Skip to main content

Advertisement

Log in

Mineral and bone disorders in kidney transplant recipients: reversible, irreversible, and de novo abnormalities

  • Review Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Given the advances in medical technologies related to kidney transplantation, the post-transplant graft survival rate and quality of life have improved dramatically. Nevertheless, post-transplant mortality rate still remains high as compared to the general population due to the development of cardiovascular events. It has recently been widely recognized that chronic kidney disease-mineral and bone disorders (CKD-MBD) significantly contribute to such poor prognosis at least in part. In the majority of kidney recipients, abnormal serum parameters for mineral and bone disorder (MBD), such as phosphorus, calcium, 1,25-dihydroxyvitamin D, parathyroid hormone and fibroblast growth factor 23, gradually return toward acceptable levels following the re-establishment of kidney function after transplantation; however, some irreversible abnormalities, developed as the result of long-term dialysis, persist, require treatment, or even progress after kidney transplantation. Thus, better management of CKD-MBD during pre-dialysis and dialysis period as well as after kidney transplantation is highly appreciated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. KDIGO Clinical Practice Guideline for the Diagnosis. Evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int. 2009;76(Suppl. 113):S1–130.

    Google Scholar 

  2. Fukagwa M, Yokoyama K, Koiwa F, et al. Clinical practice guideline for the management of chronic kidney disease-mineral and bone disorders. Ther Apher Dial. 2013;17:247–88.

    Article  Google Scholar 

  3. Ben-Dov IZ, Galitzer H, Lavi-Moshayoff V, et al. The parathyroid is a target organ for FGF23 in rats. J Clin Invest. 2007;117:4003–8.

    PubMed Central  CAS  PubMed  Google Scholar 

  4. Isakova T, Wahl P, Vargas GS, et al. Fibroblast growth factor 23 is elevated before parathyroid hormone and phosphate in chronic kidney disease. Kidney Int. 2011;79:1370–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Ryan ZC, Ketha H, McNulty MS, et al. Sclerostin alters serum vitamin D metabolite and fibroblast growth factor 23 concentrations and the urinary excretion of calcium. Proc Natl Acad Sci USA. 2013;110:6199–204.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Cejka D, Herberth J, Branscum AJ, et al. Sclerostin and dickkopf-1 in renal osteodystrophy. Clin J Am Soc Nephrol. 2011;6:877–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Li X, Warmington KS, Niu QT, et al. Inhibition of sclerostin by monoclonal antibody increases bone formation, bone mass, and bone strength in aged male rats. J Bone Miner Res. 2010;25:2647–56.

    Article  PubMed  Google Scholar 

  8. Padhi D, Jang G, Stouch B, et al. Single-dose, placebo-controlled, randomized study of AMG 785, a sclerostin monoclonal antibody. J Bone Miner Res. 2011;26:19–26.

    Article  CAS  PubMed  Google Scholar 

  9. Tominaga Y, Tanaka Y, Sato K, et al. Histopathology, pathophysiology, and indications for surgical treatment of renal hyperparathyroidism. Semin Surg Oncol. 1997;13:78–86.

    Article  CAS  PubMed  Google Scholar 

  10. Sprague SM, Belozeroff V, Danese MD, et al. Abnormal bone and mineral metabolism in kidney transplant patients—a review. Am J Nephrol. 2008;28:246–53.

    Article  CAS  PubMed  Google Scholar 

  11. Copley JB, Wuthrich RP. Therapeutic management of post kidney transplant hyperparathyroidism. Clin Transplant. 2011;25:24–39.

    Article  CAS  PubMed  Google Scholar 

  12. Saha HH, Salmela KT, Ahonen PJ, et al. Sequential changes in vitamin D and calcium metabolism after successful renal transplantation. Scand J Urol Nephrol. 1994;28:21–7.

    Article  CAS  PubMed  Google Scholar 

  13. Casez JP, Lippuner K, Horber FF, et al. Changes in bone mineral density over 18 months following kidney transplantation: the respective roles of prednisone and parathyroid hormone. Nephrol Dial Transplant. 2002;17:1318–26.

    Article  CAS  PubMed  Google Scholar 

  14. Amanzadeh J, Reilly RF Jr. Hypophosphatemia: an evidence-based approach to its clinical consequences and management. Nat Clin Protect Nephrol. 2006;2:136–48.

    Article  CAS  Google Scholar 

  15. Torres A, Lorenzo V, Salido E. Calcium metabolism and skeletal problems after transplantation. J Am Soc Nephrol. 2002;13:551–8.

