Skip to main content
Log in

Bone Quality in Chronic Kidney Disease: Definitions and Diagnostics

  • Kidney and Bone (S Moe and I Salusky, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In this paper, we review the epidemiology, diagnosis, and pathogenesis of fractures and renal osteodystrophy.

Recent Findings

The role of bone quality in the pathogenesis of fracture susceptibility in chronic kidney disease (CKD) is beginning to be elucidated. Bone quality refers to bone material properties, such as cortical and trabecular microarchitecture, mineralization, turnover, microdamage, and collagen content and structure. Recent data has added to our understanding of the effects of CKD on alterations to bone quality, emerging data on the role of abnormal collagen structure on bone strength, the potential of non-invasive methods to inform our knowledge of bone quality, and how we can use these methods to inform strategies that protect against bone loss and fractures. However, more prospective data is required.

Summary

CKD is associated with abnormal bone quality and strength which results in high fracture incidence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Moe S, Drueke T, Cunningham J, Goodman W, Martin K, Olgaard K, Ott S, Sprague S, Lameire N, Eknoyan G, Kidney Disease: Improving Global, O. Definition, evaluation, and classification of renal osteodystrophy: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int. 2006;69:1945–53. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16641930

    Article  CAS  PubMed  Google Scholar 

  2. Nickolas TL, Stein E, Cohen A, Thomas V, Staron RB, McMahon DJ, Leonard MB, Shane E. Bone mass and microarchitecture in CKD patients with fracture. J Am Soc Nephrol. 2010;21:1371–80. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20395370

    Article  PubMed  PubMed Central  Google Scholar 

  3. Nickolas TL, McMahon DJ, Shane E. Relationship between moderate to severe kidney disease and hip fracture in the United States. J AmSocNephrol. 2006;17:3223–32.

    Google Scholar 

  4. Alem AM, Sherrard DJ, Gillen DL, Weiss NS, Beresford SA, Heckbert SR, Wong C, Stehman-Breen C. Increased risk of hip fracture among patients with end-stage renal disease. Kidney Int. 2000;58:396–9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/10886587

    Article  CAS  PubMed  Google Scholar 

  5. Dooley AC, Weiss NS, Kestenbaum B. Increased risk of hip fracture among men with CKD. Am J Kidney Dis. 2008;51:38–44. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=18155531

    Article  CAS  PubMed  Google Scholar 

  6. • Naylor KL, McArthur E, Leslie WD, Fraser LA, Jamal SA, Cadarette SM, Pouget JG, Lok CE, Hodsman AB, Adachi JD, Garg AX. The three-year incidence of fracture in chronic kidney disease. Kidney Int. 2014;86(4):810–8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/24429401. This study uses administrative data from Canada to describe fracture incidence stratified by CKD stage and gender. It demonstrates that fracture rates are higher in patients with more severe kidney disease

    Article  PubMed  Google Scholar 

  7. Isakova T, Craven TE, Scialla JJ, Nickolas TL, Schnall A, Barzilay J, Schwartz AV, Action to Control Cardiovascular Risk in Diabetes, T. Change in estimated glomerular filtration rate and fracture risk in the Action to Control Cardiovascular Risk in Diabetes Trial. Bone. 2015;78:23–7. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25937184

    Article  PubMed  PubMed Central  Google Scholar 

  8. Arneson TJ, Li S, Liu J, Kilpatrick RD, Newsome BB, St Peter WL. Trends in hip fracture rates in US hemodialysis patients, 1993-2010. Am J Kidney Dis. 2013;62:747–54. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23631997

    Article  PubMed  Google Scholar 

  9. Wagner J, Jhaveri KD, Rosen L, Sunday S, Mathew AT, Fishbane S. Increased bone fractures among elderly United States hemodialysis patients. Nephrol Dial Transplant. 2014;29:146–51. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/24078333

    Article  PubMed  Google Scholar 

  10. Nikkel LE, Hollenbeak CS, Fox EJ, Uemura T, Ghahramani N. Risk of fractures after renal transplantation in the United States. Transplantation. 2009;87:1846–51. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19543063

    Article  PubMed  Google Scholar 

  11. Ball AM, Gillen DL, Sherrard D, Weiss NS, Emerson SS, Seliger SL, Kestenbaum BR, Stehman-Breen C. Risk of hip fracture among dialysis and renal transplant recipients. JAMA. 2002;288:3014–8. Retrieved from http://jama.ama-assn.org/cgi/content/abstract/288/23/3014

