Skip to main content

Advertisement

Log in

Vascular Inflammation, Cancer, and Cardiovascular Diseases

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Cancer and cardiovascular disease are among the leading causes of morbidity and mortality in the USA. Cancer and cardiovascular disease have inflammatory underpinnings that have been associated with both the development and progression of these disease states.

Recent Findings

Inflammatory signaling has been found to be a critical event in both cardiovascular disease and cancer formation and progression. Further, many chemotherapeutic agents potentiate inflammation exacerbating existing cardiovascular disease or leading to its presence. The exact mechanisms of these interactions remain poorly understood.

Summary

The proinflammatory milieu observed in both cancer and cardiovascular disease likely plays an important role in the development and potentiation of both conditions. Further evaluation of this relationship will be critical in the development of new diagnostic and therapeutic modalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Data Availability

N/A.

Code Availability

N/A.

References

  1. Johnson CB, Davis MK, Law A, Sulpher J. Shared risk factors for cardiovascular disease and cancer: implications for preventive health and clinical care in oncology patients. Can J Cardiol. 2016;32:900–7.

    Article  PubMed  Google Scholar 

  2. Coussens LM, Werb Z. Inflammation and cancer. Nature. 2002;420:860–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Kamp DW, Shacter E, Weitzman SA. Chronic inflammation and cancer: the role of the mitochondria. Oncology (Williston Park). 2011;25(400-10):13.

    Google Scholar 

  4. Libby P. Inflammation and cardiovascular disease mechanisms. Am J Clin Nutr. 2006;83:456S–60S.

    Article  PubMed  CAS  Google Scholar 

  5. Masoudkabir F, Sarrafzadegan N, Gotay C, et al. Cardiovascular disease and cancer: evidence for shared disease pathways and pharmacologic prevention. Atherosclerosis. 2017;263:343–51.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Kundu JK, Surh YJ. Emerging avenues linking inflammation and cancer. Free Radic Biol Med. 2012;52:2013–37.

    Article  PubMed  CAS  Google Scholar 

  7. de Kleijn D, Pasterkamp G. Toll-like receptors in cardiovascular diseases. Cardiovasc Res. 2003;60:58–67.

    Article  PubMed  Google Scholar 

  8. Miller KD, Siegel RL, Lin CC, et al. Cancer treatment and survivorship statistics, 2016. CA Cancer J Clin. 2016;66:271–89.

    Article  PubMed  Google Scholar 

  9. Zöller B, Ji J, Sundquist J, Sundquist K. Risk of coronary heart disease in patients with cancer: a nationwide follow-up study from Sweden. Eur J Cancer. 2012;48:121–8.

    Article  PubMed  Google Scholar 

  10. Whitlock MC, Yeboah J, Burke GL, Chen H, Klepin HD, Hundley WG. Cancer and its association with the development of coronary artery calcification: an assessment from the Multi-Ethnic Study of Atherosclerosis. J Am Heart Assoc. 2015:4.

  11. Bharadwaj A, Potts J, Mohamed MO, et al. Acute myocardial infarction treatments and outcomes in 6.5 million patients with a current or historical diagnosis of cancer in the USA. Eur Heart J. 2020;41:2183–93.

    Article  PubMed  CAS  Google Scholar 

  12. Han XJ, Li JQ, Khannanova Z, Li Y. Optimal management of coronary artery disease in cancer patients. Chronic Dis Transl Med. 2019;5:221–33.

    PubMed  Google Scholar 

  13. Koene RJ, Prizment AE, Blaes A, Konety SH. Shared risk factors in cardiovascular disease and cancer. Circulation. 2016;133:1104–14.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Berg AH, Scherer PE. Adipose tissue, inflammation, and cardiovascular disease. Circ Res. 2005;96:939–49.

    Article  PubMed  CAS  Google Scholar 

  15. Picon-Ruiz M, Pan C, Drews-Elger K, et al. Interactions between adipocytes and breast cancer cells stimulate cytokine production and drive Src/Sox2/miR-302b-mediated malignant progression. Cancer Res. 2016;76:491–504.