    PubMed  Google Scholar 

  16. Bhan I, Shah A, Holmes J, et al. Post-transplant hypophosphatemia: tertiary ‘hyper-phosphatonism’? Kidney Int. 2006;70:1486–96.

    Article  CAS  PubMed  Google Scholar 

  17. Kawarazaki Hiroo, Shibagaki Yugo, Fukumoto Seiji, et al. Natural history of mineral and bone disorders after living-donor kidney transplantation: a one-year prospective observational study. Ther Apher Dial. 2011;15:481–7.

    Article  CAS  PubMed  Google Scholar 

  18. Evenepoel P, Claes K, Kuypers D, et al. Natural history of parathyroid function and calcium metabolism after kidney transplantation: a single-centre study. Nephrol Dial Transplant. 2004;19:1281–7.

    Article  CAS  PubMed  Google Scholar 

  19. Cundy T, Kanis JA, Heynen G, et al. Calcium metabolism and hyperparathyroidism after renal transplantation. Q J Med. 1983;52:67.

    CAS  PubMed  Google Scholar 

  20. Roe SD, Porter CJ, Godber IM, et al. Reduced bone mineral density in male renal transplant recipients: evidence for persisting hyperparathyroidism. Osteoporos Int. 2005;16:142.

    Article  PubMed  Google Scholar 

  21. Iwasaki Y, Yamato H, Nii-Kono T, et al. Insufficiency of PTH action of bone in uremia. Kidney Int. 2006;70:S34.

    Article  Google Scholar 

  22. Evenepoel P, Naesens M, Claes K, et al. Tertiary ‘hyperphosphatoninism’ accentuates hypophosphatemia and suppresses calcitriol levels in renal transplant recipients. Am J Transplant. 2007;7:1193–2000.

    Article  CAS  PubMed  Google Scholar 

  23. de Sevaux RG, Hoitsma AJ, van Hoof HJ, et al. Abnormal vitamin D metabolism and loss of bone mass after renal transplantation. Nephron Clin Pract. 2003;93:C21–8.

    Article  PubMed  Google Scholar 

  24. Bagni B, Gilli P, Cavallini A, et al. Continuing loss of vertebral mineral density in renal transplant recipients. Eur J Nucl Med. 1994;21:108–12.

    Article  CAS  PubMed  Google Scholar 

  25. Taniguchi M, Tokumoto M, Matsuo D, et al. Persistent hyperparathyroidism in renal allograft recipients:vitamin D receptor, calcium-sensing receptor, and apoptosis. Kidney Int. 2006;70:363–70.

    Article  CAS  PubMed  Google Scholar 

  26. Komaba H, Koizumi M, Fukagawa M. Parathyroid resistance to FGF23 in kidney transplant recipients: back to the past or ahead to the future? Kidney Int. 2010;78:953–5.

    Article  CAS  PubMed  Google Scholar 

  27. Nakamura M, Tanaka K, Marui Y, et al. Clinicopathological analysis of persistent hypercalcemia and hyperparathyroidism after kidney transplantation in long-term dialysis patients. Ther Apher Dial. 2013;17:551–6.

    CAS  PubMed  Google Scholar 

  28. Evenepoel P. Recovery versus persistence of disordered mineral metabolism in kidney transplant recipients. Semin Nephrol. 2013;33:191–203.

    Article  CAS  PubMed  Google Scholar 

  29. Takayanagi H, Kim S, Koga T, et al. Induction and activation of the transcription factor NFATc1(NFAT2) integrate RANKL signaling in terminal differentiation of osteoclasts. Dev Cell. 2002;2:889–901.

    Article  Google Scholar 

  30. Yeo H, Beck LH, McDonald JM, et al. Cyclosporin a elicits dose-dependent biphasic effects on osteoblast differentiation and bone formation. Bone. 2007;40:1502–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Aroldi A, Tarantino A, Montagnino G, et al. Effects of three immunosuppressive regimens on vertebral bone density in renal transplant recipients: a prospective study. Transplant. 1997;63:380–6.

    Article  CAS  Google Scholar 

  32. Singha UK, Jiang Y, Yu S, et al. Rapamycin inhibits osteoblast proliferation and differentiation in MC3T3-E1 cells and primary mouse bone marrow stromal cells. J Cell Biochem. 2008;103:434–46.

    Article  CAS  PubMed  Google Scholar 

  33. Canalis E, Delany AM. Mechanisms of glucocorticoid action in bone. Ann N Y Acad Sci. 2002;966:73–81.

    Article  CAS  PubMed  Google Scholar 

  34. Kunzendorf U, Kramer BK, Arns W, et al. Bone disease after renal transplantation. Nephrol Dial Transplant. 2008;23:450–8.