    Article  PubMed  Google Scholar 

  12. Vautour LM, Melton LJ 3rd, Clarke BL, Achenbach SJ, Oberg AL, Mccarthy JT. Long-term fracture risk following renal transplantation: a population-based study. Osteoporos Int. 2004;15:160–7. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14666400

    Article  PubMed  Google Scholar 

  13. Perrin, P, Kiener, C, Javier, RM, Braun, L, Cognard, N, Gautier-Vargas, G, Heibel, F, Muller, C, Olagne, J, Moulin, B, Caillard, S. Recent changes in chronic kidney disease-mineral and bone disorders (CKD-MBD) and associated fractures after kidney transplantation. Transplantation 2016. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/27547867

  14. Mittalhenkle A, Gillen DL, Stehman-Breen CO. Increased risk of mortality associated with hip fracture in the dialysis population. Am J Kidney Dis. 2004;44:672–9.

    Article  PubMed  Google Scholar 

  15. Abbott KC, Oglesby RJ, Hypolite IO, Kirk AD, Ko CW, Welch PG, Agodoa LY, Duncan WE. Hospitalizations for fractures after renal transplantation in the United States. Ann Epidemiol. 2001;11:450–7. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11557176

    Article  CAS  PubMed  Google Scholar 

  16. Tentori F, McCullough K, Kilpatrick RD, Bradbury BD, Robinson BM, Kerr PG, Pisoni RL. High rates of death and hospitalization follow bone fracture among hemodialysis patients. Kidney Int. 2014;85:166–73. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23903367

    Article  PubMed  Google Scholar 

  17. Kim SM, Long J, Montez-Rath M, Leonard M, Chertow GM. Hip fracture in patients with non-dialysis-requiring chronic kidney disease. J Bone Miner Res. 2016;31(10):1803–9. doi:10.1002/jbmr.2862.

    Article  PubMed  Google Scholar 

  18. Nair SS, Mitani AA, Goldstein BA, Chertow GM, Lowenberg DW, Winkelmayer WC. Temporal trends in the incidence, treatment, and outcomes of hip fracture in older patients initiating dialysis in the United States. Clin J Am Soc Nephrol. 2013;8:1336–42. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23660182

    Article  PubMed  PubMed Central  Google Scholar 

  19. Burr DB. The complex relationship between bone remodeling and the physical and material properties of bone. Osteoporos Int. 2015;26:845.

    Article  CAS  PubMed  Google Scholar 

  20. Bala Y, Seeman E. Bone’s material constituents and their contribution to bone strength in health, disease, and treatment. Calcif Tissue Int. 2015;97:308–26.

    Article  CAS  PubMed  Google Scholar 

  21. Schaffler MB, Choi K, Milgrom C. Aging and matrix microdamage accumulation in human compact bone. Bone. 1995;17:521–5. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8835305

    Article  CAS  PubMed  Google Scholar 

  22. Reilly GC, Currey JD. The effects of damage and microcracking on the impact strength of bone. J Biomech. 2000;33:337–43.

    Article  CAS  PubMed  Google Scholar 

  23. Vashishth D, Gibson G, Khoury J, Schaffler M, Kimura J, Fyhrie DP. Influence of nonenzymatic glycation on biomechanical properties of cortical bone. Bone. 2001;28:195–201.

    Article  CAS  PubMed  Google Scholar 

  24. Akkus O, Adar F, Schaffler MB. Age-related changes in physicochemical properties of mineral crystals are related to impaired mechanical function of cortical bone. Bone. 2004;34:443–53.

