Bass J, Takahashi JS. Circadian integration of metabolism and energetics. Science. 2010;330(6009):1349–54. doi:10.1126/science.1195027.
CAS
Article
PubMed
PubMed Central
Google Scholar
Schibler U. The 2008 Pittendrigh/Aschoff lecture: peripheral phase coordination in the mammalian circadian timing system. J Biol Rhythm. 2009;24(1):3–15. doi:10.1177/0748730408329383.
CAS
Article
Google Scholar
Idda ML, Bertolucci C, Vallone D, Gothilf Y, Sanchez-Vazquez FJ, Foulkes NS. Circadian clocks: lessons from fish. Prog Brain Res. 2012;199:41–57. doi:10.1016/B978-0-444-59427-3.00003-4.
CAS
Article
PubMed
Google Scholar
Loudon AS. Circadian biology: a 2.5 billion year old clock. Curr Biol. 2012;22(14):R570–1. doi:10.1016/j.cub.2012.06.023.
CAS
Article
PubMed
Google Scholar
Takahashi JS. Transcriptional architecture of the mammalian circadian clock. Nat Rev Genet. 2017;18(3):164–79. doi:10.1038/nrg.2016.150.
CAS
Article
PubMed
Google Scholar
Yoo SH, Yamazaki S, Lowrey PL, Shimomura K, Ko CH, Buhr ED, et al. PERIOD2::LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proc Natl Acad Sci U S A. 2004;101(15):5339–46. doi:10.1073/pnas.0308709101.
CAS
Article
PubMed
PubMed Central
Google Scholar
Schibler U. The daily rhythms of genes, cells and organs. Biological clocks and circadian timing in cells. EMBO Rep. 2005;6:Spec No:S9–13. doi:10.1038/sj.embor.7400424.
Article
PubMed
Google Scholar
Schibler U, Naef F. Cellular oscillators: rhythmic gene expression and metabolism. Curr Opin Cell Biol. 2005;17(2):223–9. doi:10.1016/j.ceb.2005.01.007.
CAS
Article
PubMed
Google Scholar
Yamazaki S, Takahashi JS. Real-time luminescence reporting of circadian gene expression in mammals. Methods Enzymol. 2005;393:288–301. doi:10.1016/S0076-6879(05)93012-7.
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang R, Lahens NF, Ballance HI, Hughes ME, Hogenesch JB. A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A. 2014;111(45):16219–24. doi:10.1073/pnas.1408886111.
CAS
Article
PubMed
PubMed Central
Google Scholar
Sollars PJ, Kimble DP, Pickard GE. Restoration of circadian behavior by anterior hypothalamic heterografts. J Neurosci. 1995;15(3 Pt 2):2109–22.
CAS
PubMed
Google Scholar
Takahashi JS, DeCoursey PJ, Bauman L, Menaker M. Spectral sensitivity of a novel photoreceptive system mediating entrainment of mammalian circadian rhythms. Nature. 1984;308(5955):186–8.
CAS
Article
PubMed
Google Scholar
Damiola F, Le Minh N, Preitner N, Kornmann B, Fleury-Olela F, Schibler U. Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev. 2000;14(23):2950–61.
CAS
Article
PubMed
PubMed Central
Google Scholar
Zambon AC, McDearmon EL, Salomonis N, Vranizan KM, Johansen KL, Adey D, et al. Time- and exercise-dependent gene regulation in human skeletal muscle. Genome Biol. 2003;4(10):R61. doi:10.1186/gb-2003-4-10-r61.
Article
PubMed
PubMed Central
Google Scholar
Lamia KA, Storch KF, Weitz CJ. Physiological significance of a peripheral tissue circadian clock. Proc Natl Acad Sci U S A. 2008;105(39):15172–7. doi:10.1073/pnas.0806717105.
CAS
Article
PubMed
PubMed Central
Google Scholar
Paschos GK, Ibrahim S, Song WL, Kunieda T, Grant G, Reyes TM, et al. Obesity in mice with adipocyte-specific deletion of clock component Arntl. Nat Med. 2012;18(12):1768–77. doi:10.1038/nm.2979.