    Article  PubMed  Google Scholar 

  35. Hahn TJ, Halstead LR, Baran DT, et al. Effects off short term glucocorticoid administration on interstitial calcium absorption and circulating vitamin D metabolite concentrations in man. J Clin Endocrinol Metab. 1981;52:111–5.

    Article  CAS  PubMed  Google Scholar 

  36. Nikkel EL, Mohan S, Zhang A, et al. Reduced fracture risk with early corticosteroid withdrawal after kidney transplant. Am J Transplant. 2012;12:649–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Lehman G, Ott U, Stein G, et al. Renal osteodystrophy after successful renal transplantation: a histomorphometric analysis in 57 patients. Transplant Proc. 2007;39:3153–8.

    Article  Google Scholar 

  38. Monier-Faugere MC, Mawad H, Qi Q, et al. High prevalence of low bone turnover and occurrence of osteomalacia after kidney transplantation. J Am Soc Nephrol. 2000;11:1093–9.

    CAS  PubMed  Google Scholar 

  39. Weisinger JR, Carlini RG, Rojas E, et al. Bone disease after renal transplantation. Clin J Am Nephrol. 2006;6:1300–13.

    Article  Google Scholar 

  40. Zhang R, Chouhan KK, et al. Metabolic bone diseases in kidney transplant recipients. World J Nephrol. 2012;6:127–33.

    Article  CAS  Google Scholar 

  41. Brandenburg VM, Politt D, Ketteler M, et al. Early rapid loss followed by long-term consolidation characterizes the development of lumbar bone mineral density after kidney transplantation. Transplant. 2004;77:1566–71.

    Article  Google Scholar 

  42. Zisman AL, Sprague SM, et al. Bone disease after kidney transplantation. Adv Chronic Kidney Dis. 2006;13:35–46.

    Article  PubMed  Google Scholar 

  43. Stenman-Bareen CO, Sherrard DJ, Alem AM, et al. Risk factors for hip fracture among patients with end-stage renal disease. Kidney Int. 2000;58:2200–5.

    Article  Google Scholar 

  44. Abbott KC, Oglesby RJ, Hypolite IO, et al. Hospitalizations for fractures after renal transplantation in the United States. Ann Epidemiol. 2001;11:450–7.

    Article  CAS  PubMed  Google Scholar 

  45. Ball AM, Gillen DL, Sherrard D, et al. Risk of hip fracture among dialysis and renal transplant recipients. Jam. 2002;18:3014–8.

    Article  Google Scholar 

  46. Malyszko J, Malyszko JS, Pawlak K, et al. Tartrate-resistant acid phosphatase 5b and its correlations with other markers of bone metabolism in kidney transplant recipients and dialyzed patients. Adv Med Sci. 2006;51:69–72.

    CAS  PubMed  Google Scholar 

  47. Gupta AK, Huang M, Prasad GV. Determinants of bone mineral density in stable kidney transplant recipients. J Nephrol. 2012;25:373–83.

    Article  CAS  PubMed  Google Scholar 

  48. Malyszko J, Wlczynski S, Malyszko JS, et al. Correlations of new markers of bone formation and resorption in kidney transplant recipients. Transplant Proc. 2003;35:1351–4.

    Article  CAS  PubMed  Google Scholar 

  49. Bozkaya G, Nart A, Uslu A, et al. Impact of calcineurin inhibitors on bone metabolism in primary kidney transplant patients. Transplant Proc. 2008;40:151–5.

    Article  CAS  PubMed  Google Scholar 

  50. Cruz DN, Wysolmerski JJ, Brickel HM, et al. Parameters of high bone-turnover predict bone loss in renal transplant patients: a longitudinal study. Transplant. 2001;15:83–8.

    Article  Google Scholar 

  51. Kanaan N, Claes K, Devogelaer JP, et al. Fibroblast growth factor-23 and parathyroid hormone are associated with post-transplant bone mineral density loss. Clin J Am Soc Nephrol. 2010;5:1887–92.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Cianciolo G, Capelli I, Angelini ML, et al. Importance of vascular calcification in kidney transplant recipients. Am J Nephrol. 2014;39:418–26.

    Article  CAS  PubMed  Google Scholar 

  53. Hernandez D, Rufino M, Bartolomei S, et al. Clinical impact of preexisting vascular calcifications on mortality after renal transplantation. Kidney Int. 2005;67:2015–20.

    Article  PubMed  Google Scholar 

  54. Nguyen PT, Henrard S, Cohoe E, et al. Coronary artery calcification: a strong predictor of cardiovascular events in renal transplant recipients. Nephrol Dial Transplant. 2010;25:3773–8.

