Skip to main content

Advertisement

Log in

Mineral and Bone Disease in Kidney Transplant Recipients

  • Kidney and Bone (I Salusky and T Nickolas, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Despite metabolic improvements following kidney transplantation, transplant recipients still often suffer from complex mineral and bone disease after transplantation.

Recent Findings

The pathophysiology of post-transplant disease is unique, secondary to underlying pre-transplant mineral and bone disease, immunosuppression, and changing kidney function. Changes in modern immunosuppression regimens continue to alter the clinical picture. Modern management includes reducing cumulative steroid exposure and correcting the biochemical abnormalities in mineral metabolism. While bone mineral density screening appears to help predict fracture risk and anti-osteoporotic therapy appears to have a positive effect on bone mineral density, more data regarding specific treatment is necessary.

Summary

Patients with mineral and bone disease after kidney transplantation require special care in order to properly manage and mitigate their mineral and bone disease. Recent changes in clinical management of transplant patients may also be changing the implications on patients’ mineral and bone disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. Kidney Disease Statistics for the United States | NIDDK. 2018.

  2. National Data - OPTN 2018 [Available from: https://optn.transplant.hrsa.gov/data/view-data-reports/national-data/#.

  3. Brandenburg VM, Ketteler M, Fassbender WJ, Heussen N, Freuding T, Floege J, et al. Development of lumbar bone mineral density in the late course after kidney transplantation. Am J Kidney Dis. 2002;40(5):1066–74.

    PubMed  Google Scholar 

  4. Nikkel LE, Hollenbeak CS, Fox EJ, Uemura T, Ghahramani N. Risk of fractures after renal transplantation in the United States. Transplantation. 2009;87(12):1846–51.

    PubMed  Google Scholar 

  5. Ball AM, Gillen DL, Sherrard D, Weiss NS, Emerson SS, Seliger SL, et al. Risk of hip fracture among dialysis and renal transplant recipients. JAMA. 2002;288(23):3014–8.

    PubMed  Google Scholar 

  6. Naylor KL, Li AH, Lam NN, Hodsman AB, Jamal SA, Garg AX. Fracture risk in kidney transplant recipients: a systematic review. Transplantation. 2013;95(12):1461–70.

    PubMed  Google Scholar 

  7. Abbott KC, Oglesby RJ, Hypolite IO, Kirk AD, Ko CW, Welch PG, et al. Hospitalizations for fractures after renal transplantation in the United States. Ann Epidemiol. 2001;11(7):450–7.

    CAS  PubMed  Google Scholar 

  8. Ramezani M, Einollahi B, Asl MA, Nafar M, Pourfarziani V, Moradi M, et al. Calcium and phosphorus metabolism disturbances after renal transplantation. Transplant Proc. 2007;39(4):1033–5.

    CAS  PubMed  Google Scholar 

  9. Straffen AM, Carmichael DJ, Fairney A, Hulme B, Snell M. Calcium metabolism following renal transplantation. Ann Clin Biochem. 1994;31(Pt 2):125–8.

    PubMed  Google Scholar 

  10. Alshayeb HM, Josephson MA, Sprague SM. CKD-mineral and bone disorder management in kidney transplant recipients. Am J Kidney Dis. 2013;61(2):310–25.

    CAS  PubMed  Google Scholar 

  11. Sprague SM, Belozeroff V, Danese MD, Martin LP, Olgaard K. Abnormal bone and mineral metabolism in kidney transplant patients--a review. Am J Nephrol. 2008;28(2):246–53.

    CAS  PubMed  Google Scholar 

  12. Baia LC, Heilberg IP, Navis G, de Borst MH, NIGRAM investigators. Phosphate and FGF-23 homeostasis after kidney transplantation. Nat Rev Nephrol. 2015;11(11):656–66.

    CAS  PubMed  Google Scholar 

  13. Saha HH, Salmela KT, Ahonen PJ, Pietilä KO, Mörsky PJ, Mustonen JT, et al. Sequential changes in vitamin D and calcium metabolism after successful renal transplantation. Scand J Urol Nephrol. 1994;28(1):21–7.

