Skip to main content

Advertisement

Log in

Trabecular Architecture and Vertebral Fragility in Osteoporosis

  • Skeletal Biology (D Burr, Section Editor)
  • Published:
Current Osteoporosis Reports Aims and scope Submit manuscript

Abstract

Osteoporosis heightens vertebral fragility owing to the biomechanical effects of diminished bone structure and composition. These biomechanical effects are only partially explained by loss in bone mass, so additional factors that are independent of bone mass are also thought to play an important role in vertebral fragility. Recent advances in imaging equipment, imaging-processing methods, and computational capacity allow researchers to quantify trabecular architecture in the vertebra at the level of the individual trabecular elements and to derive biomechanics-based measures of architecture that are independent of bone mass and density. These advances have shed light on the role of architecture in vertebral fragility. In addition to the adverse biomechanical consequences associated with trabecular thinning and loss of connectivity, a reduction in the number of vertical trabecular plates appears to be particularly harmful to vertebral strength. In the clinic, detailed architecture analysis is primarily applied to peripheral sites such as the distal radius and tibia. Analysis of trabecular architecture at these peripheral sites has shown mixed results for discriminating between patients with and without a vertebral fracture independent of bone mass, but has the potential to provide unique insight into the effects of therapeutic treatments. Overall, it does appear that trabecular architecture has an independent role on vertebral strength. Additional research is required to determine how and where architecture should be measured in vivo and whether assessment of trabecular architecture in a clinical setting improves prospective fracture risk assessment for the vertebra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Ebbesen EN, Thomsen JS, Beck-Nielsen H, et al. Lumbar vertebral body compressive strength evaluated by dual-energy X-ray absorptiometry, quantitative computed tomography, and ashing. Bone. 1999;25(6):713–24.

    Article  PubMed  CAS  Google Scholar 

  2. Hansson T, Roos B, Nachemson A. The bone mineral content and ultimate compressive strength of lumbar vertebrae. Spine. 1980;5(1):46–55.

    Article  PubMed  CAS  Google Scholar 

  3. Singer K, Edmondston S, Day R, et al. Prediction of thoracic and lumbar vertebral body compressive strength - correlations with bone-mineral density and vertebral region. Bone. 1995;17(2):167–74.

    Article  PubMed  CAS  Google Scholar 

  4. Schuit SC, van der Klift M, Weel AE, et al. Fracture incidence and association with bone mineral density in elderly men and women: the Rotterdam Study. Bone. 2004;34(1):195–202.

    Article  PubMed  CAS  Google Scholar 

  5. Siris ES, Chen YT, Abbott TA, et al. Bone mineral density thresholds for pharmacological intervention to prevent fractures. Arch Intern Med. 2004;164(10):1108–12.

    Article  PubMed  Google Scholar 

  6. Lems WF, Raterman HG, van den Bergh JP, et al. Osteopenia: a diagnostic and therapeutic challenge. Curr Osteoporos Rep. 2011;9(3):167–72.

    Article  PubMed  Google Scholar 

  7. Heaney RP. Is the paradigm shifting? Bone. 2003;33(4):457–65.

    Article  PubMed  Google Scholar 

  8. Hernandez CJ, Keaveny TM. A biomechanical perspective on bone quality. Bone. 2006;39(6):1173–81.

    Article  PubMed  CAS  Google Scholar 

  9. Keaveny TM. Mechanistic approaches to analysis of trabecular bone. Forma. 1997;12:267–75.

    Google Scholar 

  10. Burghardt AJ, Link TM, Majumdar S. High-resolution computed tomography for clinical imaging of bone microarchitecture. Clin Orthop Relat Res. 2011;469(8):2179–93.

    Article  PubMed  Google Scholar 

  11. Krug R, Burghardt AJ, Majumdar S, Link TM. High-resolution imaging techniques for the assessment of osteoporosis. Radiol Clin North Am. 2010;48(3):601–21.