CAS
Article
PubMed
PubMed Central
Google Scholar
• Schroder EA, Harfmann BD, Zhang X, Srikuea R, England JH, Hodge BA, et al. Intrinsic muscle clock is necessary for musculoskeletal health. J Physiol. 2015;593(24):5387–404. doi:10.1113/JP271436. This is the only study to date to describe the systemic effects, including changes to bone structure, that occur following loss of
Bmal1
in adult skeletal muscle.
Takarada T, Xu C, Ochi H, Nakazato R, Yamada D, Nakamura S, Kodama A, Shimba S, Mieda M, Fukasawa K, Ozaki K, Iezaki T, Fujikawa K, Yoneda Y, Numano R, Hida A, Tei H, Takeda S, Eiichi H. Bone resorption is regulated by circadian clock in osteoblasts. J Bone Miner Res. 2017; doi:10.1002/jbmr.3053.
PubMed
Google Scholar
Gorski JP, Huffman NT, Vallejo J, Brotto L, Chittur SV, Breggia A, et al. Deletion of Mbtps1 (Pcsk8, S1p, ski-1) gene in osteocytes stimulates soleus muscle regeneration and increased size and contractile force with age. J Biol Chem. 2016;291(9):4308–22. doi:10.1074/jbc.M115.686626.
CAS
Article
PubMed
Google Scholar
Hogenesch JB, Gu YZ, Jain S, Bradfield CA. The basic-helix-loop-helix-PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc Natl Acad Sci U S A. 1998;95(10):5474–9.
CAS
Article
PubMed
PubMed Central
Google Scholar
Bunger MK, Wilsbacher LD, Moran SM, Clendenin C, Radcliffe LA, Hogenesch JB, et al. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell. 2000;103(7):1009–17.
CAS
Article
PubMed
PubMed Central
Google Scholar
Preitner N, Damiola F, Lopez-Molina L, Zakany J, Duboule D, Albrecht U, et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell. 2002;110(2):251–60.
CAS
Article
PubMed
Google Scholar
Sato TK, Panda S, Miraglia LJ, Reyes TM, Rudic RD, McNamara P, et al. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron. 2004;43(4):527–37. doi:10.1016/j.neuron.2004.07.018.
CAS
Article
PubMed
Google Scholar
Yoo SH, Mohawk JA, Siepka SM, Shan Y, Huh SK, Hong HK, et al. Competing E3 ubiquitin ligases govern circadian periodicity by degradation of CRY in nucleus and cytoplasm. Cell. 2013;152(5):1091–105. doi:10.1016/j.cell.2013.01.055.
CAS
Article
PubMed
PubMed Central
Google Scholar
Gallego M, Virshup DM. Post-translational modifications regulate the ticking of the circadian clock. Nat Rev Mol Cell Biol. 2007;8(2):139–48. doi:10.1038/nrm2106.
CAS
Article
PubMed
Google Scholar
Miller BH, McDearmon EL, Panda S, Hayes KR, Zhang J, Andrews JL, et al. Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc Natl Acad Sci U S A. 2007;104(9):3342–7. doi:10.1073/pnas.0611724104.
CAS
Article
PubMed
PubMed Central
Google Scholar
Bozek K, Relogio A, Kielbasa SM, Heine M, Dame C, Kramer A, et al. Regulation of clock-controlled genes in mammals. PLoS One. 2009;4(3):e4882. doi:10.1371/journal.pone.0004882.
Article
PubMed
PubMed Central
Google Scholar
Andrews JL, Zhang X, McCarthy JJ, McDearmon EL, Hornberger TA, Russell B, et al. CLOCK and BMAL1 regulate MyoD and are necessary for maintenance of skeletal muscle phenotype and function. Proc Natl Acad Sci U S A. 2010;107(44):19090–5. doi:10.1073/pnas.1014523107.
CAS
Article
PubMed
PubMed Central
Google Scholar
Perelis M, Marcheva B, Ramsey KM, Schipma MJ, Hutchison AL, Taguchi A, et al. Pancreatic beta cell enhancers regulate rhythmic transcription of genes controlling insulin secretion. Science. 2015;350(6261):aac4250. doi:10.1126/science.aac4250.