    CAS  PubMed  Google Scholar 

  14. de Sévaux RG, Hoitsma AJ, van Hoof HJ, Corstens FJ, Wetzels JF. Abnormal vitamin D metabolism and loss of bone mass after renal transplantation. Nephron Clin Pract. 2003;93(1):C21–8.

    PubMed  Google Scholar 

  15. Huang M, Sprague SM. Bone disease in kidney transplant patients. Semin Nephrol. 2009;29(2):166–73.

    CAS  PubMed  Google Scholar 

  16. Evenepoel P, Naesens M, Claes K, Kuypers D, Vanrenterghem Y. Tertiary 'hyperphosphatoninism' accentuates hypophosphatemia and suppresses calcitriol levels in renal transplant recipients. Am J Transplant. 2007;7(5):1193–200.

    CAS  PubMed  Google Scholar 

  17. Rojas E, Carlini RG, Clesca P, Arminio A, Suniaga O, De Elguezabal K, et al. The pathogenesis of osteodystrophy after renal transplantation as detected by early alterations in bone remodeling. Kidney Int. 2003;63(5):1915–23.

    PubMed  Google Scholar 

  18. Lou I, Foley D, Odorico SK, Leverson G, Schneider DF, Sippel R, et al. How well does renal transplantation cure hyperparathyroidism? Ann Surg. 2015;262(4):653–9.

    PubMed  PubMed Central  Google Scholar 

  19. Rodriguez M, Nemeth E, Martin D. The calcium-sensing receptor: a key factor in the pathogenesis of secondary hyperparathyroidism. Am J Physiol Ren Physiol. 2005;288(2):F253–64.

    CAS  Google Scholar 

  20. Prakobsuk S, Sirilak S, Vipattawat K, Taweesedt PT, Sumethkul V, Kantachuvesiri S, et al. Hyperparathyroidism and increased fractional excretion of phosphate predict allograft loss in long-term kidney transplant recipients. Clin Exp Nephrol. 2017;21(5):926–31.

    CAS  PubMed  Google Scholar 

  21. Pande S, Ritter CS, Rothstein M, Wiesen K, Vassiliadis J, Kumar R, et al. FGF-23 and sFRP-4 in chronic kidney disease and post-renal transplantation. Nephron Physiol. 2006;104(1):p23–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Economidou D, Dovas S, Papagianni A, Pateinakis P, Memmos D. FGF-23 levels before and after renal transplantation. J Transp Secur. 2009;2009:379082.

    Google Scholar 

  23. Evenepoel P. Recovery versus persistence of disordered mineral metabolism in kidney transplant recipients. Semin Nephrol. 2013;33(2):191–203.

    CAS  PubMed  Google Scholar 

  24. Kawarazaki H, Shibagaki Y, Fukumoto S, Kido R, Ando K, Nakajima I, et al. Natural history of mineral and bone disorders after living-donor kidney transplantation: a one-year prospective observational study. Ther Apher Dial. 2011;15(5):481–7.

    CAS  PubMed  Google Scholar 

  25. •• Wolf M, Weir MR, Kopyt N, Mannon RB, Von Visger J, Deng H, et al. A Prospective Cohort Study of Mineral Metabolism After Kidney Transplantation. Transplantation. 2016;100(1):184–93 Prospective multi-center study describing changes in mineral metabolism following transplantation. Observed that hypophosphatemia and hypercalcemia occurred and decreases in FGF23 occurred early post transplantation, while persistent hyperparathyroidism is common 1 year post transplantation.

    CAS  PubMed  Google Scholar 

  26. Eskandari Naji H, Ghorbanihaghjo A, Argani H, Raeisi S, Safa J, Alirezaei AH, et al. Serum sTWEAK and FGF-23 levels in hemodialysis and renal transplant patients. Int J Organ Transplant Med. 2017;8(2):110–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Filler G, Liu D, Sharma AP, Grimmer J. Are fibroblast growth factor 23 concentrations in renal transplant patients different from non-transplanted chronic kidney disease patients? Pediatr Transplant. 2012;16(1):73–7.