    Article  PubMed  Google Scholar 

  12. Christiansen BA, Bouxsein ML. Biomechanics of vertebral fractures and the vertebral fracture cascade. Curr Osteoporos Rep. 2010;8(4):198–204.

    Article  PubMed  Google Scholar 

  13. Parfitt AM, Drezner MK, Glorieux FH, et al. Bone histomorphometry: standardization of nomenclature, symbols, and units. Report of the ASBMR Histomorphometry Nomenclature Committee. J Bone Miner Res. 1987;2(6):595–610.

    Article  PubMed  CAS  Google Scholar 

  14. Snyder BD, Piazza S, Edwards WT, Hayes WC. Role of trabecular morphology in the etiology of age-related vertebral fractures. Calcif Tissue Int. 1993;53S(1):S14–22.

    Article  Google Scholar 

  15. Thomsen JS, Ebbesen EN, Mosekilde L. Relationships between static histomorphometry and bone strength measurements in human iliac crest bone biopsies. Bone. 1998;22(2):153–63.

    Article  PubMed  CAS  Google Scholar 

  16. Thomsen JS, Ebbesen EN, Mosekilde L. Predicting human vertebral bone strength by vertebral static histomorphometry. Bone. 2002;30(3):502–8.

    Article  PubMed  CAS  Google Scholar 

  17. Feldkamp LA, Goldstein SA, Parfitt AM, et al. The direct examination of three-dimensional bone architecture in vitro by computed tomography. J Bone Miner Res. 1989;4(1):3–11.

    Article  PubMed  CAS  Google Scholar 

  18. Kuhn JL, Goldstein SA, Feldkamp LA, et al. Evaluation of a microcomputed tomography system to study trabecular bone structure. J Orthop Res. 1990;8(6):833–42.

    Article  PubMed  CAS  Google Scholar 

  19. Rüegsegger P, Koller B, Müller R. A microtomographic system for the nondestructive evaluation of bone architecture. Calcif Tissue Int. 1996;58(1):24–9.

    Article  PubMed  Google Scholar 

  20. Beck JD, Canfield BL, Haddock SM, et al. Three-dimensional imaging of trabecular bone using the computer numerically controlled milling technique. Bone. 1997;21(3):281–7.

    Article  PubMed  CAS  Google Scholar 

  21. Odgaard A, Andersen K, Melsen F, Gundersen HJ. A direct method for fast three-dimensional serial reconstruction. J Microsc. 1990;159:335–42.

    Article  PubMed  CAS  Google Scholar 

  22. Slyfield Jr CR, Niemeyer KE, Tkachenko EV, et al. Three-dimensional surface texture visualization of bone tissue through epifluorescence-based serial block face imaging. J Microsc. 2009;236(1):52–9.

    Article  PubMed  Google Scholar 

  23. Cruz-Orive L, Karlsson L, Larsen S, Wainschtein F. Characterizing structural anisotropy: A new concept. Micron Microscopica Acta. 1992;23:75–6.

    Article  Google Scholar 

  24. Hildebrand T, Laib A, Müller R, et al. Direct three-dimensional morphometric analysis of human cancellous bone: microstructural data from spine, femur, iliac crest, and calcaneus. J Bone Miner Res. 1999;14(7):1167–74.

    Article  PubMed  CAS  Google Scholar 

  25. Odgaard A, Gundersen HJ. Quantification of connectivity in cancellous bone, with special emphasis on 3-D reconstructions. Bone. 1993;14(2):173–82.

    Article  PubMed  CAS  Google Scholar 

  26. Odgaard A, Jensen EB, Gundersen HJ. Estimation of structural anisotropy based on volume orientation. A new concept. J Microsc. 1990;157:149–62.

    Article  PubMed  CAS  Google Scholar 

  27. Goldstein SA, Goulet R, McCubbrey D. Measurement and significance of three-dimensional architecture to the mechanical integrity of trabecular bone. Calcif Tissue Int. 1993;53S(1):S127–33.

