Skip to main content

Advertisement

Log in

Clinical Trials in the Brain Tumour Population: Challenges and Strategies for the Future

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review identifies challenges and barriers to successful development of drugs in neuro-oncology trials at the preclinical, clinical and translational stages that we believe has contributed to poor outcomes for patients over the last 30 years.

Recent Findings

Several key strategies have been proposed by leading groups to address these and improve patient outcomes. Better preclinical testing using more sophisticated and clinically relevant models is needed. A greater focus on assessing blood–brain barrier penetrance and targeting key biological processes such as tumour heterogeneity and immune response is vital. Adopting innovative trial designs permitting faster results and addressing key issues (including molecular heterogeneity and combinatorial approaches) is highly desirable. A stronger translational focus is also clearly needed.

Summary

Implementation of these strategies is already starting to occur. Maintaining and increasing these novel approaches will require coordinated efforts between clinicians, scientists, industry and funding/regulator bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Miller KD, Ostrom QT, Kruchko C, Patil N, Tihan T, Cioffi G, et al. Brain and other central nervous system tumor statistics, 2021. CA Cancer J Clin. 2021;71(5):381–406. https://doi.org/10.3322/caac.21693.

    Article  PubMed  Google Scholar 

  2. Australian Institute of Health and Welfare 2017. Brain and other central nervous system cancers. Cat. no. CAN 106. Canberra: AIHW.

  3. Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C, et al. CBTRUS statistical report: primary brain and other central nervous system tumors diagnosed in the United States in 2015–2019. Neuro-oncol. 2022;24(Supplement_5):v1–95. https://doi.org/10.1093/neuonc/noac202.

    Article  CAS  PubMed  Google Scholar 

  4. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJB, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.

    Article  CAS  PubMed  Google Scholar 

  5. Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol. 2009;10(5):459–66.

    Article  CAS  PubMed  Google Scholar 

  6. Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, et al. Bevacizumab plus radiotherapy-temozolomide for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):709–22.

    Article  CAS  PubMed  Google Scholar 

  7. Gilbert MR, Dignam JJ, Armstrong TS, Wefel JS, Blumenthal DT, Vogelbaum MA, et al. A randomized trial of bevacizumab for newly diagnosed glioblastoma. N Engl J Med. 2014;370(8):699–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Chamberlain M, Wei-Tsao DD, Blumenthal DT, Glantz M. Salvage chemotherapy with CPT-11 for recurrent temozolomide-refractory anaplastic astrocytoma. Cancer. 2008;112(9):2038–45. https://doi.org/10.1002/cncr.23404.

    Article  CAS  PubMed  Google Scholar 

  9. Duerinck J, Du Four S, Sander W, Van Binst AM, Everaert H, Michotte A, et al. Sunitinib malate plus lomustine for patients with temozolomide-refractory recurrent anaplastic or low-grade glioma. Anticancer Res. 2015;35(10):5551–7.

    CAS  PubMed  Google Scholar 

  10. Desjardins A, Quinn JA, Vredenburgh JJ, Sathornsumetee S, Friedman AH, Herndon JE, et al. Phase II study of imatinib mesylate and hydroxyurea for recurrent grade III malignant gliomas. J Neurooncol. 2007;83(1):53–60. https://doi.org/10.1007/s11060-006-9302-2.

    Article  CAS  PubMed  Google Scholar 

  11. Chamberlain MC, Johnston S. Salvage chemotherapy with bevacizumab for recurrent alkylator-refractory anaplastic astrocytoma. J Neurooncol. 2008;91(3):359. https://doi.org/10.1007/s11060-008-9722-2.

    Article  CAS  PubMed  Google Scholar 

  12. Chamberlain MC, Tsao-Wei DD, Groshen S. Salvage chemotherapy with cyclophosphamide for recurrent temozolomide-refractory anaplastic astrocytoma. Cancer. 2006;106(1):172–9. https://doi.org/10.1002/cncr.21582.

    Article  CAS  PubMed  Google Scholar 

  13. Kreisl TN, Zhang W, Odia Y, Shih JH, Butman JA, Hammoud D, et al. A phase II trial of single-agent bevacizumab in patients with recurrent anaplastic glioma. Neuro-oncol. 2011;13(10):1143–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Chamberlain MC, Kormanik P. Salvage chemotherapy with taxol for recurrent anaplastic astrocytomas. J Neurooncol. 1999;43(1):71–8. https://doi.org/10.1023/a:1006277631745.