    Article  CAS  PubMed  Google Scholar 

  25. Yenchek RH, Ix JH, Shlipak MG, Bauer DC, Rianon NJ, Kritchevsky SB, Harris TB, Newman AB, Cauley JA, Fried LF. Bone mineral density and fracture risk in older individuals with CKD. Clin J Am Soc Nephrol. 2012;7:1130–6. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=22516286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. West SL, Lok CE, Langsetmo L, Cheung AM, Szabo E, Pearce D, Fusaro M, Wald R, Weinstein J, Jamal SA. Bone mineral density predicts fractures in chronic kidney disease. J Bone Miner Res. 2015;30:913–9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25400209

    Article  PubMed  Google Scholar 

  27. Iimori S, Mori Y, Akita W, Kuyama T, Takada S, Asai T, Kuwahara M, Sasaki S, Tsukamoto Y. Diagnostic usefulness of bone mineral density and biochemical markers of bone turnover in predicting fracture in CKD stage 5D patients—a single-center cohort study. Nephrol Dial Transplant. 2012;27:345–51. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21652550

    Article  CAS  PubMed  Google Scholar 

  28. Akaberi S, Simonsen O, Lindergard B, Nyberg G. Can DXA predict fractures in renal transplant patients? Am J Transplant. 2008;8:2647–51. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18853956

    Article  CAS  PubMed  Google Scholar 

  29. Jamal SA, Gilbert J, Gordon C, Bauer DC. Cortical pQCT measures are associated with fractures in dialysis patients. J Bone MinerRes. 2006;21:543–8.

    Article  Google Scholar 

  30. Leonard MB. A structural approach to skeletal fragility in chronic kidney disease. Semin Nephrol. 2009;29:133–43. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19371804

    Article  PubMed  PubMed Central  Google Scholar 

  31. Denburg MR, Tsampalieros AK, de Boer IH, Shults J, Kalkwarf HJ, Zemel BS, Foerster D, Stokes D, Leonard MB. Mineral metabolism and cortical volumetric bone mineral density in childhood chronic kidney disease. J Clin Endocrinol Metab. 2013;98:1930–8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23547048

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nishiyama KK, Macdonald HM, Buie HR, Hanley DA, Boyd SK. Postmenopausal women with osteopenia have higher cortical porosity and thinner cortices at the distal radius and tibia than women with normal aBMD: an in vivo HR-pQCT study. J Bone Miner Res. 2010;25:882–90. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19839766

    PubMed  Google Scholar 

  33. Nishiyama KK, Macdonald HM, Hanley DA, Boyd SK. Women with previous fragility fractures can be classified based on bone microarchitecture and finite element analysis measured with HR-pQCT. Osteoporos Int. 2013;24:1733–40. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23179565

    Article  CAS  PubMed  Google Scholar 

  34. Liu XS, Stein EM, Zhou B, Zhang CA, Nickolas TL, Cohen A, Thomas V, McMahon DJ, Cosman F, Nieves J, Shane E, Guo XE. Individual trabecula segmentation (ITS)-based morphological analyses and microfinite element analysis of HR-pQCT images discriminate postmenopausal fragility fractures independent of DXA measurements. J Bone Miner Res. 2012;27:263–72. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22072446

    Article  PubMed  PubMed Central  Google Scholar 

  35. • Nickolas TL, Cremers S, Zhang A, Thomas V, Stein E, Cohen A, Chauncey R, Nikkel L, Yin MT, Liu XS, Boutroy S, Staron RB, Leonard MB, McMahon DJ, Dworakowski E, Shane E. Discriminants of prevalent fractures in chronic kidney disease. J Am Soc Nephrol. 2011;22:1560–72. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21784896. This cross sectional study in patients with moderate to severe CKD demonstrated that bone imaging by DXA and higher levels of bone turnover markers discriminated fractures, and that discrimination by DXA was improved by combining measures of bone mineral density with bone turnover markers

    Article  PubMed  PubMed Central  Google Scholar 

  36. Jamal S, Cheung AM, West S, Lok C. Bone mineral density by DXA and HR pQCT can discriminate fracture status in men and women with stages 3 to 5 chronic kidney disease. Osteoporos Int. 2012;23:2805–13. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22297732

    Article  CAS  PubMed  Google Scholar 

  37. Cejka D, Patsch JM, Weber M, Diarra D, Riegersperger M, Kikic Z, Krestan C, Schueller-Weidekamm C, Kainberger F, Haas M. Bone microarchitecture in hemodialysis patients assessed by HR-pQCT. Clin J Am Soc Nephrol. 2011;6:2264–71. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21737853

    Article  PubMed  PubMed Central  Google Scholar 

  38. Trombetti A, Stoermann C, Chevalley T, Van Rietbergen B, Herrmann FR, Martin PY, Rizzoli R. Alterations of bone microstructure and strength in end-stage renal failure. Osteoporos Int. 2012;24(5):1721–32. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23100118