    Article  PubMed  Google Scholar 

  55. Egbuna O, Taylor J, Buchinsky D, et al. Elevated calcium phosphate product after renal transplantation is a risk factor for graft failure. Clin Transplant. 2007;21:558–66.

    Article  PubMed  Google Scholar 

  56. Shroff R, Long DA, Shanahan C. Mechanistic insights into vascular calcification in CKD. J Am Soc Nephrol. 2013;24:179–89.

    Article  CAS  PubMed  Google Scholar 

  57. Moe SM, O’Neill KD, Resleravasa M, et al. Natural history of vascular calcification in dialysis and transplantation patients. Nephrol Dial Transplant. 2004;19:2387–793.

    Article  PubMed  Google Scholar 

  58. Mazzaferro S, Pasquali M, Taggi F, et al. Progression of coronary artery calcification in renal transplantation and the role of secondary hyperparathyroidism and inflammation. Clin J Am Soc Nephrol. 2009;4:685–90.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. DeLoach SS, Joffe MM, Mai X, et al. Aortic calcification predicts cardiovascular events and all-cause mortality in renal transplantation. Nephrol Dial Transplant. 2009;24:1314–9.

    Article  PubMed Central  PubMed  Google Scholar 

  60. Marechal C, Coche E, Goffin E, et al. Progression of coronary artery calcification and thoracic aorta calcification in kidney transplant recipients. Am J Kidney Dis. 2012;59:258–69.

    Article  CAS  PubMed  Google Scholar 

  61. Wolf M, Molnar MZ, Amaral AP, et al. Elevated fibroblast growth factor 23 is risk factor for kidney transplant loss and mortality. J Am Soc Nephrol. 2011;22:956–66.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Faul C, Amaral AP, Oskouei B, et al. FGF23 induces left ventricular hypertrophy. J Clin Invest. 2011;121:4393–408.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Andrukhova O, Slavic S, Smorodchenko A, et al. FGF23 regulates renal sodium handling and blood pressure. EMBO Mol Med. 2014;6:744–59.

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Bellows CG, Reimers SM, Heersche JN, et al. Expression of mRNAs for type-I collagen, bone sialoprotein, osteocalcin, and osteopontin at different stages of osteoblastic differentiation and their regulation by 1,25 dihydroxyvitamin D3. Cell Tissue Res. 1999;297:249–59.

    Article  CAS  PubMed  Google Scholar 

  65. Cunningham J, Danese M, Olson K, et al. Effects of the calcimimetic cinacalcet HCl on cardiovascular disease, fracture, and health-related quality of life in secondary hyperparathyroidism. Kidney Int. 2005;68:1793–800.

    Article  CAS  PubMed  Google Scholar 

  66. Bergua C, Torregrosa JV, Gutierrez-Dalmau A, et al. Effect of cinacalcet on hypercalcemia and bone mineral density in renal transplanted patients with secondary hyperparathyroidism. Transplant. 2008;86:413–7.

    Article  CAS  Google Scholar 

  67. Fleseriu M, Licata AA. Failure of successful renal transplant to produce appropriate levels of 1,25-dihydroxyvitamin D. Osteoporos Int. 2007;18:363–8.

    Article  CAS  PubMed  Google Scholar 

  68. Torres A, Garcia S, Gonzalez A, et al. Treatment with intermittent calcitriol and calcium reduces bone loss after renal transplantation. Kidney Int. 2004;65:705–12.

    Article  CAS  PubMed  Google Scholar 

  69. El-Agroudy AE, El-Husseini AA, El-Sayed M, et al. Preventing bone loss in renal transplant recipients with vitamin D. J Am Soc Nephrol. 2003;14:2975–9.

    Article  CAS  PubMed  Google Scholar 

  70. Chadban S, Chan M, Fry K, et al. The CARI guidelines. Nutritional management of hypophosphataemia in adult kidney transplant recipients. Nephrology (Carlton). 2010;15:S48–51.

    Article  Google Scholar 

  71. Ambuhl PM, Meier D, Wolf B, et al. Metabolic aspects of phosphate replacement therapy for hypophosphatemia after renal transplantation: impact on muscular phosphate content, mineral metabolism, and acid/base homeostasis. Am J Kidney Dis. 1999;34:875–83.

    Article  CAS  PubMed  Google Scholar 

  72. Riella LV, Rennke HG, Grafals M, et al. Hypophosphatemia in kidney transplant recipients: report of acute phosphate nephropathy as a complication of therapy. Am J Kidney Dis. 2011;57:641–5.