Article
PubMed
PubMed Central
Google Scholar
Zhang Y, Fang B, Emmett MJ, Damle M, Sun Z, Feng D, et al. GENE REGULATION. Discrete functions of nuclear receptor Rev-erbalpha couple metabolism to the clock. Science. 2015;348(6242):1488–92. doi:10.1126/science.aab3021.
CAS
Article
PubMed
PubMed Central
Google Scholar
Hardison RC, Taylor J. Genomic approaches towards finding cis-regulatory modules in animals. Nat Rev Genet. 2012;13(7):469–83. doi:10.1038/nrg3242.
CAS
Article
PubMed
PubMed Central
Google Scholar
Chaix A, Zarrinpar A, Panda S. The circadian coordination of cell biology. J Cell Biol. 2016;215(1):15–25. doi:10.1083/jcb.201603076.
CAS
Article
PubMed
PubMed Central
Google Scholar
Kondratov RV, Kondratova AA, Gorbacheva VY, Vykhovanets OV, Antoch MP. Early aging and age-related pathologies in mice deficient in BMAL1, the core componentof the circadian clock. Genes Dev. 2006;20(14):1868–73. doi:10.1101/gad.1432206.
CAS
Article
PubMed
PubMed Central
Google Scholar
Bunger MK, Walisser JA, Sullivan R, Manley PA, Moran SM, Kalscheur VL, et al. Progressive arthropathy in mice with a targeted disruption of the Mop3/Bmal-1 locus. Genesis. 2005;41(3):122–32. doi:10.1002/gene.20102.
CAS
Article
PubMed
Google Scholar
Antoch MP, Gorbacheva VY, Vykhovanets O, Toshkov IA, Kondratov RV, Kondratova AA, et al. Disruption of the circadian clock due to the Clock mutation has discrete effects on aging and carcinogenesis. Cell Cycle. 2008;7(9):1197–204. doi:10.4161/cc.7.9.5886.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lefta M, Campbell KS, Feng HZ, Jin JP, Esser KA. Development of dilated cardiomyopathy in Bmal1-deficient mice. Am J Physiol Heart Circ Physiol. 2012;303(4):H475–85. doi:10.1152/ajpheart.00238.2012.
CAS
Article
PubMed
PubMed Central
Google Scholar
McDearmon EL, Patel KN, Ko CH, Walisser JA, Schook AC, Chong JL, et al. Dissecting the functions of the mammalian clock protein BMAL1 by tissue-specific rescue in mice. Science. 2006;314(5803):1304–8. doi:10.1126/science.1132430.
CAS
Article
PubMed
PubMed Central
Google Scholar
McCarthy JJ, Andrews JL, McDearmon EL, Campbell KS, Barber BK, Miller BH, et al. Identification of the circadian transcriptome in adult mouse skeletal muscle. Physiol Genomics. 2007;31(1):86–95. doi:10.1152/physiolgenomics.00066.2007.
CAS
Article
PubMed
Google Scholar
Pizarro A, Hayer K, Lahens NF, Hogenesch JB. CircaDB: a database of mammalian circadian gene expression profiles. Nucleic Acids Res. 2013;41(Database issue):D1009–13. doi:10.1093/nar/gks1161.
CAS
Article
PubMed
Google Scholar
• Hodge BA, Wen Y, Riley LA, Zhang X, England JH, Harfmann BD, et al. The endogenous molecular clock orchestrates the temporal separation of substrate metabolism in skeletal muscle. Skelet Muscle. 2015;5:17. doi:10.1186/s13395-015-0039-5. This paper describes the role of the skeletal muscle molecular clock in temporally regulating genes involved in substrating utilization and storage. The microarrays from this paper were used to determine changes in myokine expression outlined in Table 1.
Article
PubMed
PubMed Central
Google Scholar
Vitaterna MH, King DP, Chang AM, Kornhauser JM, Lowrey PL, McDonald JD, et al. Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science. 1994;264(5159):719–25.
CAS
Article
PubMed
PubMed Central
Google Scholar
Panda S, Antoch MP, Miller BH, Su AI, Schook AB, Straume M, et al. Coordinated transcription of key pathways in the mouse by the circadian clock. Cell. 2002;109(3):307–20.
