Skip to main content
Log in

Biomarkers Predicting Bone Turnover in the Setting of CKD

  • Kidney and Bone (S Moe and I Salusky, Section Editors)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Purpose of the Review

Impaired bone quality contributes to the increased fracture risk in chronic kidney disease patients. Both low and high turnover bone disease may compromise bone quality. The question arises whether bone biomarkers may be additive or replace bone histormorphometry for diagnosing the extremes of bone turnover.

Recent Findings

Studies exploring the performance of established and emerging bone biomarkers against histomorphometric assessment of bone turnover are limited and overall yield inconclusive results as to their diagnostic utility.

Summary

Bone biomarkers, although promising, currently fail to meet the needed diagnostic accuracy to replace bone histomorphometry and thus are not yet ready for clinical use. Bone biomarkers have not only several advantages, but also important limitations such as high biological variability, retention with kidney disease, preanalytical issues, and interassay variability. These important issues must be considered when developing and evaluating bone biomarkers. There is an urgent need for harmonization and standardization of available assays and additional bone biopsy studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: ••Of major importance

  1. Jadoul M, Albert JM, Akiba T, et al. Incidence and risk factors for hip or other bone fractures among hemodialysis patients in the Dialysis Outcomes and Practice Patterns Study. Kidney Int. 2006;70:1358–66.

    Article  CAS  PubMed  Google Scholar 

  2. Ball AM, Gillen DL, Sherrard D, et al. Risk of hip fracture among dialysis and renal transplant recipients. JAMA. 2002;288:3014–8.

    Article  PubMed  Google Scholar 

  3. Tentori F, McCullough K, Kilpatrick RD, et al. High rates of death and hospitalization follow bone fracture among hemodialysis patients. Kidney Int. 2014;85:166–73.

    Article  PubMed  Google Scholar 

  4. Naylor KL, McArthur E, Leslie WD, et al. The three-year incidence of fracture in chronic kidney disease. Kidney Int. 2014;86:810–8.

    Article  PubMed  Google Scholar 

  5. Nickolas TL, Stein EM, Dworakowski E, et al. Rapid cortical bone loss in patients with chronic kidney disease. J Bone Miner Res. 2013;28:1811–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Malluche HH, Mawad HW, Monier-Faugere MC. Renal osteodystrophy in the first decade of the new millennium: analysis of 630 bone biopsies in black and white patients. J Bone Miner Res. 2011;26:1368–76.

    Article  PubMed  Google Scholar 

  7. •• Sprague SM, Bellorin-Font E, Jorgetti V, et al. Diagnostic accuracy of bone turnover markers and bone histology in patients with CKD treated by dialysis. Am J Kidney Dis. 2016;67:559–66. This KDIGO endorsed study examined the performance of a panel of bone biomarkers in diagnosing high and low bone turnover disease in a large cohort of hemodialysis patients.

    Article  PubMed  Google Scholar 

  8. •• Malluche HH, Porter DS, Monier-Faugere MC, Mawad H, Pienkowski D. Differences in bone quality in low- and high-turnover renal osteodystrophy. J Am Soc Nephrol. 2012;23:525–32. In-depth clinical investigation identifying mechanisms underlying impaired bone quality in patients with low- and high-turnover renal osteodystrophy.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Torres PU, Bover J, Mazzaferro S, de Vernejoul MC, Cohen-Solal M. When, how, and why a bone biopsy should be performed in patients with chronic kidney disease. Semin Nephrol. 2014;34:612–25.

    Article  PubMed  Google Scholar 

  10. Frost ML, Compston JE, Goldsmith D, et al. (18)F-fluoride positron emission tomography measurements of regional bone formation in hemodialysis patients with suspected adynamic bone disease. Calcif Tissue Int. 2013;93:436–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Naylor K, Eastell R. Bone turnover markers: use in osteoporosis. Nat Rev Rheumatol. 2012;8:379–89.

    Article  CAS  PubMed  Google Scholar 

  12. Seeman E, Nguyen TV. Bone remodeling markers: so easy to measure, so difficult to interpret. Osteoporos Int. 2016;27:33–5.

    Article  CAS  PubMed  Google Scholar 

  13. Amling M, Herden S, Posl M, Hahn M, Ritzel H, Delling G. Heterogeneity of the skeleton: comparison of the trabecular microarchitecture of the spine, the iliac crest, the femur, and the calcaneus. J Bone Miner Res. 1996;11:36–45.

    Article  CAS  PubMed  Google Scholar 

  14. Cavalier E, Delanaye P, Moranne O. Variability of new bone mineral metabolism markers in patients treated with maintenance hemodialysis: implications for clinical decision making. Am J Kidney Dis. 2013;61:847–8.

    Article  PubMed  Google Scholar 

  15. Sardiwal S, Gardham C, Coleman AE, Stevens PE, Delaney MP, Lamb EJ. Bone-specific alkaline phosphatase concentrations are less variable than those of parathyroid hormone in stable hemodialysis patients. Kidney Int. 2012;82:100–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chavassieux P, Portero-Muzy N, Roux JP, Garnero P, Chapurlat R. Are biochemical markers of bone turnover representative of bone histomorphometry in 370 postmenopausal women? J Clin Endocrinol Metab. 2015;100:4662–8.

