Skip to main content
Log in

Effects of Loading Orientation on the Morphology of the Predicted Yielded Regions in Trabecular Bone

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

While the effects of bone mineral density and architecture in osteoporotic bone have been studied extensively, the micromechanics of yielding and failure have received less attention. However, understanding architectural features associated with failure should provide insight into assessing bone quality. In this study, microstructural finite element models were used to compute regions of tissue level yielding in ten bovine tibial trabecular bone samples. The morphology, number, and mean volume of the yielded regions were quantified for four apparent strains under two loading conditions. For on-axis loading, the mean aspect ratio of the tissue that yielded due to compressive strain increased with increasing apparent strain, expanding along the principal trabecular orientation. This suggests that tissue level yielding progresses along vertical trabeculae when a specimen is loaded on-axis. The number, but not the volume, of the regions yielded due to tensile strain increased with increasing applied load, consistent with relaxation and redistribution of stresses around the yielded regions. When the specimens were compressed perpendicular to the principal axis, the aspect ratio of the yielded regions was close to one, while the number, mean volume, and mean thickness of the yielded regions increased. This indicates that localized high strains consistent with bending rather than axial deformation of struts occur at the tissue level. Overall, the results provide new insight into trabecular bone failure, which is relevant to assessing diagnostic tests for fracture risk or evaluating osteoporosis treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Badiei A., M. J. Bottema, N. L. Fazzalari 2007 Influence of orthogonal overload on human vertebral trabecular bone mechanical properties. J Bone Miner Res. 22(11), 1690–9 doi:10.1359/jbmr.070706

    Article  PubMed  Google Scholar 

  2. Bayraktar H. H., E. F. Morgan, G. L. Niebur, G. E. Morris, E. K. Wong, T. M. Keaveny 2004 Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue. J. Biomech. 37(1), 27–35 doi:10.1016/S0021-9290(03)00257-4

    Article  PubMed  Google Scholar 

  3. Bevill G., S. K. Eswaran, A. Gupta, P. Papadopoulos, T. M. Keaveny 2006 Influence of bone volume fraction and architecture on computed large-deformation failure mechanisms in human trabecular bone. Bone 39(6), 1218–25 doi:10.1016/j.bone.2006.06.016

    Article  PubMed  Google Scholar 

  4. Bourne B. C., M. C. van der Meulen 2004 Finite element models predict cancellous apparent modulus when tissue modulus is scaled from specimen CT-attenuation. J Biomech. 37(5), 613–21, doi:10.1016/j.jbiomech.2003.10.002

    Article  PubMed  Google Scholar 

  5. Charras G. T., R. E. Guldberg 2000 Improving the local solution accuracy of large-scale digital image-based finite element analyses. J Biomech. 33(2), 255–9 doi:10.1016/S0021-9290(99)00141-4

    Article  PubMed  CAS  Google Scholar 

  6. Cowin S. C. The relationship between the elasticity tensor and the fabric tensor. Mech. Mater. 4, 137–47, 1985. doi:10.1016/0167-6636(85)90012-2

    Article  Google Scholar 

  7. Gibson L. J. 1985 The mechanical behaviour of cancellous bone. J. Biomech. 18(5), 317–28 doi:10.1016/0021-9290(85)90287-8

    Article  PubMed  CAS  Google Scholar 

  8. Gibson L. J. 2005 Biomechanics of cellular solids. J Biomech 38(3), 377–99, doi:10.1016/j.jbiomech.2004.09.027

    Article  PubMed  Google Scholar 

  9. Guldberg R. E., S. J. Hollister, G. T. Charras 1998 The accuracy of digital image-based finite element models. J Biomech Eng 120(2):289–95 doi:10.1115/1.2798314

    Article  PubMed  CAS  Google Scholar 

  10. Hara T., E. Tanck, J. Homminga, R. Huiskes 2002 The influence of microcomputed tomography threshold variations on the assessment of structural and mechanical trabecular bone properties. Bone 31(1), 107–9 doi:10.1016/S8756-3282(02)00782-2

    Article  PubMed  CAS  Google Scholar 

  11. Harrison N. M., P. F. McDonnell, D. C. O’Mahoney, O. D. Kennedy, F. J. O’Brien, P. E. McHugh 2008 Heterogeneous linear elastic trabecular bone modelling using micro-CT attenuation data and experimentally measured heterogeneous tissue properties. J Biomech. 41(11), 2589–96 doi:10.1016/j.jbiomech.2008.05.014