    Article  Google Scholar 

  28. Liu XS, Sajda P, Saha PK, et al. Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone. J Bone Miner Res. 2008;23(2):223–35.

    Article  PubMed  Google Scholar 

  29. Peyrin F, Attali D, Chappard C, Benhamou CL. Local plate/rod descriptors of 3D trabecular bone micro-CT images from medial axis topologic analysis. Medical physics. 2010;37(8):4364–76.

    Article  PubMed  Google Scholar 

  30. Stauber M, Müller R. Volumetric spatial decomposition of trabecular bone into rods and plates–a new method for local bone morphometry. Bone. 2006;38(4):475–84.

    Article  PubMed  Google Scholar 

  31. Goulet RW, Goldstein SA, Ciarelli MJ, et al. The relationship between the structural and orthogonal compressive properties of trabecular bone. J Biomech. 1994;27(4):375–89.

    Article  PubMed  CAS  Google Scholar 

  32. Hou FJ, Lang SM, Hoshaw SJ, et al. Human vertebral body apparent and hard tissue stiffness. J Biomech. 1998;31(11):1009–15.

    Article  PubMed  CAS  Google Scholar 

  33. Ulrich D, van Rietbergen B, Laib A, Rüegsegger P. The ability of three-dimensional structural indices to reflect mechanical aspects of trabecular bone. Bone. 1999;25(1):55–60.

    Article  PubMed  CAS  Google Scholar 

  34. Burr DB. Bone material properties and mineral matrix contributions to fracture risk or age in women and men. J Musculoskelet Neuronal Interact. 2002;2(3):201–4.

    PubMed  CAS  Google Scholar 

  35. Gross T, Pahr DH, Peyrin F, Zysset PK. Mineral heterogeneity has a minor influence on the apparent elastic properties of human cancellous bone: a SRmuCT-based finite element study. Comput Methods Biomech Biomed Engin. 2012.

  36. Atkinson PJ. Variation in trabecular structure of vertebrae with age. Calcif Tissue Res. 1967;1(1):24–32.

    Article  PubMed  CAS  Google Scholar 

  37. Bergot C, Laval JAM, Preteux F, Meunier A. Measurement of anisotropic vertebral trabecular bone loss during aging by quantitative image analysis. Calcif Tissue Int. 1988;43(3):143–9.

    Article  PubMed  CAS  Google Scholar 

  38. Thomsen JS, Ebbesen EN, Mosekilde L. Age-related differences between thinning of horizontal and vertical trabeculae in human lumbar bone as assessed by a new computerized method. Bone. 2002;31(1):136–42.

    Article  PubMed  CAS  Google Scholar 

  39. Bevill G, Eswaran SK, Gupta A, et al. Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone. Bone. 2006;39(6):1218–25.

    Article  PubMed  Google Scholar 

  40. Guo XE, Kim CH. Mechanical consequence of trabecular bone loss and its treatment: a three-dimensional model simulation. Bone. 2002;30(2):404–11.

    Article  PubMed  CAS  Google Scholar 

  41. Silva MJ, Gibson LJ. Modeling the mechanical behavior of vertebral trabecular bone: Effects of age-related changes in microstructure. Bone. 1997;21(2):191–9.

    Article  PubMed  CAS  Google Scholar 

  42. Stölken JS, Kinney JH. On the importance of geometric nonlinearity in finite-element simulations of trabecular bone failure. Bone. 2003;33(4):494–504.

    Article  PubMed  Google Scholar 

  43. Cooper C, Atkinson EJ, O’Fallon WM, Melton LJ. Incidence of clinically diagnosed vertebral fractures: a population-based study in Rochester, Minnesota, 1985–1989. J Bone Miner Res. 1992;7:221–7.

    Article  PubMed  CAS  Google Scholar 

  44. Myers ER, Wilson SE, Greenspan SL. Vertebral fractures in the elderly occur with falling and bending. J Bone Miner Res. 1996;11(Suppl):S355.