CAS
Article
PubMed
Google Scholar
Dyar KA, Ciciliot S, Wright LE, Bienso RS, Tagliazucchi GM, Patel VR, et al. Muscle insulin sensitivity and glucose metabolism are controlled by the intrinsic muscle clock. Mol Metab. 2014;3(1):29–41. doi:10.1016/j.molmet.2013.10.005.
CAS
Article
PubMed
Google Scholar
Peek CB, Levine DC, Cedernaes J, Taguchi A, Kobayashi Y, Tsai SJ, et al. Circadian clock interaction with HIF1alpha mediates oxygenic metabolism and anaerobic glycolysis in skeletal muscle. Cell Metab. 2017;25(1):86–92. doi:10.1016/j.cmet.2016.09.010.
CAS
Article
PubMed
Google Scholar
Nakao R, Shimba S, Oishi K. Muscle Bmal1 is dispensable for the progress of neurogenic muscle atrophy in mice. J Circadian Rhythms. 2016;14(1):1–7. doi:10.5334/jcr.141.
Article
Google Scholar
Harfmann BD, Schroder EA, Kachman MT, Hodge BA, Zhang X, Esser KA. Muscle-specific loss of Bmal1 leads to disrupted tissue glucose metabolism and systemic glucose homeostasis. Skelet Muscle. 2016;6:12. doi:10.1186/s13395-016-0082-x.
Article
PubMed
PubMed Central
Google Scholar
Olsen BR, Reginato AM, Wang W. Bone development. Annu Rev Cell Dev Biol. 2000;16:191–220. doi:10.1146/annurev.cellbio.16.1.191.
CAS
Article
PubMed
Google Scholar
Ferretti JL, Capozza RF, Cointry GR, Garcia SL, Plotkin H, Alvarez Filgueira ML, et al. Gender-related differences in the relationship between densitometric values of whole-body bone mineral content and lean body mass in humans between 2 and 87 years of age. Bone. 1998;22(6):683–90.
CAS
Article
PubMed
Google Scholar
Frost HM. Bone’s mechanostat: a 2003 update. Anat Rec A Discov Mol Cell Evol Biol. 2003;275(2):1081–101. doi:10.1002/ar.a.10119.
Article
PubMed
Google Scholar
Go SW, Cha YH, Lee JA, Park HS. Association between sarcopenia, bone density, and health-related quality of life in Korean men. Korean J Fam Med. 2013;34(4):281–8. doi:10.4082/kjfm.2013.34.4.281.
Article
PubMed
PubMed Central
Google Scholar
Pedersen BK, Steensberg A, Fischer C, Keller C, Keller P, Plomgaard P, et al. Searching for the exercise factor: is IL-6 a candidate? J Muscle Res Cell Motil. 2003;24(2–3):113–9.
CAS
Article
PubMed
Google Scholar
Bortoluzzi S, Scannapieco P, Cestaro A, Danieli GA, Schiaffino S. Computational reconstruction of the human skeletal muscle secretome. Proteins. 2006;62(3):776–92. doi:10.1002/prot.20803.
CAS
Article
PubMed
Google Scholar
Catoire M, Mensink M, Kalkhoven E, Schrauwen P, Kersten S. Identification of human exercise-induced myokines using secretome analysis. Physiol Genomics. 2014;46(7):256–67. doi:10.1152/physiolgenomics.00174.2013.
CAS
Article
PubMed
Google Scholar
Deshmukh AS, Cox J, Jensen LJ, Meissner F, Mann M. Secretome analysis of lipid-induced insulin resistance in skeletal muscle cells by a combined experimental and bioinformatics workflow. J Proteome Res. 2015;14(11):4885–95. doi:10.1021/acs.jproteome.5b00720.
CAS
Article
PubMed
Google Scholar
Pedersen L, Hojman P. Muscle-to-organ cross talk mediated by myokines. Adipocyte. 2012;1(3):164–7. doi:10.4161/adip.20344.
Article
PubMed
PubMed Central
Google Scholar
Henningsen J, Rigbolt KT, Blagoev B, Pedersen BK, Kratchmarova I. Dynamics of the skeletal muscle secretome during myoblast differentiation. Mol Cell Proteomics. 2010;9(11):2482–96. doi:10.1074/mcp.M110.002113.