    Article  PubMed  CAS  Google Scholar 

  16. Berstad P, Coates RJ, Bernstein L, et al. A case-control study of body mass index and breast cancer risk in white and African-American women. Cancer Epidemiol Biomarkers Prev. 2010;19:1532–44.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Cespedes Feliciano EM, Chen WY, Bradshaw PT, et al. Adipose tissue distribution and cardiovascular disease risk among breast cancer survivors. J Clin Oncol. 2019;37:2528–36.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Rodrigues Dos Santos C, Fonseca I, Dias S, Mendes de Almeida JC. Plasma level of LDL-cholesterol at diagnosis is a predictor factor of breast tumor progression. BMC Cancer. 2014;14:132.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Morganti M, Carpi A, Nicolini A, et al. Atherosclerosis and cancer: common pathways on the vascular endothelium. Biomed Pharmacother. 2002;56:317–24.

    Article  PubMed  CAS  Google Scholar 

  20. Ross JS, Stagliano NE, Donovan MJ, Breitbart RE, Ginsburg GS. Atherosclerosis and cancer: common molecular pathways of disease development and progression. Ann N Y Acad Sci. 2001;947:271–92.

    Article  PubMed  CAS  Google Scholar 

  21. Navi BB, Reiner AS, Kamel H, et al. Risk of arterial thromboembolism in patients with cancer. J Am Coll Cardiol. 2017;70:926–38.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Milazzo V, Cosentino N, Campodonico J, et al. Characteristics, management, and outcomes of acute coronary syndrome patients with cancer. J Clin Med. 2020:9.

  23. Lip GY, Chin BS, Blann AD. Cancer and the prothrombotic state. Lancet Oncol. 2002;3:27–34.

    Article  PubMed  CAS  Google Scholar 

  24. Munoz E, Iliescu G, Vejpongsa P, et al. Takotsubo stress cardiomyopathy: "good news" in cancer patients? J Am Coll Cardiol. 2016;68:1143–4.

    Article  PubMed  Google Scholar 

  25. Rinde LB, Småbrekke B, Hald EM, et al. Myocardial infarction and future risk of cancer in the general population-the Tromsø Study. Eur J Epidemiol. 2017;32:193–201.

    Article  PubMed  Google Scholar 

  26. Naschitz JE, Yeshurun D, Abrahamson J, et al. Ischemic heart disease precipitated by occult cancer. Cancer. 1992;69:2712–20.

    Article  PubMed  CAS  Google Scholar 

  27. Yusuf SW, Daraban N, Abbasi N, Lei X, Durand JB, Daher IN. Treatment and outcomes of acute coronary syndrome in the cancer population. Clin Cardiol. 2012;35:443–50.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Iannaccone M, D'Ascenzo F, Vadalà P, et al. Prevalence and outcome of patients with cancer and acute coronary syndrome undergoing percutaneous coronary intervention: a BleeMACS substudy. Eur Heart J Acute Cardiovasc Care. 2018;7:631–8.

    Article  PubMed  Google Scholar 

  29. Amsterdam EA, Wenger NK, Brindis RG, et al. 2014 AHA/ACC Guideline for the Management of Patients with Non-ST-Elevation Acute Coronary Syndromes: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;64:e139–228.

    Article  PubMed  Google Scholar 

  30. Picano E, Mathias W, Pingitore A, Bigi R, Previtali M. Safety and tolerability of dobutamine-atropine stress echocardiography: a prospective, multicentre study. Echo Dobutamine International Cooperative Study Group. Lancet. 1994;344:1190–2.

    Article  PubMed  CAS  Google Scholar 

  31. Min JK, Shaw LJ, Devereux RB, et al. Prognostic value of multidetector coronary computed tomographic angiography for prediction of all-cause mortality. J Am Coll Cardiol. 2007;50:1161–70.

    Article  PubMed  Google Scholar 

  32. Chrapko BE, Chrapko M, Nocuń A, Stefaniak B, Zubilewicz T, Drop A. Role of 18F-FDG PET/CT in the diagnosis of inflammatory and infectious vascular disease. Nucl Med Rev Central Eastern Eur. 2016;19:28–36.

    Article  Google Scholar 

  33. Belhocine T, Blockmans D, Hustinx R, Vandevivere J, Mortelmans L. Imaging of large vessel vasculitis with 18FDG PET: illusion or reality? A critical review of the literature data. Eur J Nucl Med Mol Imaging. 2003;30:1305–13.