    Google Scholar 

  45. Shi X, Liu XS, Wang X, et al. Effects of trabecular type and orientation on microdamage susceptibility in trabecular bone. Bone. 2010;46(5):1260–6.

    Article  PubMed  Google Scholar 

  46. Keaveny TM, Wachtel EF, Kopperdahl DL. Mechanical behavior of human trabecular bone after overloading. J Orthop Res. 1999;17:346–53.

    Article  PubMed  CAS  Google Scholar 

  47. Haddock SM, Yeh OC, Mummaneni PV, et al. Similarity in the fatigue behavior of trabecular bone across site and species. J Biomech. 2004;37(2):181–7.

    Article  PubMed  Google Scholar 

  48. Green JO, Wang J, Diab T, et al. Age-related differences in the morphology of microdamage propagation in trabecular bone. J Biomech. 2011;44(15):2659–66.

    Article  PubMed  Google Scholar 

  49. Shi X, Wang X, Niebur GL. Effects of loading orientation on the morphology of the predicted yielded regions in trabecular bone. Ann Biomed Eng. 2009;37(2):354–62.

    Article  PubMed  Google Scholar 

  50. Yeni YN, Zinno MJ, Yerramshetty JS, et al. Variability of trabecular microstructure is age-, gender-, race- and anatomic site-dependent and affects stiffness and stress distribution properties of human vertebral cancellous bone. Bone. 2011;49(4):886–94.

    Article  PubMed  Google Scholar 

  51. Yeh OC, Keaveny TM. Biomechanical effects of intraspecimen variations in trabecular architecture: A three-dimensional finite element study. Bone. 1999;25(2):223–8.

    Article  PubMed  CAS  Google Scholar 

  52. Parkinson IH, Badiei A, Stauber M et al. Vertebral body bone strength: the contribution of individual trabecular element morphology. Osteoporos Int. 2011.

  53. Stauber M, Rapillard L, van Lenthe GH, et al. Importance of individual rods and plates in the assessment of bone quality and their contribution to bone stiffness. J Bone Miner Res. 2006;21(4):586–95.

    Article  PubMed  Google Scholar 

  54. • Liu XS, Bevill G, Keaveny TM et al. Micromechanical analyses of vertebral trabecular bone based on individual trabeculae segmentation of plates and rods. J Biomech. 2009;42(3):249–56. This study used local architecure analysis and micro-finite element modeling to evaluate the roles of trabecular type (rods vs plates) and orientation on the initiation and progression of failure in vertebral trabecular bone. Results showed that failure initiates at rods and rods fail disproportionally to their number; however, plates contribute significantly to the apparent yield strength because of their larger number and tissue volume.

    Article  PubMed  Google Scholar 

  55. Morgan EF, Bayraktar HH, Yeh OC, et al. Contribution of inter-site variations in architecture to trabecular bone apparent yield strains. J Biomech. 2004;37(9):1413–20.

    Article  PubMed  Google Scholar 

  56. Hulme PA, Boyd SK, Ferguson SJ. Regional variation in vertebral bone morphology and its contribution to vertebral fracture strength. Bone. 2007;41(6):946–57.

    Article  PubMed  CAS  Google Scholar 

  57. Wegrzyn J, Roux JP, Arlot ME et al. Role of trabecular microarchitecture and its heterogeneity parameters in the mechanical behavior of ex-vivo human L3 vertebrae. J Bone Miner Res. 2010.

  58. Banse X, Devogelaer JP, Munting E, et al. Inhomogeneity of human vertebral cancellous bone: systematic density and structure patterns inside the vertebral body. Bone. 2001;28(5):563–71.

    Article  PubMed  CAS  Google Scholar 

  59. Thomsen JS, Ebbesen EN, Mosekilde L. Zone-dependent changes in human vertebral trabecular bone: Clinical implications. Bone. 2002;30(5):664–9.