    Article  PubMed  Google Scholar 

  39. • Nickolas TL, Stein EM, Dworakowski E, Nishiyama KK, Komandah-Kosseh M, Zhang CA, McMahon DJ, Liu XS, Boutroy S, Cremers S, Shane E. Rapid cortical bone loss in patients with chronic kidney disease. J Bone Miner Res. 2013;28:1811–20. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/23456850. This propsective study in patients demonstarted that in patients with moderate to severe CKD bone loss occurred in the cortical rather than the trabecular compartments, and that elevated levels of PTH and bone turnover markers predicted the severity of cortical losses

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Iyer S, Nikkel L, Nishiyama K, Dworakowski E, Cremers S, Zhang A, DJ MM, Boutroy S, Liu XS, Ratner L, Cohen D, Guo XE, Shane E, Nickolas TL. Kidney transplantation with early corticosteroid withdrawal: paradoxical effects at the central and peripheral skeleton. J Am Soc Nephrol. 2014;25(6):1331–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Boutroy SNT, Stein EM, Cohen A, Shane E. Impaired cortical bone in predialysis CKD patients is even more marked in those with fragility fracture. San Diego: ASN; 2010.

    Google Scholar 

  42. Parfitt AM. A structural approach to renal bone disease. J Bone Miner Res. 1998;13:1213–20.

    Article  CAS  PubMed  Google Scholar 

  43. Jee, WS. The past, present, and future of bone morphometry: its contribution to an improved understanding of bone biology. J Bone Miner Metab 2005;23 Suppl: 1–10. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=15984407.

  44. Jamal SA, Ljunggren O, Stehman-Breen C, Cummings SR, McClung MR, Goemaere S, Ebeling PR, Franek E, Yang YC, Egbuna OI, Boonen S, Miller PD. Effects of denosumab on fracture and bone mineral density by level of kidney function. J Bone Miner Res. 2011;26:1829–35. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21491487

    Article  CAS  PubMed  Google Scholar 

  45. Miller PD, Schwartz EN, Chen P, Misurski DA, Krege JH. Teriparatide in postmenopausal women with osteoporosis and mild or moderate renal impairment. Osteoporos Int. 2007;18:59–68. Retrieved from http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Citation&list_uids=17013567

    Article  CAS  PubMed  Google Scholar 

  46. Miller PD, Roux C, Boonen S, Barton IP, Dunlap LE, Burgio DE. Safety and efficacy of risedronate in patients with age-related reduced renal function as estimated by the Cockcroft and Gault method: a pooled analysis of nine clinical trials. J Bone Miner Res. 2005;20:2105–15.

    Article  CAS  PubMed  Google Scholar 

  47. Couttenye MM, D’Haese PC, Van Hoof VO, Lemoniatou E, Goodman W, Verpooten GA, De Broe ME. Low serum levels of alkaline phosphatase of bone origin: a good marker of adynamic bone disease in haemodialysis patients. Nephrol Dial Transplant. 1996;11:1065–72. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8671970

    Article  CAS  PubMed  Google Scholar 

  48. Bervoets AR, Spasovski GB, Behets GJ, Dams G, Polenakovic MH, Zafirovska K, Van HV, De Broe ME, D’Haese PC. Useful biochemical markers for diagnosing renal osteodystrophy in predialysis end-stage renal failure patients. AmJ Kidney Dis. 2003;41:997–1007.

    Article  CAS  Google Scholar 

  49. Coen G, Ballanti P, Bonucci E, Calabria S, Centorrino M, Fassino V, Manni M, Mantella D, Mazzaferro S, Napoletano I, Sardella D, Taggi F. Bone markers in the diagnosis of low turnover osteodystrophy in haemodialysis patients. Nephrol Dial Transplant. 1998;13:2294–302.