    Article  PubMed  Google Scholar 

  34. Blockmans D. The use of (18F)fluoro-deoxyglucose positron emission tomography in the assessment of large vessel vasculitis. Clin Exp Rheumatol. 2003;21:S15–22.

    PubMed  CAS  Google Scholar 

  35. Lim E, Li Choy L, Flaks L, et al. Detected troponin elevation is associated with high early mortality after lung resection for cancer. J Cardiothorac Surg. 2006;1:37.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Danese E, Montagnana M, Giudici S, et al. Highly-sensitive troponin I is increased in patients with gynecological cancers. Clin Biochem. 2013;46:1135–8.

    Article  PubMed  CAS  Google Scholar 

  37. Pavo N, Raderer M, Hülsmann M, et al. Cardiovascular biomarkers in patients with cancer and their association with all-cause mortality. Heart. 2015;101:1874–80.

    Article  PubMed  CAS  Google Scholar 

  38. Cardinale D, Colombo A, Sandri MT, et al. Prevention of high-dose chemotherapy-induced cardiotoxicity in high-risk patients by angiotensin-converting enzyme inhibition. Circulation. 2006;114:2474–81.

    Article  PubMed  CAS  Google Scholar 

  39. Cardinale D, Salvatici M, Sandri MT. Role of biomarkers in cardioncology. Clin Chem Lab Med. 2011;49:1937–48.

    Article  PubMed  CAS  Google Scholar 

  40. Yeh ET, Bickford CL. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol. 2009;53:2231–47.

    Article  PubMed  CAS  Google Scholar 

  41. Souza VB, Silva EN, Ribeiro ML, WeA M. Hypertension in patients with cancer. Arq Bras Cardiol. 2015;104:246–52.

    PubMed  PubMed Central  Google Scholar 

  42. Małyszko J, Małyszko M, Kozlowski L, Kozlowska K. Hypertension in malignancy-an underappreciated problem. Oncotarget. 2018;9:20855–71.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Chow WH, Devesa SS. Contemporary epidemiology of renal cell cancer. Cancer J. 2008;14:288–301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Du W, Zhang L, Brett-Morris A, et al. HIF drives lipid deposition and cancer in ccRCC via repression of fatty acid metabolism. Nat Commun. 2017;8:1769.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Reuter S, Gupta SC, Chaturvedi MM, Aggarwal BB. Oxidative stress, inflammation, and cancer: how are they linked? Free Radic Biol Med. 2010;49:1603–16.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Chang HM, Moudgil R, Scarabelli T, Okwuosa TM, Yeh ETH. Cardiovascular complications of cancer therapy: best practices in diagnosis, prevention, and management: Part 1. J Am Coll Cardiol. 2017;70:2536–51.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Martins WA, Rosa MLG, Matos RC, et al. Trends in mortality rates from cardiovascular disease and cancer between 2000 and 2015 in the most populous capital cities of the five regions of Brazil. Arq Bras Cardiol. 2020;114:199–206.

    PubMed  PubMed Central  Google Scholar 

  48. Walker BR. Glucocorticoids and cardiovascular disease. Eur J Endocrinol. 2007;157:545–59.

    Article  PubMed  CAS  Google Scholar 

  49. Fiotti N, Altamura N, Cappelli C, Schillan M, Guarnieri G, Giansante C. Long term prognosis in patients with peripheral arterial disease treated with antiplatelet agents. Eur J Vasc Endovasc Surg. 2003;26:374–80.

    Article  PubMed  CAS  Google Scholar 

  50. Kaschwich M, Peters F, Hischke S, et al. Long-term incidence of cancer after index treatment for symptomatic peripheral arterial disease - a health insurance claims data analysis. Vasa. 2020;49:493–9.

    Article  PubMed  Google Scholar 

  51. Wiles B, Comito M, Labropoulos N, Santore LA, Bilfinger T. High prevalence of abdominal aortic aneurysms in patients with lung cancer. J Vasc Surg. 2021;73:850–5.

    Article  PubMed  Google Scholar 

  52. Blochle R, Lall P, Cherr GS, et al. Management of patients with concomitant lung cancer and abdominal aortic aneurysm. Am J Surg. 2008;196:697–702.