    Article  PubMed  Google Scholar 

  60. Fields AJ, Eswaran SK, Jekir MG, Keaveny TM. Role of trabecular microarchitecture in whole-verterbal body biomechanical behavior. J Bone Miner Res. 2009;29(9):1523–30.

    Article  Google Scholar 

  61. Roux J, Wegrzyn J, Arlot M, et al. Contribution of trabecular and cortical components to biomechanical behavior of human vertebrae: an ex-vivo study. J Bone Miner Res. 2009;25(2):356–61.

    Article  Google Scholar 

  62. •• Fields AJ, Lee GL, Liu XS et al. Influence of vertical trabeculae on the compressive strength of the human vertebra. J Bone Miner Res. 2011;26(2):263–9. This study combined micro-finite element analysis, experimental testing, and local architecture analysis of cadaver vertebrae to derive a new, biomechanics-based architecture parameter for predicting vertebral strength: the vertical tissue fraction.

    Article  PubMed  Google Scholar 

  63. Mcbroom RJ, Hayes WC, Edwards WT, et al. Prediction of vertebral body compressive fracture using quantitative computed-tomography. J Bone Joint Surg Am. 1985;67A(8):1206–14.

    Google Scholar 

  64. Rockoff SD, Sweet E, Bleustein J. The relative contribution of trabecular and cortical bone to the strength of human lumbar vertebrae. Calcif Tissue Res. 1969;3:163–75.

    Article  PubMed  CAS  Google Scholar 

  65. Eswaran SK, Gupta A, Adams MF, Keaveny TM. Cortical and trabecular load sharing in the human vertebral body. J Bone Miner Res. 2006;21(2):307–14.

    Article  PubMed  Google Scholar 

  66. Homminga J, Van-Rietbergen B, Lochmüller EM, et al. The osteoporotic vertebral structure is well adapted to the loads of daily life, but not to infrequent “error” loads. Bone. 2004;34(3):510–6.

    Article  PubMed  CAS  Google Scholar 

  67. Eswaran SK, Bayraktar HH, Adams MF, et al. The micro-mechanics of cortical shell removal in the human vertebral body. Comput Method Appl Mech Eng. 2007;196(31):3025–32.

    Article  Google Scholar 

  68. •• Melton LJ, 3rd, Riggs BL, Keaveny TM et al. Relation of vertebral deformities to bone density, structure, and strength. J Bone Miner Res. 2010;25(9):1922–30. This study reported that impaired bone density, structure, and strength distinguish women with mild vertebral deformities from controls. This suggests that mild vertebral deformities may represent early osteoporotic fractures.

    Article  PubMed  Google Scholar 

  69. Delmas PD, Genant HK, Crans GG, et al. Severity of prevalent vertebral fractures and the risk of subsequent vertebral and nonvertebral fractures: results from the MORE trial. Bone. 2003;33(4):522–32.

    Article  PubMed  CAS  Google Scholar 

  70. Ross PD, Genant HK, Davis JW, et al. Predicting vertebral fracture incidence from prevalent fractures and bone density among non-black, osteoporotic women. Osteoporos Int. 1993;3(3):120–6.

    Article  PubMed  CAS  Google Scholar 

  71. • Wegrzyn J, Roux JP, Arlot ME et al. Determinants of the mechanical behavior of human lumbar vertebrae after simulated mild fracture. J Bone Miner Res. 2011;26(4):739–46. This study reported that vertebrae with reduced trabecular number and increased trabecular separation had lower strength following an isolated overload, highlighting the important role of architecture in vertebral behavior following a simulated mild fracture.

    Article  PubMed  Google Scholar 

  72. Borah B, Dufresne T, Nurre J, et al. Risedronate reduces intracortical porosity in women with osteoporosis. J Bone Miner Res. 2010;25(1):41–7.

    Article  PubMed  CAS  Google Scholar 

  73. Borah B, Dufresne TE, Chmielewski PA, et al. Risedronate preserves bone architecture in postmenopausal women with osteoporosis as measured by three-dimensional microcomputed tomography. Bone. 2004;34(4):736–46.