    Article  CAS  PubMed  Google Scholar 

  15. Lassman AB, Hoang-Xuan K, Polley M-YC, Brandes AA, Cairncross JG, Kros JM, et al. Joint final report of EORTC 26951 and RTOG 9402: phase III trials with procarbazine, lomustine, and vincristine chemotherapy for anaplastic oligodendroglial tumors. J Clin Oncol. 2022;40(23):2539–45. https://doi.org/10.1200/JCO.21.02543.

    Article  CAS  PubMed  Google Scholar 

  16. Cairncross G, Berkey B, Shaw E, Jenkins R, Scheithauer B, Brachman D, et al. Phase III trial of chemotherapy plus radiotherapy compared with radiotherapy alone for pure and mixed anaplastic oligodendroglioma: Intergroup Radiation Therapy Oncology Group Trial 9402. J Clin Oncol. 2006;24(18):2707–14. https://doi.org/10.1200/jco.2005.04.3414.

    Article  CAS  PubMed  Google Scholar 

  17. van den Bent MJ, Brandes AA, Taphoorn MJ, Kros JM, Kouwenhoven MC, Delattre JY, et al. Adjuvant procarbazine, lomustine, and vincristine chemotherapy in newly diagnosed anaplastic oligodendroglioma: long-term follow-up of EORTC brain tumor group study 26951. J Clin Oncol. 2013;31(3):344–50. https://doi.org/10.1200/jco.2012.43.2229.

    Article  PubMed  Google Scholar 

  18. Buckner JC, Shaw EG, Pugh SL, Chakravarti A, Gilbert MR, Barger GR, et al. Radiation plus procarbazine, CCNU, and vincristine in low-grade glioma. N Engl J Med. 2016;374(14):1344–55. https://doi.org/10.1056/NEJMoa1500925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. •• Aldape K, Brindle KM, Chesler L, Chopra R, Gajjar A, Gilbert MR, et al. Challenges to curing primary brain tumours. Nat Rev Clin Oncol. 2019. https://doi.org/10.1038/s41571-019-0177-5. (An impactful position paper by an international and multi-disciplinary panel that comprehensively but succinctly outlines the challenges for brain tumour trials)

  20. Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ. Structure and function of the blood–brain barrier. Neurobiol Dis. 2010;37(1):13–25.

  21. Upton DH, Ung C, George SM, Tsoli M, Kavallaris M, Ziegler DS. Challenges and opportunities to penetrate the blood-brain barrier for brain cancer therapy. Theranostics. 2022;12(10):4734–52. https://doi.org/10.7150/thno.69682.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sarkaria JN, Hu LS, Parney IF, Pafundi DH, Brinkmann DH, Laack NN, et al. Is the blood–brain barrier really disrupted in all glioblastomas? A critical assessment of existing clinical data. Neuro-oncol. 2018;20(2):184–91.

    Article  CAS  PubMed  Google Scholar 

  23. Hafeez U, Parakh S, Gan HK, Scott AM. Antibody–drug conjugates for cancer therapy. Molecules. 2020;25(20):4764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Agarwal S, Mittapalli RK, Zellmer DM, Gallardo JL, Donelson R, Seiler C, et al. Active efflux of dasatinib from the brain limits efficacy against murine glioblastoma: broad implications for the clinical use of molecularly targeted agents. Mol Cancer Ther. 2012;11(10):2183–92. https://doi.org/10.1158/1535-7163.Mct-12-0552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. MCNeill KA, Fine H. Challenges in clinical trial design for recurrent glioblastoma. Clin Investig. 2013;3(9):835–48.

    Article  CAS  Google Scholar 

  26. • Gunjur A, Balasubramanian A, Hafeez U, Menon S, Cher L, Parakh S, et al. Poor correlation between preclinical and patient efficacy data for tumor targeted monotherapies in glioblastoma: the results of a systematic review. J Neurooncol. 2022. https://doi.org/10.1007/s11060-022-04092-7. (This is the first study to provide a detailed quantitative and qualitative investigation of the problems with preclinical models of brain tumors that contributed to lack of progress in developing more successful brain tumor treatments.)

    Article  PubMed  Google Scholar 

  27. Gan HK, Burgess AW, Clayton AH, Scott AM. Targeting of a conformationally exposed, tumor-specific epitope of EGFR as a strategy for cancer therapy. Cancer Res. 2012;72(12):2924–30. https://doi.org/10.1158/0008-5472.CAN-11-3898.