    CAS  PubMed  Google Scholar 

  28. Wesseling-Perry K, Tsai EW, Ettenger RB, Jüppner H, Salusky IB. Mineral abnormalities and long-term graft function in pediatric renal transplant recipients: a role for FGF-23? Nephrol Dial Transplant. 2011;26(11):3779–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Wolf M, Molnar MZ, Amaral AP, Czira ME, Rudas A, Ujszaszi A, et al. Elevated fibroblast growth factor 23 is a risk factor for kidney transplant loss and mortality. J Am Soc Nephrol. 2011;22(5):956–66.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bonani M, Rodriguez D, Fehr T, Mohebbi N, Brockmann J, Blum M, et al. Sclerostin blood levels before and after kidney transplantation. Kidney Blood Press Res. 2014;39(4):230–9.

    CAS  PubMed  Google Scholar 

  31. Tartaglione L, Pasquali M, Rotondi S, Muci ML, Leonangeli C, Farcomeni A, et al. Interactions of sclerostin with FGF23, soluble klotho and vitamin D in renal transplantation. PLoS One. 2017;12(5):e0178637.

    PubMed  PubMed Central  Google Scholar 

  32. Lane NE, Lukert B. The science and therapy of glucocorticoid-induced bone loss. Endocrinol Metab Clin N Am. 1998;27(2):465–83.

    CAS  Google Scholar 

  33. Zhang R, Chouhan KK. Metabolic bone diseases in kidney transplant recipients. World J Nephrol. 2012;1(5):127–33.

    PubMed  PubMed Central  Google Scholar 

  34. Ing SW, Sinnott LT, Donepudi S, Davies EA, Pelletier RP, Lane NE. Change in bone mineral density at one year following glucocorticoid withdrawal in kidney transplant recipients. Clin Transpl. 2011;25(2):E113–23.

    CAS  Google Scholar 

  35. Weinstein RS, Jilka RL, Parfitt AM, Manolagas SC. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest. 1998;102(2):274–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Wolpaw T, Deal CL, Fleming-Brooks S, Bartucci MR, Schulak JA, Hricik DE. Factors influencing vertebral bone density after renal transplantation. Transplantation. 1994;58(11):1186–9.

    CAS  PubMed  Google Scholar 

  37. Julian BA, Laskow DA, Dubovsky J, Dubovsky EV, Curtis JJ, Quarles LD. Rapid loss of vertebral mineral density after renal transplantation. N Engl J Med. 1991;325(8):544–50.

    CAS  PubMed  Google Scholar 

  38. Gregorini M, Sileno G, Pattonieri EF, Corradetti V, Abelli M, Ticozzelli E, et al. Understanding bone damage after kidney transplantation: a retrospective monocentric cross sectional analysis. Transplant Proc. 2017;49(4):650–7.

    CAS  PubMed  Google Scholar 

  39. Edwards BJ, Desai A, Tsai J, Du H, Edwards GR, Bunta AD, et al. Elevated incidence of fractures in solid-organ transplant recipients on glucocorticoid-sparing immunosuppressive regimens. J Osteoporos. 2011;591793:2011.

    Google Scholar 

  40. Perrin P, Kiener C, Javier RM, Braun L, Cognard N, Gautier-Vargas G, et al. Recent changes in chronic kidney disease-mineral and bone disorders and associated fractures after kidney transplantation. Transplantation. 2017;101(8):1897–905.

    PubMed  Google Scholar 

  41. Nikkel LE, Mohan S, Zhang A, McMahon DJ, Boutroy S, Dube G, et al. Reduced fracture risk with early corticosteroid withdrawal after kidney transplant. Am J Transplant. 2012;12(3):649–59.

    CAS  PubMed  Google Scholar 

  42. Bouquegneau A, Salam S, Delanaye P, Eastell R, Khwaja A. Bone disease after kidney transplantation. Clin J Am Soc Nephrol. 2016;11(7):1282–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Iyer SP, Nikkel LE, Nishiyama KK, Dworakowski E, Cremers S, Zhang C, et al. Kidney transplantation with early corticosteroid withdrawal: paradoxical effects at the central and peripheral skeleton. J Am Soc Nephrol. 2014;25(6):1331–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Epstein S. Post-transplantation bone disease: the role of immunosuppressive agents and the skeleton. J Bone Miner Res. 1996;11(1):1–7.