    Article  PubMed  CAS  Google Scholar 

  74. Burghardt AJ, Kazakia GJ, Sode M, et al. A longitudinal HR-pQCT study of alendronate treatment in postmenopausal women with low bone density: Relations among density, cortical and trabecular microarchitecture, biomechanics, and bone turnover. J Bone Miner Res. 2010;25(12):2558–71.

    Article  PubMed  Google Scholar 

  75. Graeff C, Timm W, Nickelsen TN, et al. Monitoring teriparatide-associated changes in vertebral microstructure by high-resolution CT in vivo: results from the EUROFORS study. J Bone Miner Res. 2007;22(9):1426–33.

    Article  PubMed  CAS  Google Scholar 

  76. Macdonald HM, Nishiyama KK, Hanley DA, Boyd SK. Changes in trabecular and cortical bone microarchitecture at peripheral sites associated with 18 months of teriparatide therapy in postmenopausal women with osteoporosis. Osteoporos Int. 2011;22(1):357–62.

    Article  PubMed  CAS  Google Scholar 

  77. Rizzoli R, Laroche M, Krieg MA, et al. Strontium ranelate and alendronate have differing effects on distal tibia bone microstructure in women with osteoporosis. Rheumatol Int. 2010;30(10):1341–8.

    Article  PubMed  CAS  Google Scholar 

  78. •• Seeman E, Delmas PD, Hanley DA et al. Microarchitectural deterioration of cortical and trabecular bone: differing effects of denosumab and alendronate. J Bone Miner Res. 2010;25(8):1886–94. In this multicenter, longitudinal study using HR-pQCT to monitor treatment effects, these authors report that denosumab had greater antiresorptive efficacy than alendronate. Cortical thickness was preserved or improved at the radius and tibia with both treatments, while cortical bone loss progressed in the control group.

    Article  PubMed  Google Scholar 

  79. Aaron JE, Shore PA, Shore RC, et al. Trabecular architecture in women and men of similar bone mass with and without vertebral fracture: II. Three-dimensional histology. Bone. 2000;27(2):277–82.

    Article  PubMed  CAS  Google Scholar 

  80. Legrand E, Chappard D, Pascaretti C, et al. Trabecular bone microarchitecture, bone mineral density, and vertebral fractures in male osteoporosis. J Bone Miner Res. 2000;15(1):13–9.

    Article  PubMed  CAS  Google Scholar 

  81. Dempster DW, Cosman F, Kurland ES, et al. Effects of daily treatment with parathyroid hormone on bone microarchitecture and turnover in patients with osteoporosis: a paired biopsy study. J Bone Miner Res. 2001;16(10):1846–53.

    Article  PubMed  CAS  Google Scholar 

  82. Wehrli FW. Structural and functional assessment of trabecular and cortical bone by micro magnetic resonance imaging. J Magn Reson Imaging. 2007;25(2):390–409.

    Article  PubMed  Google Scholar 

  83. Burghardt AJ, Buie HR, Laib A, et al. Reproducibility of direct quantitative measures of cortical bone microarchitecture of the distal radius and tibia by HR-pQCT. Bone. 2010;47(3):519–28.

    Article  PubMed  Google Scholar 

  84. Ito M, Ikeda K, Nishiguchi M, et al. Multi-detector row CT imaging of vertebral microstructure for evaluation of fracture risk. J Bone Miner Res. 2005;20(10):1828–36.

    Article  PubMed  Google Scholar 

  85. Liu XS, Zhang XH, Rajapakse CS, et al. Accuracy of high-resolution in vivo micro magnetic resonance imaging for measurements of microstructural and mechanical properties of human distal tibial bone. J Bone Miner Res. 2010;25(9):2039–50.

    Article  PubMed  Google Scholar 

  86. MacNeil JA, Boyd SK. Accuracy of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys. 2007;29(10):1096–105.

    Article  PubMed  Google Scholar 

  87. Banse X, Devogelaer JP, Grynpas M. Patient-specific microarchitecture of vertebral cancellous bone: a peripheral quantitative computed tomographic and histological study. Bone. 2002;30(6):829–35.