    Article  CAS  PubMed  Google Scholar 

  50. Lehmann G, Ott U, Kaemmerer D, Schuetze J, Wolf G. Bone histomorphometry and biochemical markers of bone turnover in patients with chronic kidney disease stages 3-5. Clin Nephrol. 2008;70:296–305. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18826854

    Article  CAS  PubMed  Google Scholar 

  51. Lehmann G, Stein G, Huller M, Schemer R, Ramakrishnan K, Goodman WG. Specific measurement of PTH (1-84) in various forms of renal osteodystrophy (ROD) as assessed by bone histomorphometry. Kidney Int. 2005;68:1206–14. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16105052

    Article  CAS  PubMed  Google Scholar 

  52. Herberth J, Branscum AJ, Mawad H, Cantor T, Monier-Faugere MC, Malluche HH. Intact PTH combined with the PTH ratio for diagnosis of bone turnover in dialysis patients: a diagnostic test study. Am J Kidney Dis. 2010;55:897–906. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20347512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Sprague SM, Bellorin-Font E, Jorgetti V, Carvalho AB, Malluche HH, Ferreira A, D’Haese PC, Drueke TB, Du H, Manley T, Rojas E, Moe SM. Diagnostic accuracy of bone turnover markers and bone histology in patients with CKD treated by dialysis. Am J Kidney Dis. 2015;67(4):559–66. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/26321176

    Article  PubMed  Google Scholar 

  54. Perrin P, Caillard S, Javier RM, Braun L, Heibel F, Borni-Duval C, Muller C, Olagne J, Moulin B. Persistent hyperparathyroidism is a major risk factor for fractures in the five years after kidney transplantation. Am J Transplant. 2013;13:2653–63. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/24034142

    Article  CAS  PubMed  Google Scholar 

  55. Diez-Perez A, Guerri R, Nogues X, Caceres E, Pena MJ, Mellibovsky L, Randall C, Bridges D, Weaver JC, Proctor A, Brimer D, Koester KJ, Ritchie RO, Hansma PK. Microindentation for in vivo measurement of bone tissue mechanical properties in humans. J Bone Miner Res. 2010;25:1877–85. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20200991

    Article  PubMed  PubMed Central  Google Scholar 

  56. Bridges D, Randall C, Hansma PK. A new device for performing reference point indentation without a reference probe. Rev Sci Instrum. 2012;83:044301. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22559552

    Article  PubMed  PubMed Central  Google Scholar 

  57. Farr JN, Drake MT, Amin S, Melton LJ 3rd, McCready LK, Khosla S. In vivo assessment of bone quality in postmenopausal women with type 2 diabetes. J Bone Miner Res. 2014;29:787–95. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/24123088

    Article  PubMed  PubMed Central  Google Scholar 

  58. Furst JR, Bandeira LC, Fan WW, Agarwal S, Nishiyama KK, McMahon DJ, Dworakowski E, Jiang H, Silverberg SJ, Rubin MR. Advanced glycation endproducts and bone material strength in type 2 diabetes. J Clin Endocrinol Metab. 2016;101:2502–10. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/27115060

    Article  CAS  PubMed  Google Scholar 

  59. Mellibovsky L, Prieto-Alhambra D, Mellibovsky F, Guerri-Fernandez R, Nogues X, Randall C, Hansma PK, Diez-Perez A. Bone tissue properties measurement by reference point indentation in glucocorticoid-induced osteoporosis. J Bone Miner Res. 2015;30:1651–6. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25736591

    Article  CAS  PubMed  Google Scholar 

  60. Malgo F, Hamdy NA, Papapoulos SE, Appelman-Dijkstra NM. Bone material strength as measured by microindentation in vivo is decreased in patients with fragility fractures independently of bone mineral density. J Clin Endocrinol Metab. 2015;100:2039–45. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25768670

    Article  CAS  PubMed  Google Scholar 

  61. Duarte Sosa D, Vilaplana L, Guerri R, Nogues X, Wang-Fagerland M, Diez-Perez A, Eriksen FE. Are the high hip fracture rates among Norwegian women explained by impaired bone material properties? J Bone Miner Res. 2015;30:1784–9. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/25900016

    Article  CAS  PubMed  Google Scholar 

  62. Allen MR, McNerny EMB, Organ JM, Wallace JM. True gold or pyrite: a review of reference point indentation for assessing bone mechanical properties in vivo. J Bone Miner Res. 2015;30:1539–50. doi:10.1002/jbmr.2603.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas L. Nickolas.

Ethics declarations

Conflict of Interest

Thomas Nickolas and Erin McNerny declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Kidney and Bone

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McNerny, E.M.B., Nickolas, T.L. Bone Quality in Chronic Kidney Disease: Definitions and Diagnostics. Curr Osteoporos Rep 15, 207–213 (2017). https://doi.org/10.1007/s11914-017-0366-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-017-0366-z

Keywords

Navigation