    Article  CAS  PubMed  Google Scholar 

  28. Ruiz-Rodado V, Seki T, Dowdy T, Lita A, Zhang M, Han S, et al. Metabolic landscape of a genetically engineered mouse model of IDH1 mutant glioma. Cancers (Basel). 2020;12(6):1633. https://doi.org/10.3390/cancers12061633.

  29. Leenders W. Transgenic mouse models of Idh -mutated neural stem cells: an appropriate model for low grade glioma? Transl Cancer Res. 2016;5(Suppl 7):S1400–03.

  30. Bardella C, Al-Dalahmah O, Krell D, Brazauskas P, Al-Qahtani K, Tomkova M, et al. Expression of Idh 1(R132H) in the murine subventricular zone stem cell niche recapitulates features of early gliomagenesis. Cancer Cell. 2016;30(4):578–94. https://doi.org/10.1016/j.ccell.2016.08.017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sasaki M, Knobbe CB, Itsumi M, Elia AJ, Harris IS, Chio II, et al. D-2-hydroxyglutarate produced by mutant IDH1 perturbs collagen maturation and basement membrane function. Genes Dev. 2012;26(18):2038–49. https://doi.org/10.1101/gad.198200.112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Gan HK, Cvrljevic AN, Johns TG. The epidermal growth factor receptor variant III (EGFRvIII): where wild things are altered. FEBS J. 2013;280(21):5350–70. https://doi.org/10.1111/febs.12393.

    Article  CAS  PubMed  Google Scholar 

  33. Sottoriva A, Spiteri I, Piccirillo SGM, Touloumis A, Collins VP, Marioni JC, et al. Intratumor heterogeneity in human glioblastoma reflects cancer evolutionary dynamics. Proc Natl Acad Sci. 2013;110(10):4009–14. https://doi.org/10.1073/pnas.1219747110.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Barthel FP, Johnson KC, Varn FS, Moskalik AD, Tanner G, Kocakavuk E, et al. Longitudinal molecular trajectories of diffuse glioma in adults. Nature. 2019;576(7785):112–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. •• Varn FS, Johnson KC, Martinek J, Huse JT, Nasrallah MP, Wesseling P, et al. Glioma progression is shaped by genetic evolution and microenvironment interactions. Cell. 2022;185(12):2184-99.e16. https://doi.org/10.1016/j.cell.2022.04.038. (This extensive and detailed investigation of tumour evolution over time provide key and novel insights into temporal evolution in response to treatment)

    Article  CAS  PubMed  Google Scholar 

  36. Gan HK, van den Bent M, Lassman AB, Reardon DA, Scott AM. Antibody-drug conjugates in glioblastoma therapy: the right drugs to the right cells. Nat Rev Clin Oncol. 2017;14(11):695–707. https://doi.org/10.1038/nrclinonc.2017.95.

    Article  CAS  PubMed  Google Scholar 

  37. Roberts JW, Powlovich L, Sheybani N, LeBlang S. Focused ultrasound for the treatment of glioblastoma. J Neurooncol. 2022;157(2):237–47. https://doi.org/10.1007/s11060-022-03974-0.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Phoenix TN, Patmore DM, Boop S, Boulos N, Jacus MO, Patel YT, et al. Medulloblastoma Genotype Dictates Blood Brain Barrier Phenotype. Cancer Cell. 2016;29(4):508–22. https://doi.org/10.1016/j.ccell.2016.03.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. He L, Zhou H, Zeng Z, Yao H, Jiang W, Qu H. Wnt/β-catenin signaling cascade: a promising target for glioma therapy. J Cell Physiol. 2019;234(3):2217–28. https://doi.org/10.1002/jcp.27186.

    Article  CAS  PubMed  Google Scholar 

  40. Drappatz J, Brenner A, Wong ET, Eichler A, Schiff D, Groves MD, et al. Phase I study of GRN1005 in recurrent malignant glioma. Clin Cancer Res. 2013;19(6):1567–76. https://doi.org/10.1158/1078-0432.CCR-12-2481.

    Article  CAS  PubMed  Google Scholar 

  41. Smith DR, Hardman JM, Earle KM. Metastasizing neuroectodermal tumors of the central nervous system. J Neurosurg. 1969;31(1):50–8. https://doi.org/10.3171/jns.1969.31.1.0050.