    Article  CAS  PubMed  Google Scholar 

  17. de Oliveira RA, Barreto FC, Mendes M, et al. Peritoneal dialysis per se is a risk factor for sclerostin-associated adynamic bone disease. Kidney Int. 2015;87:1039–45.

    Article  PubMed  Google Scholar 

  18. Haarhaus M, Monier-Faugere MC, Magnusson P, Malluche HH. Bone alkaline phosphatase isoforms in hemodialysis patients with low versus non-low bone turnover: a diagnostic test study. Am J Kidney Dis. 2015;66:99–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cejka D, Herberth J, Branscum AJ, et al. Sclerostin and Dickkopf-1 in renal osteodystrophy. Clin J Am Soc Nephrol. 2011;6:877–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Barreto FC, Barreto DV, Moyses RMA, et al. K/DOQI-recommended intact PTH levels do not prevent low-turnover bone disease in hemodialysis patients. Kidney Int. 2008;73:771–7.

    Article  CAS  PubMed  Google Scholar 

  21. Lehmann G, Stein G, Huller M, Schemer R, Ramakrishnan K, Goodman WG. Specific measurement of PTH (1-84) in various forms of renal osteodystrophy (ROD) as assessed by bone histomorphometry. Kidney Int. 2005;68:1206–14.

    Article  CAS  PubMed  Google Scholar 

  22. Bervoets AR, Spasovski GB, Behets GJ, et al. Useful biochemical markers for diagnosing renal osteodystrophy in predialysis end-stage renal failure patients. Am J Kidney Dis. 2003;41:997–1007.

    Article  CAS  PubMed  Google Scholar 

  23. Couttenye MM, D’Haese PC, Van Hoof VO, et al. Low serum levels of alkaline phosphatase of bone origin: a good marker of adynamic bone disease in haemodialysis patients. Nephrol Dial Transplant. 1996;11:1065–72.

    Article  CAS  PubMed  Google Scholar 

  24. Monier-Faugere MC, Geng Z, Mawad H, et al. Improved assessment of bone turnover by the PTH-(1-84)/large C-PTH fragments ratio in ESRD patients. Kidney Int. 2001;60:1460–8.

    Article  CAS  PubMed  Google Scholar 

  25. Kidney Disease: Improving Global Outcomes (KDIGO) CKD-MBD Work Group. KDIGO clinical practice guideline for the diagnosis, evaluation, prevention, and treatment of chronic kidney disease-mineral and bone disorder (CKD-MBD). Kidney Int Suppl. 2009;113:S1–S130.

    Google Scholar 

  26. Evenepoel P, Bover J, Torres P. Parathyroid hormone metabolism and signaling in health and chronic kidney disease. Kidney Int 2016;90:1184–90.

  27. Herberth J, Branscum AJ, Mawad H, Cantor T, Monier-Faugere MC, Malluche HH. Intact PTH combined with the PTH ratio for diagnosis of bone turnover in dialysis patients: a diagnostic test study. Am J Kidney Dis. 2010;55:897–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med. 2013;19:179–92.

    Article  CAS  PubMed  Google Scholar 

  29. Pelletier S, Dubourg L, Carlier MC, Hadj-Aissa A, Fouque D. The relation between renal function and serum sclerostin in adult patients with CKD. Clin J Am Soc Nephrol. 2013;8:819–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Piec I, Washbourne C, Tang J, et al. How accurate is your sclerostin measurement? Comparison between three commercially available sclerostin ELISA kits. Calcif Tissue Int. 2016;98:546–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mause SF, Deck A, Hennies M, et al. Validation of commercially available ELISAs for the detection of circulating sclerostin in hemodialysis patients. Discoveries (Craiova ). 2016;4:e55.

    Article  Google Scholar 

  32. Cavalier E, Lukas P, Carlisi A, Gadisseur R, Delanaye P. Aminoterminal propeptide of type I procollagen (PINP) in chronic kidney disease patients: the assay matters. Clin Chim Acta. 2013;425:117–8.

    Article  CAS  PubMed  Google Scholar 

  33. Yamada S, Inaba M, Kurajoh M, et al. Utility of serum tartrate-resistant acid phosphatase (TRACP5b) as a bone resorption marker in patients with chronic kidney disease: independence from renal dysfunction. Clin Endocrinol. 2008;69:189–96.

    Article  CAS  Google Scholar 

  34. Cavalier E, Souberbielle JC, Gadisseur R, Dubois B, Krzesinski JM, Delanaye P. Inter-method variability in bone alkaline phosphatase measurement: clinical impact on the management of dialysis patients. Clin Biochem. 2014;47:1227–30.