CAS
Article
PubMed
PubMed Central
Google Scholar
• Perrin L, Loizides-Mangold U, Skarupelova S, Pulimeno P, Chanon S, Robert M, et al. Human skeletal myotubes display a cell-autonomous circadian clock implicated in basal myokine secretion. Mol Metab. 2015;4(11):834–45. doi:10.1016/j.molmet.2015.07.009. This paper was the first to describe the role of the molecular clock in regulating basal myokine secretion.
CAS
Article
PubMed
PubMed Central
Google Scholar
• Colaianni G, Cuscito C, Mongelli T, Pignataro P, Buccoliero C, Liu P, et al. The myokine irisin increases cortical bone mass. Proc Natl Acad Sci U S A. 2015;112(39):12157–62. doi:10.1073/pnas.1516622112. This paper describes changes in bone mass and strength following weekly injections of irisin, a myokine that is normally secreted following exercise. Findings from this study suggest that the changes to bone mass following exercise are not strictly due to increased loading on the bone, but rather through increased irisin action on osteoblast differentiation.
CAS
Article
PubMed
PubMed Central
Google Scholar
Hu K, Olsen BR. Osteoblast-derived VEGF regulates osteoblast differentiation and bone formation during bone repair. J Clin Invest. 2016;126(2):509–26. doi:10.1172/JCI82585.
Article
PubMed
PubMed Central
Google Scholar
Ribeiro N, Sousa SR, Brekken RA, Monteiro F. Role of SPARC in bone remodeling and cancer-related bone metastasis. J Cell Biochem. 2013;115(1):17–26. doi:10.1002/jcb.24649.
Article
Google Scholar
Chen G, Deng C, Li YP. TGF-beta and BMP signaling in osteoblast differentiation and bone formation. Int J Biol Sci. 2012;8(2):272–88. doi:10.7150/ijbs.2929.
CAS
Article
PubMed
PubMed Central
Google Scholar
Lean JM, Murphy C, Fuller K, Chambers TJ. CCL9/MIP-1gamma and its receptor CCR1 are the major chemokine ligand/receptor species expressed by osteoclasts. J Cell Biochem. 2002;87(4):386–93. doi:10.1002/jcb.10319.
CAS
Article
PubMed
Google Scholar
Genetos DC, Wong A, Weber TJ, Karin NJ, Yellowley CE. Impaired osteoblast differentiation in annexin A2- and -A5-deficient cells. PLoS One. 2014;9(9):e107482. doi:10.1371/journal.pone.0107482.
Article
PubMed
PubMed Central
Google Scholar
Koli K, Wempe F, Sterner-Kock A, Kantola A, Komor M, Hofmann WK, et al. Disruption of LTBP-4 function reduces TGF-beta activation and enhances BMP-4 signaling in the lung. J Cell Biol. 2004;167(1):123–33. doi:10.1083/jcb.200403067.
CAS
Article
PubMed
PubMed Central
Google Scholar
Amend SR, Uluckan O, Hurchla M, Leib D, Novack DV, Silva M, et al. Thrombospondin-1 regulates bone homeostasis through effects on bone matrix integrity and nitric oxide signaling in osteoclasts. J Bone Miner Res. 2015;30(1):106–15. doi:10.1002/jbmr.2308.
CAS
Article
PubMed
PubMed Central
Google Scholar
Zhang M, Faugere MC, Malluche H, Rosen CJ, Chernausek SD, Clemens TL. Paracrine overexpression of IGFBP-4 in osteoblasts of transgenic mice decreases bone turnover and causes global growth retardation. J Bone Miner Res. 2003;18(5):836–43. doi:10.1359/jbmr.2003.18.5.836.
CAS
Article
PubMed
Google Scholar
Djaafar S, Pierroz DD, Chicheportiche R, Zheng XX, Ferrari SL, Ferrari-Lacraz S. Inhibition of T cell-dependent and RANKL-dependent osteoclastogenic processes associated with high levels of bone mass in interleukin-15 receptor-deficient mice. Arthritis Rheum. 2010;62(11):3300–10. doi:10.1002/art.27645.