    Article  PubMed  Google Scholar 

  73. Caravaca F, Fernandez MA, Ruiz-Calero R, et al. Effects of oral phosphorus supplementation on mineral metabolism of renal transplant recipients. Nephrol Dial Transplant. 1998;13:2605–11.

    Article  CAS  PubMed  Google Scholar 

  74. Balal M, Paydas S, Seyrek N, et al. Dipyridamole for renal phosphate leak in successfully renal transplanted hypophosphatemic patients. Clin Nephrol. 2005;63:87–91.

    Article  CAS  PubMed  Google Scholar 

  75. Felsenfeld AJ, Levine BS. Approach to treatment of hypophosphatemia. Am J Kidney Dis. 2012;60:655–61.

    Article  CAS  PubMed  Google Scholar 

  76. Carpenter TO, Imel EA, Ruppe MD, et al. Randomized trial of the anti-FGF23 antibody KRN23 in X-linked hypophosphatemia. J Clin Invest. 2014;124:1587–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  77. Kruse AE, Eisenberger U, Frey FJ, et al. Effect of cinacalcet cessation in renal transplant recipients with persistent hyperparathyroidism. Nephrol Dial Transplant. 2007;22:2362–5.

    Article  CAS  PubMed  Google Scholar 

  78. Kruse AE, Eisenberger U, Frey FJ, et al. The calcimimetic cinacalcet normalizes serum calcium in renal transplant patients with persistent hyperparathyroidism. Nephrol Dial Transplant. 2005;20:1311–4.

    Article  CAS  PubMed  Google Scholar 

  79. Serra AL, Savoca R, Huber AR, et al. Effective control of persistent hyperparathyroidism with cinacalcet in renal allograft recipients. Nephrol Dial Transplant. 2007;22:577–83.

    Article  CAS  PubMed  Google Scholar 

  80. Serra AL, Schwarz AA, Wick FH, et al. Successful treatment of hypercalcemia with cinacalcet in renal transplant recipients with persistent hyperparathyroidism. Nephrol Dial Transplant. 2005;20:1315–9.

    Article  CAS  PubMed  Google Scholar 

  81. Srinivas TR, Schold JD, Wormer KL, et al. Improvement in hypercalcemia with cinacalcet after kidney transplantation. Clin J Am Soc Nephrol. 2006;1:323–6.

    Article  CAS  PubMed  Google Scholar 

  82. Leca N, Laftavi M, Gundroo A, et al. Early and severe hyperparathyroidism associated with hypercalcemia after renal transplant treated with cinacalcet. Am J Transplant. 2006;6:2391–5.

    Article  CAS  PubMed  Google Scholar 

  83. Schwarz A, Rustien G, Merkel S, et al. Decreased renal transplant function after parathyroidectomy. Nephrol Dial Transplant. 2007;22:584–91.

    Article  PubMed  Google Scholar 

  84. Kandil E, Florman S, Alabbas H, et al. Exploring the effect of parathyroidectomy for tertiary hyperparathyroidism after kidney transplantation. Am J Med Sci. 2010;339:420–4.

    PubMed Central  PubMed  Google Scholar 

  85. Black DM, Greenspan SL, Ensrud KE, et al. The effects of parathyroid hormone and alendronate alone or in combination in postmenopausal osteoporosis. N Eng J Med. 2003;349:1207–15.

    Article  CAS  Google Scholar 

  86. Cejka D, Benesch T, Krestan C, et al. Effect of teriparatide on early bone loss after kidney transplantation. Am J Transplant. 2008;8:1864–70.

    Article  CAS  PubMed  Google Scholar 

  87. Cummings SR, San Martin J, McClung MR, et al. Denosumab for prevention of fractures in postmenopausal women with osteoporosis. N Engl J Med. 2009;361:756–65.

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

Takashi Hirukawa declared no conflict of interest. Takatoshi Kakuta received honoraria from Kyowa Hakko Kirin and Chugai Pharmaceutical Co. Ltd, Japan. Michio Nakamura declared no conflict of interest. Masafumi Fukagawa received honoraria from Kyowa Hakko Kirin, Bayer Japan and Torii, manuscript fees from Kyowa Hakko Kirin, and research funding from Kyowa Hakko Kirin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masafumi Fukagawa.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hirukawa, T., Kakuta, T., Nakamura, M. et al. Mineral and bone disorders in kidney transplant recipients: reversible, irreversible, and de novo abnormalities. Clin Exp Nephrol 19, 543–555 (2015). https://doi.org/10.1007/s10157-015-1117-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-015-1117-z

Keywords

Navigation