    Article  CAS  PubMed  Google Scholar 

  42. •• Venkatesh HS, Morishita W, Geraghty AC, Silverbush D, Gillespie SM, Arzt M, et al. Electrical and synaptic integration of glioma into neural circuits. Nature. 2019;573(7775):539–45. (This study elegantly showed a novel paradigm where glioma cells interact in a significant way with neurons, providing potential mechanism of glioma-brain interactions that may explain tissue trophism and one which could potentially be targeted for therapy.)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Chinot OL, de La Motte RT, Moore N, Zeaiter A, Das A, Phillips H, et al. AVAglio: Phase 3 trial of bevacizumab plus temozolomide and radiotherapy in newly diagnosed glioblastoma multiforme. Adv Ther. 2011;28(4):334–40.

    Article  CAS  PubMed  Google Scholar 

  44. Wick W, Brandes AA, Gorlia T, Sahm F, Taal W, Taphoorn M, et al. Phase III trial exploring the combination of bevacizumab and lomustine in patients with first recurrence of glioblastoma: the EORTC 26101 trial. Neuro-oncol. 2015;17(v1):LB-05.

    Google Scholar 

  45. Reardon DA, Brandes AA, Omuro A, Mulholland P, Lim M, Wick A, et al. Effect of Nivolumab vs bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 randomized clinical trial. JAMA Oncol. 2020;6(7):1003–10. https://doi.org/10.1001/jamaoncol.2020.1024.

    Article  PubMed  Google Scholar 

  46. Grabowski MM, Sankey EW, Ryan KJ, Chongsathidkiet P, Lorrey SJ, Wilkinson DS, et al. Immune suppression in gliomas. J Neurooncol. 2021;151(1):3–12. https://doi.org/10.1007/s11060-020-03483-y.

    Article  PubMed  Google Scholar 

  47. Yang C, Austin F, Richard H, Idowu M, Williamson V, Sabato F, et al. Lynch syndrome-associated ultra-hypermutated pediatric glioblastoma mimicking a constitutional mismatch repair deficiency syndrome. Cold Spring Harb Mol Case Stud. 2019;5(5):a003863. https://doi.org/10.1101/mcs.a003863.

  48. AlHarbi M, Ali Mobark N, AlMubarak L, Aljelaify R, AlSaeed M, Almutairi A, et al. Durable response to nivolumab in a pediatric patient with refractory glioblastoma and constitutional biallelic mismatch repair deficiency. Oncologist. 2018;23(12):1401–6. https://doi.org/10.1634/theoncologist.2018-0163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Bouffet E, Larouche V, Campbell BB, Merico D, de Borja R, Aronson M, et al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J Clin Oncol. 2016;34(19):2206–11. https://doi.org/10.1200/jco.2016.66.6552.

    Article  CAS  PubMed  Google Scholar 

  50. Cloughesy TF, Mochizuki AY, Orpilla JR, Hugo W, Lee AH, Davidson TB, et al. Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma. Nat Med. 2019;25(3):477–86. https://doi.org/10.1038/s41591-018-0337-7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Gromeier M, Brown MC, Zhang G, Lin X, Chen Y, Wei Z, et al. Very low mutation burden is a feature of inflamed recurrent glioblastomas responsive to cancer immunotherapy. Nat Commun. 2021;12(1):352. https://doi.org/10.1038/s41467-020-20469-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Janes PW, Vail ME, Gan HK, Scott AM. Antibody targeting of eph receptors in cancer. Pharmaceuticals. 2020;13(5):88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Wykosky J, Gibo DM, Stanton C, Debinski W. EphA2 as a novel molecular marker and target in glioblastoma multiforme. Mol Cancer Res. 2005;3(10):541–51.

    Article  CAS  PubMed  Google Scholar 

  54. Gan H, Cher L, Inglis P, Lwin Z, Lau E, Wichmann C, et al. Abstract CT063: Preliminary findings of a phase I safety and bioimaging trial of KB004 (ifabotuzumab) in patients with glioblastoma. Cancer Res. 2019;79(13 Supplement):CT063-CT. https://doi.org/10.1158/1538-7445.Am2019-ct063.

  55. DiMasi JA, Grabowski HG. Economics of new oncology drug development. J Clin Oncol. 2007;25(2):209–16. https://doi.org/10.1200/jco.2006.09.0803.