    Article  CAS  PubMed  Google Scholar 

  35. Lehmann G, Ott U, Kaemmerer D, Schuetze J, Wolf G. Bone histomorphometry and biochemical markers of bone turnover in patients with chronic kidney disease stages 3-5. Clin Nephrol. 2008;70:296–305.

    Article  CAS  PubMed  Google Scholar 

  36. Urena P, Hruby M, Ferreira A, Ang KS, de Vernejoul MC. Plasma total versus bone alkaline phosphatase as markers of bone turnover in hemodialysis patients. J Am Soc Nephrol. 1996;7:506–12.

    CAS  PubMed  Google Scholar 

  37. Urena P, de Vernejoul MC. Circulating biochemical markers of bone remodeling in uremic patients. Kidney Int. 1999;55:2141–56.

    Article  CAS  PubMed  Google Scholar 

  38. Coen G, Ballanti P, Bonucci E, et al. Bone markers in the diagnosis of low turnover osteodystrophy in haemodialysis patients. Nephrol Dial Transplant. 1998;13:2294–302.

    Article  CAS  PubMed  Google Scholar 

  39. Urena P, Ferreira A, Kung VT, et al. Serum pyridinoline as a specific marker of collagen breakdown and bone metabolism in hemodialysis patients. J Bone Miner Res. 1995;10:932–9.

    Article  CAS  PubMed  Google Scholar 

  40. Bjarnason NH, Henriksen EE, Alexandersen P, Christgau S, Henriksen DB, Christiansen C. Mechanism of circadian variation in bone resorption. Bone. 2002;30:307–13.

    Article  CAS  PubMed  Google Scholar 

  41. Franke S, Lehmann G, Abendroth K, Hein G, Stein G. PICP as bone formation and NTx as bone resorption marker in patients with chronic renal failure. Eur J Med Res. 1998;3:81–8.

    CAS  PubMed  Google Scholar 

  42. Shidara K, Inaba M, Okuno S, et al. Serum levels of TRAP5b, a new bone resorption marker unaffected by renal dysfunction, as a useful marker of cortical bone loss in hemodialysis patients. Calcif Tissue Int. 2008;82:278–87.

    Article  CAS  PubMed  Google Scholar 

  43. Wu Y, Lee JW, Uy L, et al. Tartrate-resistant acid phosphatase (TRACP 5b): a biomarker of bone resorption rate in support of drug development: modification, validation and application of the BoneTRAP kit assay. J Pharm Biomed Anal. 2009;49:1203–12.

    Article  CAS  PubMed  Google Scholar 

  44. Chu P, Chao TY, Lin YF, Janckila AJ, Yam LT. Correlation between histomorphometric parameters of bone resorption and serum type 5b tartrate-resistant acid phosphatase in uremic patients on maintenance hemodialysis. Am J Kidney Dis. 2003;41:1052–9.

    Article  CAS  PubMed  Google Scholar 

  45. Malluche HH, Davenport DL, Cantor T, Monier-Faugere MC. Bone mineral density and serum biochemical predictors of bone loss in patients with CKD on dialysis. Clin J Am Soc Nephrol. 2014;9:1254–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Ueda M, Inaba M, Okuno S, et al. Clinical usefulness of the serum N-terminal propeptide of type I collagen as a marker of bone formation in hemodialysis patients. Am J Kidney Dis. 2002;40:802–9.

    Article  CAS  PubMed  Google Scholar 

  47. Maeno Y, Inaba M, Okuno S, Yamakawa T, Ishimura E, Nishizawa Y. Serum concentrations of cross-linked N-telopeptides of type I collagen: new marker for bone resorption in hemodialysis patients. Clin Chem. 2005;51:2312–7.

    Article  CAS  PubMed  Google Scholar 

  48. Fishbane S, Hazzan AD, Jhaveri KD, Ma L, Lacson E Jr. Bone parameters and risk of hip and femur fractures in patients on hemodialysis. Clin J Am Soc Nephrol 2016;11:1063–72.

  49. Perrin P, Caillard S, Javier RM, et al. Persistent hyperparathyroidism is a major risk factor for fractures in the five years after kidney transplantation. Am J Transplant. 2013;13:2653–63.

    Article  CAS  PubMed  Google Scholar 

  50. Yamada S, Tsuruya K, Yoshida H, et al. The clinical utility of serum tartrate-resistant acid phosphatase 5b in the assessment of bone resorption in patients on peritoneal dialysis. Clin Endocrinol. 2013;78:844–51.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pieter Evenepoel.

Ethics declarations

Conflict of Interest

Patrick D’Haese and Etienne Cavalier declare no conflicts of interest.

Pieter Evenepoel reports grants from Tecomedical, grants from Diasorin, and grants from Amgen.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Kidney and Bone

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evenepoel, P., Cavalier, E. & D’Haese, P.C. Biomarkers Predicting Bone Turnover in the Setting of CKD. Curr Osteoporos Rep 15, 178–186 (2017). https://doi.org/10.1007/s11914-017-0362-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-017-0362-3

Keywords

Navigation