    Article  PubMed  Google Scholar 

  12. Hollister S. J., J. M. Brennan, N. Kikuchi 1994 A homogenization sampling procedure for calculating trabecular bone effective stiffness and tissue level stress. J Biomech 27(4), 433–44 doi:10.1016/0021-9290(94)90019-1

    Article  PubMed  CAS  Google Scholar 

  13. Jaasma M. J., H. H. Bayraktar, G. L. Niebur, T. M. Keaveny 2002 Biomechanical effects of intraspecimen variations in tissue modulus for trabecular bone J Biomech. 35(2), 237–46, doi:10.1016/S0021-9290(01)00193-2

    Article  PubMed  Google Scholar 

  14. Kabel J., B. van Rietbergen, A. Odgaard, R. Huiskes. 1999 Constitutive relationships of fabric, density, and elastic properties in cancellous bone architecture. Bone 25(4), 481–6, doi:10.1016/S8756-3282(99)00190-8

    Article  PubMed  CAS  Google Scholar 

  15. Liu X. S., P. Sajda, P. K. Saha, F. W. Wehrli, X. E. Guo. 2006 Quantification of the roles of trabecular microarchitecture and trabecular type in determining the elastic modulus of human trabecular bone. J. Bone Miner. Res. 21(10), 1608–17 doi:10.1359/jbmr.060716

    Article  PubMed  Google Scholar 

  16. Liu X., X. Wang, G. L. Niebur 2003 Effects of damage on the orthotropic material symmetry of bovine tibial trabecular bone. J. Biomech. 36(12), 1753–9 doi:10.1016/S0021-9290(03)00217-3

    Article  PubMed  Google Scholar 

  17. Morgan E. F., O. C. Yeh, T. M. Keaveny 2005 Damage in trabecular bone at small strains. Eur J Morphol 42(1–2), 13–21, doi:10.1080/09243860500095273

    Article  PubMed  Google Scholar 

  18. Nagaraja S., T. L. Couse, R. E. Guldberg 2005 Trabecular bone microdamage and microstructural stresses under uniaxial compression. J Biomech 38(4), 707–16 doi:10.1016/j.jbiomech.2004.05.013

    Article  PubMed  Google Scholar 

  19. Niebur G. L., M. J. Feldstein, T. M. Keaveny. 2002 Biaxial failure behavior of bovine tibial trabecular bone. J Biomech Eng 124(6), 699–705 doi:10.1115/1.1517566

    Article  PubMed  Google Scholar 

  20. Niebur G. L., M. J. Feldstein, J. C. Yuen, T. J. Chen, T. M. Keaveny 2000 High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone. J. Biomech. 33(12), 1575–83, doi:10.1016/S0021-9290(00)00149-4

    Article  PubMed  CAS  Google Scholar 

  21. Niebur G. L., J. C. Yuen, A. J. Burghardt, T. M. Keaveny 2001 Sensitivity of damage predictions to tissue level yield properties and apparent loading conditions. J. Biomech. 34(5), 699–706 doi:10.1016/S0021-9290(01)00003-3

    Article  PubMed  CAS  Google Scholar 

  22. Niebur G. L., J. C. Yuen, A. C. Hsia, T. M. Keaveny 1999 Convergence behavior of high-resolution finite element models of trabecular bone. J Biomech Eng 121(6), 629–35 doi:10.1115/1.2800865

    Article  PubMed  CAS  Google Scholar 

  23. van Rietbergen B., R. Huiskes, F. Eckstein, P. Ruegsegger 2003 Trabecular bone tissue strains in the healthy and osteoporotic human femur. J Bone Miner Res 18(10), 1781–8 doi:10.1359/jbmr.2003.18.10.1781

    Article  PubMed  Google Scholar 

  24. van Rietbergen B., A. Odgaard, J. Kabel, R. Huiskes 1998 Relationships between bone morphology and bone elastic properties can be accurately quantified using high-resolution computer reconstructions. J. Orthop. Res 16(1), 23–8, doi:10.1002/jor.1100160105