    Article  PubMed  CAS  Google Scholar 

  88. Sornay-Rendu E, Boutroy S, Munoz F, Delmas PD. Alterations of cortical and trabecular architecture are associated with fractures in postmenopausal women, partially independent of decreased BMD measured by DXA: the OFELY study. J Bone Miner Res. 2007;22(3):425–33.

    Article  PubMed  Google Scholar 

  89. •• Sornay-Rendu E, Cabrera-Bravo JL, Boutroy S et al. Severity of vertebral fractures is associated with alterations of cortical architecture in postmenopausal women. J Bone Miner Res. 2009;24(4):737–43. This study found that, among postmenopausal women with vertebral fractures, reduced cortical and trabecular thickness assessed at the tibia with HR-pQCT was associated with increasing severity and number of vertebral fractures, even after adjusting for age and spine aBMD.

    Article  PubMed  Google Scholar 

  90. Ladinsky GA, Vasilic B, Popescu AM, et al. Trabecular structure quantified with the MRI-based virtual bone biopsy in postmenopausal women contributes to vertebral deformity burden independent of areal vertebral BMD. J Bone Miner Res. 2008;23(1):64–74.

    Article  PubMed  Google Scholar 

  91. Melton 3rd LJ, Riggs BL, Keaveny TM, et al. Structural determinants of vertebral fracture risk. J Bone Miner Res. 2007;22(12):1885–92.

    Article  PubMed  Google Scholar 

  92. Eckstein F, Matsuura M, Kuhn V, et al. Sex differences of human trabecular bone microstructure in aging are site-dependent. J Bone Miner Res. 2007;22(6):817–24.

    Article  PubMed  Google Scholar 

  93. Link TM, Bauer J, Kollstedt A, et al. Trabecular bone structure of the distal radius, the calcaneus, and the spine: which site predicts fracture status of the spine best? Invest Radiol. 2004;39(8):487–97.

    Article  PubMed  Google Scholar 

  94. Boutroy S, Bouxsein ML, Munoz F, Delmas PD. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab. 2005;90(12):6508–15.

    Article  PubMed  CAS  Google Scholar 

  95. MacNeil JA, Boyd SK. Improved reproducibility of high-resolution peripheral quantitative computed tomography for measurement of bone quality. Med Eng Phys. 2008;30(6):792–9.

    Article  PubMed  Google Scholar 

  96. Lam SC, Wald MJ, Rajapakse CS, et al. Performance of the MRI-based virtual bone biopsy in the distal radius: serial reproducibility and reliability of structural and mechanical parameters in women representative of osteoporosis study populations. Bone. 2011;49(4):895–903.

    Article  PubMed  Google Scholar 

  97. Nicks KM, Amin S, Atkinson EJ et al. Relationship of age to bone microstructure independent of areal bone mineral density. J Bone Miner Res. 2011.

  98. Szulc P, Boutroy S, Vilayphiou N, et al. Cross-sectional analysis of the association between fragility fractures and bone microarchitecture in older men: the STRAMBO study. J Bone Miner Res. 2011;26(6):1358–67.

    Article  PubMed  Google Scholar 

  99. Fields AJ, Lee GL, Keaveny TM. Mechanisms of initial endplate failure in the human vertebral body. J Biomech. 2010;43:3126–31.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (NIH) (grants AR049828 and AR043784).

Disclosure

Conflicts of interest: A.J. Fields: None; T.M. Keaveny: holds equity interests in O.N. Diagnostics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tony M. Keaveny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fields, A.J., Keaveny, T.M. Trabecular Architecture and Vertebral Fragility in Osteoporosis. Curr Osteoporos Rep 10, 132–140 (2012). https://doi.org/10.1007/s11914-012-0097-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11914-012-0097-0

Keywords

Navigation