor mediated by mesenchymal stem cell labeled with multifunctional nanoparticle introduced via carotid artery injection. Nanotechnology. 2018;29(16):165101:1-19. https://doi.org/10.1088/1361-6528/aaaf16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. • Kalimuthu S, Zhu L, Oh JM, Gangadaran P, Lee HW, Baek SH, et al. Migration of mesenchymal stem cells to tumor xenograft models and in vitro drug delivery by doxorubicin. Int J Med Sci. 2018;15(10):1051–61. https://doi.org/10.7150/ijms.25760 A pivotal study which showed that bioluminiscent imaging was useful in illustrating the movement of MSCs to tumour areas in xenograft models as well as a drug delivery system.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Wang L, Lee DJ, Han H, Zhao L, Tsukamoto H, Kim YI, et al. Application of bioluminescence resonance energy transfer-based cell tracking approach in bone tissue engineering. J Tissue Eng. 2021;12:2041731421995465:1-13. https://doi.org/10.1177/2041731421995465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. •• Xu H, Qiu Y, Xiong Z, Shao W, Zhang Q, Tang G. Tracking mesenchymal stem cells with Ir(III) complex-encapsulated nanospheres in cranium defect with postmenopausal osteoporosis. Mater Sci Eng C Mater Biol Appl. 2021;122:111842:1-15. https://doi.org/10.1016/j.msec.2020.111842 A significant study because it demonstrates the ability of HuMSCs to repair cranial defects in postmenopausal osteoporosis, which can lead to studies using craniofacial MSCs for the same purpose.

    Article  CAS  Google Scholar 

  101. Li M, Luo X, Lv X, Liu V, Zhao G, Zhang X, Cao W, Wang R, Wang W. In vivo human adipose-derived mesenchymal stem cell tracking after intra-articular delivery in a rat osteoarthritis model. Stem Cell Res Ther. 2016;7(1):1–13. https://doi.org/10.1186/s13287-016-0420-2.

    Article  CAS  Google Scholar 

  102. Grottkau BE, Purudappa PP, Lin YF. Multilineage differentiation of dental pulp stem cells from green fluorescent protein transgenic mice. Int J Oral Sci. 2010;2(1):21–7. https://doi.org/10.4248/ijos10015.

    Article  PubMed  PubMed Central  Google Scholar 

  103. Xiao L, Tsutsui T. Characterization of human dental pulp cells-derived spheroids in serum-free medium: stem cells in the core. J Cell Biochem. 2013;114(11):2624–36. https://doi.org/10.1002/jcb.24610.

    Article  CAS  PubMed  Google Scholar 

  104. Struys T, Ketkar-Atre A, Gervois P, Leten C, Hilkens P, Martens W, Bronckaers A, Dresselaers T, Politis C, Lambrichts I, Himmelreich U. Magnetic resonance imaging of human dental pulp stem cells in vitro and in vivo. Cell Transplant. 2013;22(10):1813–29. https://doi.org/10.3727/096368912x657774.

    Article  CAS  PubMed  Google Scholar 

  105. Naito E, Kudo D, Sekine S, Watanabe K, Kobatake Y, Tamaoki N, Inden M, Iida K, Ito Y, Hozumi I, Shibata T, Maeda S, Kamishina H. Characterization of canine dental pulp cells and their neuroregenerative potential. In Vitro Cell Dev Biol Anim. 2015;51(10):1012–22. https://doi.org/10.1007/s11626-015-9935-6.

    Article  CAS  PubMed  Google Scholar 

  106. Lei T, Zhang X, Chen P, Li Q, Du H. Proteomic profile of human dental follicle stem cells and apical papilla stem cells. J Proteome. 2021;231(103928):1–8. https://doi.org/10.1016/j.jprot.2020.103928.

    Article  CAS  Google Scholar 

  107. Murphy JM, Fink DJ, Hunziker EB, Barry FP. Stem cell therapy in a caprine model of osteoarthritis. Arthritis Rheum. 2003;48(12):3464–74. https://doi.org/10.1002/art.11365.

    Article  PubMed  Google Scholar 

  108. Fang D, Shang S, Liu Y, Bakkar M, Sumita Y, Seuntjens J, Tran SD. Optimal timing and frequency of bone marrow soup therapy for functional restoration of salivary gland injured by single dose or fractionated irradiation. J Tissue Eng Regen Med. 2017;12:e1195–205. https://doi.org/10.1002/term.2513.

    Article  CAS  PubMed  Google Scholar 

  109. Kwak M, Ghazizadeh S. Analysis of histone H2BGFP retention in mouse submandibular gland reveals actively dividing stem cell populations. Stem Cells Dev. 2015;24(5):565–74. https://doi.org/10.1089/scd.2014.0355.

    Article  CAS  PubMed  Google Scholar 

  110. Kwak M, Ninche N, Klein S, Saur D, Ghazizadeh S. c-Kit(+) cells in adult salivary glands do not function as tissue stem cells. Sci Rep. 2018;8(1):14193:1-11. https://doi.org/10.1038/s41598-018-32557-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Simon D. Tran.

Ethics declarations

This review article does not present any previously unpublished original research, and therefore, ethical approval is not applicable.

Conflict of Interest

Arvind Hariharan, Janaki Iyer, Athena Wang, and Simon Tran declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Regenerative Biology and Medicine in Osteoporosis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hariharan, A., Iyer, J., Wang, A. et al. Tracking of Oral and Craniofacial Stem Cells in Tissue Development, Regeneration, and Diseases. Curr Osteoporos Rep 19, 656–668 (2021). https://doi.org/10.1007/s11914-021-00705-8

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-021-00705-8

Keywords

Navigation