CAS
Article
PubMed
Google Scholar
Feng S, Madsen SH, Viller NN, Neutzsky-Wulff AV, Geisler C, Karlsson L, et al. Interleukin-15-activated natural killer cells kill autologous osteoclasts via LFA-1, DNAM-1 and TRAIL, and inhibit osteoclast-mediated bone erosion in vitro. Immunology. 2015;145(3):367–79. doi:10.1111/imm.12449.
CAS
Article
PubMed
PubMed Central
Google Scholar
Bialek P, Parkington J, Li X, Gavin D, Wallace C, Zhang J, et al. A myostatin and activin decoy receptor enhances bone formation in mice. Bone. 2014;60:162–71. doi:10.1016/j.bone.2013.12.002.
CAS
Article
PubMed
Google Scholar
• Dankbar B, Fennen M, Brunert D, Hayer S, Frank S, Wehmeyer C, et al. Myostatin is a direct regulator of osteoclast differentiation and its inhibition reduces inflammatory joint destruction in mice. Nat Med. 2015;21(9):1085–90. doi:10.1038/nm.3917. This paper is the first to describe a direct role of myostatin in osteoclastogenesis. This is the first paper to describe myostatin’s biochemical effect on bone rather than a load-associated effect.
CAS
Article
PubMed
Google Scholar
Yang J, Shah R, Robling AG, Templeton E, Yang H, Tracey KJ, et al. HMGB1 is a bone-active cytokine. J Cell Physiol. 2008;214(3):730–9. doi:10.1002/jcp.21268.
CAS
Article
PubMed
Google Scholar
Mukherjee A, Rotwein P. Insulin-like growth factor binding protein-5 in osteogenesis: facilitator or inhibitor? Growth Hormon IGF Res. 2007;17(3):179–85. doi:10.1016/j.ghir.2007.01.005.
CAS
Article
Google Scholar
Liu W, Zhou L, Zhou C, Zhang S, Jing J, Xie L, et al. GDF11 decreases bone mass by stimulating osteoclastogenesis and inhibiting osteoblast differentiation. Nat Commun. 2016;7:12794. doi:10.1038/ncomms12794.
CAS
Article
PubMed
PubMed Central
Google Scholar
McPherron AC, Lawler AM, Lee SJ. Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature. 1997;387(6628):83–90. doi:10.1038/387083a0.
CAS
Article
PubMed
Google Scholar
Park JJ, Berggren JR, Hulver MW, Houmard JA, Hoffman EP. GRB14, GPD1, and GDF8 as potential network collaborators in weight loss-induced improvements in insulin action in human skeletal muscle. Physiol Genomics. 2006;27(2):114–21. doi:10.1152/physiolgenomics.00045.2006.
CAS
Article
PubMed
Google Scholar
Mohan S, Nakao Y, Honda Y, Landale E, Leser U, Dony C, et al. Studies on the mechanisms by which insulin-like growth factor (IGF) binding protein-4 (IGFBP-4) and IGFBP-5 modulate IGF actions in bone cells. J Biol Chem. 1995;270(35):20424–31.
CAS
Article
PubMed
Google Scholar
Kanatani M, Sugimoto T, Nishiyama K, Chihara K. Stimulatory effect of insulin-like growth factor binding protein-5 on mouse osteoclast formation and osteoclastic bone-resorbing activity. J Bone Miner Res. 2000;15(5):902–10. doi:10.1359/jbmr.2000.15.5.902.
CAS
Article
PubMed
Google Scholar
Devlin RD, Du Z, Buccilli V, Jorgetti V, Canalis E. Transgenic mice overexpressing insulin-like growth factor binding protein-5 display transiently decreased osteoblastic function and osteopenia. Endocrinology. 2002;143(10):3955–62. doi:10.1210/en.2002-220129.
CAS
Article
PubMed
Google Scholar
Geiser AG, Hummel CW, Draper MW, Henck JW, Cohen IR, Rudmann DG, et al. A new selective estrogen receptor modulator with potent uterine antagonist activity, agonist activity in bone, and minimal ovarian stimulation. Endocrinology. 2005;146(10):4524–35. doi:10.1210/en.2005-0024.
CAS
Article
PubMed
Google Scholar
Yasui T, Kadono Y, Nakamura M, Oshima Y, Matsumoto T, Masuda H, et al. Regulation of RANKL-induced osteoclastogenesis by TGF-beta through molecular interaction between Smad3 and Traf6. J Bone Miner Res. 2011;26(7):1447–56. doi:10.1002/jbmr.357.