    Article  PubMed  Google Scholar 

  56. Australian Institute of Health and Welfare 2019. Cancer in Australia 2019. Cancer series no.119. Cat. no. CAN 123. Canberra: AIHW.

  57. Vanderbeek AM, Rahman R, Fell G, Ventz S, Chen T, Redd R, et al. The clinical trials landscape for glioblastoma: is it adequate to develop new treatments? Neuro-oncol. 2018;20(8):1034–43. https://doi.org/10.1093/neuonc/noy027.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Lwin Z, Broom A, Cosman R, Livingstone A, Sawkins K, Good P, et al. Culturally and linguistically diverse patient participation in glioma research. Neuro Oncol Pract. 2014;1(3):101–5. https://doi.org/10.1093/nop/npu009.

    Article  Google Scholar 

  59. Taha B, Winston G, Tosi U, Hartley B, Hoffman C, Dahmane N, et al. Missing diversity in brain tumor trials. Neurooncol Adv. 2020;2(1):vdaa059. https://doi.org/10.1093/noajnl/vdaa059.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, et al. The somatic genomic landscape of glioblastoma. Cell. 2013;155(2):462–77. https://doi.org/10.1016/j.cell.2013.09.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Brat DJ, Verhaak RG, Aldape KD, Yung WK, Salama SR, Cooper LA, et al. Comprehensive, integrative genomic analysis of diffuse lower-grade gliomas. N Engl J Med. 2015;372(26):2481–98. https://doi.org/10.1056/NEJMoa1402121.

    Article  CAS  PubMed  Google Scholar 

  62. Kong BY, Sim H-W, Nowak AK, Yip S, Barnes EH, Day BW, et al. LUMOS - low and intermediate grade glioma umbrella study of molecular guided therapies at relapse: protocol for a pilot study. BMJ Open. 2021;11(12):e054075. https://doi.org/10.1136/bmjopen-2021-054075.

    Article  PubMed Central  Google Scholar 

  63. Doz F, van Tilburg CM, Geoerger B, Højgaard M, Øra I, Boni V, et al. Efficacy and safety of larotrectinib in TRK fusion-positive primary central nervous system tumors. Neuro Oncol. 2022;24(6):997–1007. https://doi.org/10.1093/neuonc/noab274.

    Article  CAS  PubMed  Google Scholar 

  64. Wen PY, Stein A, van den Bent M, De Greve J, Wick A, de Vos F, et al. Dabrafenib plus trametinib in patients with BRAF(V600E)-mutant low-grade and high-grade glioma (ROAR): a multicentre, open-label, single-arm, phase 2, basket trial. Lancet Oncol. 2022;23(1):53–64. https://doi.org/10.1016/s1470-2045(21)00578-7.

    Article  CAS  PubMed  Google Scholar 

  65. Balasubramanian A, Gunjur A, Hafeez U, Menon S, Cher LM, Parakh S, et al. Inefficiencies in phase II to phase III transition impeding successful drug development in glioblastoma. Neuro-Oncol Adv. 2021;3(1):vdaa171. https://doi.org/10.1093/noajnl/vdaa171.

    Article  Google Scholar 

  66. Rahman R, Ventz S, McDunn J, Louv B, Reyes-Rivera I, Polley MC, et al. Leveraging external data in the design and analysis of clinical trials in neuro-oncology. Lancet Oncol. 2021;22(10):e456–65. https://doi.org/10.1016/s1470-2045(21)00488-5.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Ventz S, Comment L, Louv B, Rahman R, Wen PY, Alexander BM, et al. The use of external control data for predictions and futility interim analyses in clinical trials. Neuro Oncol. 2022;24(2):247–56. https://doi.org/10.1093/neuonc/noab141.

    Article  PubMed  Google Scholar 

  68. Taal W, Brandsma D, Bruin HGd, Bromberg JE, Swaak-Kragten AT, Eijkenboom WM, et al. The incidence of pseudo-progression in a cohort of malignant glioma patients treated with chemo-radiation with temozolomide. J Clin Oncol. 2007;25(18_suppl):2009-. https://doi.org/10.1200/jco.2007.25.18_suppl.2009.

  69. Brandes AA, Franceschi E, Tosoni A, Blatt V, Pession A, Tallini G, et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J Clin Oncol. 2008;26(13):2192–7.