    Article  PubMed  Google Scholar 

  25. van Rietbergen B., H. Weinans, R. Huiskes, A. Odgaard 1995 A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models. J. Biomech. 28(1), 69–81 doi:10.1016/0021-9290(95)80008-5

    Article  PubMed  Google Scholar 

  26. van Ruijven L. J., E. B. Giesen, L. Mulder, M. Farella, T. M. van Eijden 2005 The effect of bone loss on rod-like and plate-like trabeculae in the cancellous bone of the mandibular condyle. Bone 36(6), 1078–85, doi:10.1016/j.bone.2005.02.018

    Article  PubMed  Google Scholar 

  27. Shapiro, L. G., and G. C. Stockman. Computer Vision. Prentice Hall, 580 pp., 2001.

  28. Tang S. Y., D. Vashishth 2007 A non-invasive in vitro technique for the three-dimensional quantification of microdamage in trabecular bone. Bone. 40(5), 1259–64 doi:10.1016/j.bone.2006.10.031

    Article  PubMed  CAS  Google Scholar 

  29. Turner C. H., S. C. Cowin, J. Y. Rho, R. B. Ashman, J. C. Rice. 1990 The fabric dependence of the orthotropic elastic constants of cancellous bone. J Biomech 23(6), 549–61, doi:10.1016/0021-9290(90)90048-8

    Article  PubMed  CAS  Google Scholar 

  30. Wang X., J. Guyette, X. Liu, R. K. Roeder, G. L. Niebur 2005 Axial–shear interaction effects on microdamage in bovine tibial trabecular bone. Eur J Morphol 42(1–2), 61–70 doi:10.1080/09243860500095570

    Article  PubMed  Google Scholar 

  31. Wang X., X. Liu, G. L. Niebur 2004 Preparation of on-axis cylindrical trabecular bone specimens using micro-CT imaging. J Biomech Eng 126(1), 122–5, doi:10.1115/1.1645866

    Article  PubMed  Google Scholar 

  32. Wang X., D. B. Masse, H. Leng, K. P. Hess, R. D. Ross, R. K. Roeder, G. L. Niebur. 2007 Detection of trabecular bone microdamage by micro-computed tomography. J Biomech. 40(15), 3397–403 doi:10.1016/j.jbiomech.2007.05.009

    Article  PubMed  Google Scholar 

  33. Wang X., G. L. Niebur 2006 Microdamage propagation in trabecular bone due to changes in loading mode. J Biomech 39(5), 781–90 doi:10.1016/j.jbiomech.2005.02.007

    Article  PubMed  Google Scholar 

  34. Wehrli F. W. 2007 W Structural and functional assessment of trabecular and cortical bone by micro magnetic resonance imaging. J. Magn. Reson. Imaging 25(2), 390–409, doi:10.1002/jmri.20807

    Article  PubMed  Google Scholar 

  35. Wolff J., P. G. J. Maquet, and R. Furlong. The Law of Bone Remodelling. Berlin, New York: Springer-Verlag, 126 pp., 1986.

  36. Yeni Y. N., F. J. Hou, T. Ciarelli, D. Vashishth, D. P. Fyhrie 2003 Trabecular shear stresses predict in vivo linear microcrack density but not diffuse damage in human vertebral cancellous bone. Ann. Biomed. Eng. 31(6), 726–32 doi:10.1114/1.1569264

    Article  PubMed  Google Scholar 

  37. Zysset P. K., A. Curnier 1995 An alternative model for anisotropic elasticity based on fabric tensors. Mech. Mater. 21, 243–50, doi:10.1016/0167-6636(95)00018-6

    Article  Google Scholar 

  38. Zysset P. K., A. Curnier 1996 A 3D damage model for trabecular bone based on fabric tensors. J. Biomech. 29(12), 1549–58, doi:10.1016/S0021-9290(96)80006-6

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the National Institutes of Health (AR052008), and by an instrumentation grant from the National Science Foundation (MRI Grant No. DBI-0420980).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen L. Niebur.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, X., Wang, X. & Niebur, G.L. Effects of Loading Orientation on the Morphology of the Predicted Yielded Regions in Trabecular Bone. Ann Biomed Eng 37, 354–362 (2009). https://doi.org/10.1007/s10439-008-9619-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-008-9619-4

Keywords

Navigation