    CAS  PubMed  Google Scholar 

  45. Maalouf NM, Shane E. Osteoporosis after solid organ transplantation. J Clin Endocrinol Metab. 2005;90(4):2456–65.

    CAS  PubMed  Google Scholar 

  46. Chen J, Long F. mTOR signaling in skeletal development and disease. Bone Res. 2018;6:1.

    PubMed  PubMed Central  Google Scholar 

  47. Hadji P, Coleman R, Gnant M. Bone effects of mammalian target of rapamycin (mTOR) inhibition with everolimus. Crit Rev Oncol Hematol. 2013;87(2):101–11.

    PubMed  Google Scholar 

  48. Vandyke K, Dewar AL, Diamond P, Fitter S, Schultz CG, Sims NA, et al. The tyrosine kinase inhibitor dasatinib dysregulates bone remodeling through inhibition of osteoclasts in vivo. J Bone Miner Res. 2010;25(8):1759–70.

    CAS  PubMed  Google Scholar 

  49. Mogi M, Kondo A. Down-regulation of mTOR leads to up-regulation of osteoprotegerin in bone marrow cells. Biochem Biophys Res Commun. 2009;384(1):82–6.

    CAS  PubMed  Google Scholar 

  50. Glantschnig H, Fisher JE, Wesolowski G, Rodan GA, Reszka AA. M-CSF, TNFalpha and RANK ligand promote osteoclast survival by signaling through mTOR/S6 kinase. Cell Death Differ. 2003;10(10):1165–77.

    CAS  PubMed  Google Scholar 

  51. Kneissel M, Luong-Nguyen NH, Baptist M, Cortesi R, Zumstein-Mecker S, Kossida S, et al. Everolimus suppresses cancellous bone loss, bone resorption, and cathepsin K expression by osteoclasts. Bone. 2004;35(5):1144–56.

    CAS  PubMed  Google Scholar 

  52. Dissanayake IR, Goodman GR, Bowman AR, Ma Y, Pun S, Jee WS, et al. Mycophenolate mofetil: a promising new immunosuppressant that does not cause bone loss in the rat. Transplantation. 1998;65(2):275–8.

    CAS  PubMed  Google Scholar 

  53. Joffe I, Katz I, Sehgal S, Bex F, Kharode Y, Tamasi J, et al. Lack of change of cancellous bone volume with short-term use of the new immunosuppressant rapamycin in rats. Calcif Tissue Int. 1993;53(1):45–52.

    CAS  PubMed  Google Scholar 

  54. Bryer HP, Isserow JA, Armstrong EC, Mann GN, Rucinski B, Buchinsky FJ, et al. Azathioprine alone is bone sparing and does not alter cyclosporin A-induced osteopenia in the rat. J Bone Miner Res. 1995;10(1):132–8.

    CAS  PubMed  Google Scholar 

  55. Lehmann G, Ott U, Stein G, Steiner T, Wolf G. Renal osteodystrophy after successful renal transplantation: a histomorphometric analysis in 57 patients. Transplant Proc. 2007;39(10):3153–8.

    CAS  PubMed  Google Scholar 

  56. Evenepoel P, Behets GJ, Viaene L, D'Haese PC. Bone histomorphometry in de novo renal transplant recipients indicates a further decline in bone resorption 1 year posttransplantation. Kidney Int. 2017;91(2):469–76.

    PubMed  Google Scholar 

  57. Cueto-Manzano AM, Konel S, Hutchison AJ, Crowley V, France MW, Freemont AJ, et al. Bone loss in long-term renal transplantation: histopathology and densitometry analysis. Kidney Int. 1999;55(5):2021–9.

    CAS  PubMed  Google Scholar 

  58. Velasquez-Forero F, Mondragón A, Herrero B, Peña JC. Adynamic bone lesion in renal transplant recipients with normal renal function. Nephrol Dial Transplant. 1996;11(Suppl 3):58–64.

    PubMed  Google Scholar 

  59. Carlini RG, Rojas E, Arminio A, Weisinger JR, Bellorin-Font E. What are the bone lesions in patients with more than four years of a functioning renal transplant? Nephrol Dial Transplant. 1998;13(Suppl 3):103–4.

    PubMed  Google Scholar 

  60. Borchhardt K, Sulzbacher I, Benesch T, Födinger M, Sunder-Plassmann G, Haas M. Low-turnover bone disease in hypercalcemic hyperparathyroidism after kidney transplantation. Am J Transplant. 2007;7(11):2515–21.