CAS
Article
PubMed
Google Scholar
Lee P, Linderman JD, Smith S, Brychta RJ, Wang J, Idelson C, et al. Irisin and FGF21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab. 2014;19(2):302–9. doi:10.1016/j.cmet.2013.12.017.
CAS
Article
PubMed
Google Scholar
Vaughan RA, Gannon NP, Barberena MA, Garcia-Smith R, Bisoffi M, Mermier CM, et al. Characterization of the metabolic effects of irisin on skeletal muscle in vitro. Diabetes Obes Metab. 2014;16(8):711–8. doi:10.1111/dom.12268.
CAS
Article
PubMed
Google Scholar
Colaianni G, Grano M. Role of Irisin on the bone-muscle functional unit. Bonekey Rep. 2015;4:765. doi:10.1038/bonekey.2015.134.
CAS
Article
PubMed
PubMed Central
Google Scholar
McPherron AC, Lawler AM, Lee SJ. Regulation of anterior/posterior patterning of the axial skeleton by growth/differentiation factor 11. Nat Genet. 1999;22(3):260–4. doi:10.1038/10320.
CAS
Article
PubMed
Google Scholar
Sinha M, Jang YC, Oh J, Khong D, Wu EY, Manohar R, et al. Restoring systemic GDF11 levels reverses age-related dysfunction in mouse skeletal muscle. Science. 2014;344(6184):649–52. doi:10.1126/science.1251152.
CAS
Article
PubMed
PubMed Central
Google Scholar
Poggioli T, Vujic A, Yang P, Macias-Trevino C, Uygur A, Loffredo FS, et al. Circulating growth differentiation factor 11/8 levels decline with age. Circ Res. 2016;118(1):29–37. doi:10.1161/CIRCRESAHA.115.307521.
CAS
Article
PubMed
Google Scholar
Loffredo FS, Steinhauser ML, Jay SM, Gannon J, Pancoast JR, Yalamanchi P, et al. Growth differentiation factor 11 is a circulating factor that reverses age-related cardiac hypertrophy. Cell. 2013;153(4):828–39. doi:10.1016/j.cell.2013.04.015.
CAS
Article
PubMed
PubMed Central
Google Scholar
Schafer MJ, Atkinson EJ, Vanderboom PM, Kotajarvi B, White TA, Moore MM, et al. Quantification of GDF11 and myostatin in human aging and cardiovascular disease. Cell Metab. 2016;23(6):1207–15. doi:10.1016/j.cmet.2016.05.023.
CAS
Article
PubMed
Google Scholar
Egerman MA, Cadena SM, Gilbert JA, Meyer A, Nelson HN, Swalley SE, et al. GDF11 increases with age and inhibits skeletal muscle regeneration. Cell Metab. 2015;22(1):164–74. doi:10.1016/j.cmet.2015.05.010.
CAS
Article
PubMed
PubMed Central
Google Scholar
Rodgers BD, Eldridge JA. Reduced circulating GDF11 is unlikely responsible for age-dependent changes in mouse heart, muscle, and Brain. Endocrinology. 2015;156(11):3885–8. doi:10.1210/en.2015-1628.
CAS
Article
PubMed
Google Scholar
Hammers DW, Merscham-Banda M, Hsiao JY, Engst S, Hartman JJ, Sweeney HL. Supraphysiological levels of GDF11 induce striated muscle atrophy. EMBO Mol Med. 2017; doi:10.15252/emmm.201607231.
PubMed
PubMed Central
Google Scholar
Lu Q, Tu ML, Li CJ, Zhang L, Jiang TJ, Liu T, et al. GDF11 inhibits bone formation by activating Smad2/3 in bone marrow mesenchymal stem cells. Calcif Tissue Int. 2016;99(5):500–9. doi:10.1007/s00223-016-0173-z.
CAS
Article
PubMed
Google Scholar
Duffy JF, Zitting KM, Chinoy ED. Aging and circadian rhythms. Sleep Med Clin. 2015;10(4):423–34. doi:10.1016/j.jsmc.2015.08.002.
Article
PubMed
PubMed Central
Google Scholar