    Article  PubMed  Google Scholar 

  53. Masoud GN, Li W. HIF-1α pathway: role, regulation and intervention for cancer therapy. Acta Pharm Sin B. 2015;5:378–89.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Wang JC, Chien WC, Chung CH, et al. Increased risk of malignancy in patients with an aortic aneurysm: a nationwide population-based retrospective study. Oncotarget. 2018;9:2829–37.

    Article  PubMed  Google Scholar 

  55. Hiranuma K, Kusunoki S, Fujino K, Hirayama T, Ota T, Terao Y. Drug-induced aortitis in a patient with ovarian cancer treated with bevacizumab combination therapy. Taiwanese J Obst Gynecol. 2018;57:750–2.

    Article  Google Scholar 

  56. Eyre TA, Gooding S, Patel I, Moore N, Hatton C, Collins GP. Gemcitabine-induced large vessel vasculitis demonstrated by PET CT: a rare, important side effect. Int J Hematol. 2014;99:798–800.

    Article  PubMed  Google Scholar 

  57. Taimen K, Heino S, Kohonen I, et al. Granulocyte colony-stimulating factor- and chemotherapy-induced large-vessel vasculitis: six patient cases and a systematic literature review. Rheumatol Adv Prac. 2020:4.

  58. Quack H, Erpenbeck L, Wolff HA, et al. Oxaliplatin-induced leukocytoclastic vasculitis under adjuvant chemotherapy for colorectal cancer: two cases of a rare adverse event. Case Rep Oncol. 2013;6:609–15.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Dawood S, Leyland-Jones B. Pharmacology and pharmacogenetics of chemotherapeutic agents. Cancer Invest. 2009;27:482–8.

    Article  PubMed  CAS  Google Scholar 

  60. Cameron AC, Touyz RM, Lang NN. Vascular complications of cancer chemotherapy. Can J Cardiol. 2016;32:852–62.

    Article  PubMed  Google Scholar 

  61. Soultati A, Mountzios G, Avgerinou C, et al. Endothelial vascular toxicity from chemotherapeutic agents: preclinical evidence and clinical implications. Cancer Treat Rev. 2012;38:473–83.

    Article  PubMed  CAS  Google Scholar 

  62. Berger NA. Alkylating agents. Cancer Chemother Biol Response Modif. 1996;16:28–38.

    PubMed  CAS  Google Scholar 

  63. Kufe DW, Holland JF, Frei E. American Cancer Society. Cancer medicine 6. 6th ed. Hamilton, Ont Lewiston, NY: BC Decker; 2003.

    Google Scholar 

  64. Sales ARK, Negrao MV, Testa L, et al. Chemotherapy acutely impairs neurovascular and hemodynamic responses in women with breast cancer. Am J Physiol Heart Circ Physiol. 2019;317:H1–H12.

    Article  PubMed  CAS  Google Scholar 

  65. McGraw MD, Kim SY, White CW, Veress LA. Acute cytotoxicity and increased vascular endothelial growth factor after in vitro nitrogen mustard vapor exposure. Ann N Y Acad Sci. 2020;1479:223–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Ranchoux B, Gunther S, Quarck R, et al. Chemotherapy-induced pulmonary hypertension: role of alkylating agents. Am J Pathol. 2015;185:356–71.

    Article  PubMed  CAS  Google Scholar 

  67. Doll DC, Ringenberg QS, Yarbro JW. Vascular toxicity associated with antineoplastic agents. J Clin Oncol. 1986;4:1405–17.

    Article  PubMed  CAS  Google Scholar 

  68. Joseph D, Dubashi B, Karthikeyan B, Jain A. Arterial occlusion precipitated by cisplatinbased chemotherapy. Curr Oncol. 2010;17:71–2.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Kirwan CC, McCollum CN, McDowell G, Byrne GJ. Investigation of proposed mechanisms of chemotherapy-induced venous thromboembolism: endothelial cell activation and procoagulant release due to apoptosis. Clin Appl Thromb Hemost. 2015;21:420–7.

    Article  PubMed  CAS  Google Scholar 

  70. Coward J, Maisey N, Cunningham D. The effects of capecitabine in Raynaud's disease: a case report. Ann Oncol. 2005;16:835–6.