    CAS  PubMed  Google Scholar 

  61. Naylor KL, Jamal SA, Zou G, McArthur E, Lam NN, Leslie WD, et al. Fracture incidence in adult kidney transplant recipients. Transplantation. 2016;100(1):167–75.

    CAS  PubMed  Google Scholar 

  62. Nair SS, Lenihan CR, Montez-Rath ME, Lowenberg DW, Chertow GM, Winkelmayer WC. Temporal trends in the incidence, treatment and outcomes of hip fracture after first kidney transplantation in the United States. Am J Transplant. 2014;14(4):943–51.

    PubMed  PubMed Central  Google Scholar 

  63. Naylor KL, Zou G, Leslie WD, Hodsman AB, Lam NN, McArthur E, et al. Risk factors for fracture in adult kidney transplant recipients. World J Transplant. 2016;6(2):370–9.

    PubMed  PubMed Central  Google Scholar 

  64. Ferro CJ, Arnold J, Bagnall D, Ray D, Sharif A. Fracture risk and mortality post-kidney transplantation. Clin Transpl. 2015;29(11):1004–12.

    Google Scholar 

  65. Leslie WD, Lix LM, Langsetmo L, Berger C, Goltzman D, Hanley DA, et al. Construction of a FRAX® model for the assessment of fracture probability in Canada and implications for treatment. Osteoporos Int. 2011;22(3):817–27.

    CAS  PubMed  Google Scholar 

  66. Kanis JA, Oden A, Johnell O, Johansson H, De Laet C, Brown J, et al. The use of clinical risk factors enhances the performance of BMD in the prediction of hip and osteoporotic fractures in men and women. Osteoporos Int. 2007;18(8):1033–46.

    CAS  PubMed  Google Scholar 

  67. Naylor KL, Leslie WD, Hodsman AB, Rush DN, Garg AX. FRAX predicts fracture risk in kidney transplant recipients. Transplantation. 2014;97(9):940–5.

    CAS  PubMed  Google Scholar 

  68. Group KDIGOW. KDIGO 2017 clinical practice guideline update for the diagnosis, evaluation, prevention and treatment of chronic kidney disease- mineral and bone disorder (CKD-MBD). Kidney Int Suppl. 2017;7(1):1–59.

    Google Scholar 

  69. Akaberi S, Simonsen O, Lindergård B, Nyberg G. Can DXA predict fractures in renal transplant patients? Am J Transplant. 2008;8(12):2647–51.

    CAS  PubMed  Google Scholar 

  70. McGregor R, Li G, Penny H, Lombardi G, Afzali B, Goldsmith DJ. Vitamin D in renal transplantation - from biological mechanisms to clinical benefits. Am J Transplant. 2014;14(6):1259–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Nickolas TL, Stein EM, Dworakowski E, Nishiyama KK, Komandah-Kosseh M, Zhang CA, et al. Rapid cortical bone loss in patients with chronic kidney disease. J Bone Miner Res. 2013;28(8):1811–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Nickolas TL, Stein E, Cohen A, Thomas V, Staron RB, McMahon DJ, et al. Bone mass and microarchitecture in CKD patients with fracture. J Am Soc Nephrol. 2010;21(8):1371–80.

    PubMed  PubMed Central  Google Scholar 

  73. Nickolas TL, Cremers S, Zhang A, Thomas V, Stein E, Cohen A, et al. Discriminants of prevalent fractures in chronic kidney disease. J Am Soc Nephrol. 2011;22(8):1560–72.

    PubMed  PubMed Central  Google Scholar 

  74. Josephson MA, Schumm LP, Chiu MY, Marshall C, Thistlethwaite JR, Sprague SM. Calcium and calcitriol prophylaxis attenuates posttransplant bone loss. Transplantation. 2004;78(8):1233–6.

    CAS  PubMed  Google Scholar 

  75. Cianciolo G, Galassi A, Capelli I, Angelini ML, La Manna G, Cozzolino M. Vitamin D in kidney transplant recipients: mechanisms and therapy. Am J Nephrol. 2016;43(6):397–407.

    CAS  PubMed  Google Scholar 

  76. Alshayeb HM, Sprague SM, Josephson MA. Management of transplantation renal bone disease: interplay of bone mineral density and decisions regarding bisphosphonate use. In: Weir MR, Lerma EV, editors. Kidney transplantation: a practical guide to medical management. New York. New York: Springer; 2014.

    Google Scholar 

  77. Žilinská Z, Dedinská I, Breza J, Laca L. Effect of Paricalcitol on bone density after kidney transplantation: analysis of 2 transplant centers. Iran J Kidney Dis. 2017;11(6):461–6.

    PubMed  Google Scholar 

  78. Trillini M, Cortinovis M, Ruggenenti P, Reyes Loaeza J, Courville K, Ferrer-Siles C, et al. Paricalcitol for secondary hyperparathyroidism in renal transplantation. J Am Soc Nephrol. 2015;26(5):1205–14.

    CAS  PubMed  Google Scholar 

  79. Cruzado JM, Lauzurica R, Pascual J, Marcen R, Moreso F, Gutierrez-Dalmau A, et al. Paricalcitol versus Calcifediol for treating hyperparathyroidism in kidney transplant recipients. Kidney Int Rep. 2018;3(1):122–32.

    PubMed  Google Scholar 

  80. Amer H, Griffin MD, Stegall MD, Cosio FG, Park WD, Kremers WK, et al. Oral paricalcitol reduces the prevalence of posttransplant hyperparathyroidism: results of an open label randomized trial. Am J Transplant. 2013;13(6):1576–85.

    CAS  PubMed  Google Scholar 

  81. Steiner RW, Ziegler M, Halasz NA, Catherwood BD, Manolagas S, Deftos LJ. Effect of daily oral vitamin D and calcium therapy, hypophosphatemia, and endogenous 1-25 dihydroxycholecalciferol on parathyroid hormone and phosphate wasting in renal transplant recipients. Transplantation. 1993;56(4):843–6.

    CAS  PubMed  Google Scholar 

  82. Lobo PI, Cortez MS, Stevenson W, Pruett TL. Normocalcemic hyperparathyroidism associated with relatively low 1:25 vitamin D levels post-renal transplant can be successfully treated with oral calcitriol. Clin Transpl. 1995;9(4):277–81.

    CAS  Google Scholar 

  83. Zavvos V, Fyssa L, Papasotiriou M, Papachristou E, Ntrinias T, Savvidaki E, et al. Long-term use of Cinacalcet in kidney transplant recipients with hypercalcemic secondary hyperparathyroidism: a single-center prospective study. Exp Clin Transplant. 2018;16(3):287–93.

    PubMed  Google Scholar 

  84. Cohen JB, Gordon CE, Balk EM, Francis JM. Cinacalcet for the treatment of hyperparathyroidism in kidney transplant recipients: a systematic review and meta-analysis. Transplantation. 2012;94(10):1041–8.

    CAS  PubMed  Google Scholar 

  85. Evenepoel P, Cooper K, Holdaas H, Messa P, Mourad G, Olgaard K, et al. A randomized study evaluating cinacalcet to treat hypercalcemia in renal transplant recipients with persistent hyperparathyroidism. Am J Transplant. 2014;14(11):2545–55.

    CAS  PubMed  Google Scholar 

  86. Borchhardt KA, Diarra D, Sulzbacher I, Benesch T, Haas M, Sunder-Plassmann G. Cinacalcet decreases bone formation rate in hypercalcemic hyperparathyroidism after kidney transplantation. Am J Nephrol. 2010;31(6):482–9.

    PubMed  Google Scholar 

  87. Cejka D, Kodras K, Bader T, Haas M. Treatment of hemodialysis-associated Adynamic bone disease with Teriparatide (PTH1-34): a pilot study. Kidney Blood Press Res. 2010;33(3):221–6.

    CAS  PubMed  Google Scholar 

  88. Nogueira EL, Costa AC, Santana A, Guerra JO, Silva S, Mil-Homens C, et al. Teriparatide efficacy in the treatment of severe hypocalcemia after kidney transplantation in parathyroidectomized patients: a series of five case reports. Transplantation. 2011;92(3):316–20.