    Article  PubMed  CAS  Google Scholar 

  71. Mosseri M, Fingert HJ, Varticovski L, Chokshi S, Isner JM. In vitro evidence that myocardial ischemia resulting from 5-fluorouracil chemotherapy is due to protein kinase C-mediated vasoconstriction of vascular smooth muscle. Cancer Res. 1993;53:3028–33.

    PubMed  CAS  Google Scholar 

  72. Sara JD, Kaur J, Khodadadi R, et al. 5-fluorouracil and cardiotoxicity: a review. Ther Adv Med Oncol. 2018;10:1758835918780140.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Zafar A, Drobni ZD, Mosarla R, et al. The incidence, risk factors, and outcomes with 5-fluorouracil-associated coronary vasospasm. JACC Cardio Oncol. 2021;3:101–9.

    Article  Google Scholar 

  74. Zhou T, Zeng SX, Ye DW, et al. A multicenter, randomized clinical trial comparing the three-weekly docetaxel regimen plus prednisone versus mitoxantone plus prednisone for Chinese patients with metastatic castration refractory prostate cancer. PLoS One. 2015;10:e0117002.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Aichberger KJ, Herndlhofer S, Schernthaner GH, et al. Progressive peripheral arterial occlusive disease and other vascular events during nilotinib therapy in CML. Am J Hematol. 2011;86:533–9.

    Article  PubMed  CAS  Google Scholar 

  76. Cortes JE, Saglio G, Kantarjian HM, et al. Final 5-year study results of DASISION: the Dasatinib Versus Imatinib Study in Treatment-Naive Chronic Myeloid Leukemia Patients Trial. J Clin Oncol. 2016;34:2333–40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Moslehi JJ, Deininger M. Tyrosine kinase inhibitor-associated cardiovascular toxicity in chronic myeloid leukemia. J Clin Oncol. 2015;33:4210–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Agarwal M, Thareja N, Benjamin M, Akhondi A, Mitchell GD. Tyrosine kinase inhibitor-induced hypertension. Curr Oncol Rep. 2018;20:65.

    Article  PubMed  Google Scholar 

  79. Waliany S, Sainani KL, Park LS, Zhang CA, Srinivas S, Witteles RM. Increase in blood pressure associated with tyrosine kinase inhibitors targeting vascular endothelial growth factor. JACC Cardio Oncol. 2019;1:24–36.

    Article  Google Scholar 

  80. Budolfsen C, Faber J, Grimm D, et al. Tyrosine kinase inhibitor-induced hypertension: role of hypertension as a biomarker in cancer treatment. Curr Vasc Pharmacol. 2019;17:618–34.

    Article  PubMed  CAS  Google Scholar 

  81. Johnson DB, Balko JM, Compton ML, et al. Fulminant myocarditis with combination immune checkpoint blockade. N Engl J Med. 2016;375:1749–55.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Daxini A, Cronin K, Sreih AG. Vasculitis associated with immune checkpoint inhibitors-a systematic review. Clin Rheumatol. 2018;37:2579–84.

    Article  PubMed  Google Scholar 

  83. Herrmann J, Yang EH, Iliescu CA, et al. Vascular toxicities of cancer therapies: the old and the new--an evolving avenue. Circulation. 2016;133:1272–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Drobni ZD, Alvi RM, Taron J, et al. Association between immune checkpoint inhibitors with cardiovascular events and atherosclerotic plaque. Circulation. 2020;142:2299–311.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Poels K, van Leent MMT, Boutros C, et al. Immune checkpoint inhibitor therapy aggravates T cell-driven plaque inflammation in atherosclerosis. JACC CardioOncol. 2020;2:599–610.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The figures were created using biorender.com

Author information

Authors and Affiliations

Authors

Contributions

All authors of this manuscript have significantly been involved in the conception and design or analysis and interpretation of the clinical information, drafting of the manuscript or revising it critically for important intellectual content.

Corresponding author

Correspondence to Brijesh Patel.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prousi, G.S., Joshi, A.M., Atti, V. et al. Vascular Inflammation, Cancer, and Cardiovascular Diseases. Curr Oncol Rep 25, 955–963 (2023). https://doi.org/10.1007/s11912-023-01426-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-023-01426-0

Keywords

Navigation