    CAS  PubMed  Google Scholar 

  89. Hod T, Riella LV, Chandraker A. Recombinant PTH therapy for severe hypoparathyroidism after kidney transplantation in pre-transplant parathyroidectomized patients: review of the literature and a case report. Clin Transpl. 2015;29(11):951–7.

    Google Scholar 

  90. Cejka D, Benesch T, Krestan C, Roschger P, Klaushofer K, Pietschmann P, et al. Effect of teriparatide on early bone loss after kidney transplantation. Am J Transplant. 2008;8(9):1864–70.

    CAS  PubMed  Google Scholar 

  91. Rodan GA, Fleisch HA. Bisphosphonates: mechanisms of action. J Clin Invest. 1996;97(12):2692–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  92. Colucci S, Minielli V, Zambonin G, Cirulli N, Mori G, Serra M, et al. Alendronate reduces adhesion of human osteoclast-like cells to bone and bone protein-coated surfaces. Calcif Tissue Int. 1998;63(3):230–5.

    CAS  PubMed  Google Scholar 

  93. Kan SL, Ning GZ, Chen LX, Zhou Y, Sun JC, Feng SQ. Efficacy and safety of bisphosphonates for low bone mineral density after kidney transplantation: a meta-analysis. Medicine (Baltimore). 2016;95(5):e2679.

    CAS  Google Scholar 

  94. Palmer SC, Strippoli GF, McGregor DO. Interventions for preventing bone disease in kidney transplant recipients: a systematic review of randomized controlled trials. Am J Kidney Dis. 2005;45(4):638–49.

    PubMed  Google Scholar 

  95. Jamal SA, Ljunggren O, Stehman-Breen C, Cummings SR, McClung MR, Goemaere S, et al. Effects of denosumab on fracture and bone mineral density by level of kidney function. J Bone Miner Res. 2011;26(8):1829–35.

    CAS  PubMed  Google Scholar 

  96. •• Bonani M, Frey D, Brockmann J, Fehr T, Mueller TF, Saleh L, et al. Effect of Twice-Yearly Denosumab on Prevention of Bone Mineral Density Loss in De Novo Kidney Transplant Recipients: A Randomized Controlled Trial. Am J Transplant. 2016;16(6):1882–91 Preliminary prospective open label study which evaluated the feasability of denosumab to prevent bone loss post transplantation. Demonstrated that denosumab was safe and appeared effective, further prospective studies should be performed to assess its role in post transplant bone loss and fractures.

    CAS  PubMed  Google Scholar 

  97. Brunova J, Kratochvilova S, Stepankova J. Osteoporosis therapy with Denosumab in organ transplant recipients. Front Endocrinol (Lausanne). 2018;9:162.

    Google Scholar 

  98. Evenepoel P, Claes K, Kuypers DR, Debruyne F, Vanrenterghem Y. Parathyroidectomy after successful kidney transplantation: a single Centre study. Nephrol Dial Transplant. 2007;22(6):1730–7.

    PubMed  Google Scholar 

  99. Drakopoulos S, Koukoulaki M, Apostolou T, Pistolas D, Balaska K, Gavriil S, et al. Total parathyroidectomy without autotransplantation in dialysis patients and renal transplant recipients, long-term follow-up evaluation. Am J Surg. 2009;198(2):178–83.

    PubMed  Google Scholar 

  100. Dulfer RR, Franssen GJH, Hesselink DA, Hoorn EJ, van Eijck CHJ, van Ginhoven TM. Systematic review of surgical and medical treatment for tertiary hyperparathyroidism. Br J Surg. 2017;104(7):804–13.

    CAS  PubMed  Google Scholar 

  101. Puccini M, Ceccarelli C, Meniconi O, Zullo C, Prosperi V, Miccoli M, et al. Near total parathyroidectomy for the treatment of renal hyperparathyroidism. Gland Surg. 2017;6(6):638–43.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart M. Sprague.

Ethics declarations

Conflict of Interest

Stuart Sprague reports grants and personal fees from Amgen, outside the submitted work.

Ariella M. Altman declares no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Kidney and Bone

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altman, A.M., Sprague, S.M. Mineral and Bone Disease in Kidney Transplant Recipients. Curr Osteoporos Rep 16, 703–711 (2018). https://doi.org/10.1007/s11914-018-0490-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-018-0490-4

Keywords

Navigation