    Article  PubMed  Google Scholar 

  70. Cui M, Zorrilla-Veloz RI, Hu J, Guan B, Ma X. Diagnostic accuracy of PET for differentiating true glioma progression from post treatment-related changes: a systematic review and meta-analysis. Front Neurol. 2021;12:671867. https://doi.org/10.3389/fneur.2021.671867.

  71. Henriksson R, Asklund T, Poulsen HS. Impact of therapy on quality of life, neurocognitive function and their correlates in glioblastoma multiforme: a review. J Neurooncol. 2011;104(3):639–46. https://doi.org/10.1007/s11060-011-0565-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Neftel C, Laffy J, Filbin MG, Hara T, Shore ME, Rahme GJ, et al. An integrative model of cellular states, plasticity, and genetics for glioblastoma. Cell. 2019;178(4):835-49.e21. https://doi.org/10.1016/j.cell.2019.06.024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gadgeel S, Rodríguez-Abreu D, Speranza G, Esteban E, Felip E, Dómine M, et al. Updated analysis from KEYNOTE-189: pembrolizumab or placebo plus pemetrexed and platinum for previously untreated metastatic nonsquamous non-small-cell lung cancer. J Clin Oncol. 2020;38(14):1505–17.

  74. Chandramohan V, Bao X, Yu X, Parker S, McDowall C, Yu Y-R, et al. Improved efficacy against malignant brain tumors with EGFRwt/EGFRvIII targeting immunotoxin and checkpoint inhibitor combinations. J Immunother Cancer. 2019;7(1):1–14.

    Article  Google Scholar 

  75. Gan HK, Walker F, Burgess AW, Rigopoulos A, Scott AM, Johns TG. The epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor AG1478 increases the formation of inactive untethered EGFR dimers: implications for combination therapy with monoclonal antibody 806. J Biol Chem. 2007;282(5):2840–50.

    Article  CAS  PubMed  Google Scholar 

  76. Orellana L, Thorne AH, Lema R, Gustavsson J, Parisian AD, Cordeiro TN, et al. Oncogenic mutations at the EGFR ectodomain structurally converge to remove a steric hindrance on a kinase-coupled cryptic epitope. Proc Natl Acad Sci. 2019;116(20):10009–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Anderson MG, Falls HD, Mitten MJ, Oleksijew A, Vaidya KS, Boghaert ER, et al. Targeting multiple EGFR-expressing tumors with a highly potent tumor-selective antibody-drug conjugate. Mol Cancer Ther. 2020;19(10):2117–25. https://doi.org/10.1158/1535-7163.Mct-20-0149.

    Article  CAS  PubMed  Google Scholar 

  78. Gerber H-P, Sapra P, Loganzo F, May C. Combining antibody–drug conjugates and immune-mediated cancer therapy: what to expect? Biochem Pharmacol. 2016;102:1–6.

    Article  CAS  PubMed  Google Scholar 

  79. Reardon DA, Lassman AB, van den Bent M, Kumthekar P, Merrell R, Scott AM, et al. Efficacy and safety results of ABT-414 in combination with radiation and temozolomide in newly diagnosed glioblastoma. Neuro-Oncol. 2017;19(7):965–75.

  80. Lassman AB, Gan HK, Roberts-Rapp L, Ansell P, Merrell R, Kumthekar P, et al. Identifying the correct patient population for depatuxizumab mafodotin (ABT-414): biomarker assays for epidermal growth factor receptor (EGFR) in patients with glioblastoma. Zurich: World Federation of Neuro-Oncology; 2017. Abstract 09.25.

  81. Alexander BM, Ba S, Berger MS, Berry DA, Cavenee WK, Chang SM, et al. Adaptive global innovative learning environment for glioblastoma: GBM AGILE. Clin Cancer Res. 2018;24(4):737–43. https://doi.org/10.1158/1078-0432.CCR-17-0764.

    Article  PubMed  Google Scholar 

  82. Anonymous: Global coalition for adaptive research announces key updates on GBM AGILE phase 2–3 adaptive platform trial for patients with glioblastoma. https://www.businesswire.com/news/home/20220118005368/en/Global-Coalition-for-Adaptive-Research-Announces-Key-Updates-on-GBM-AGILE-Phase-2-3-Adaptive-Platform-Trial-for-Patients-With-Glioblastoma?utm_campaign=shareaholic&utm_medium=email_this&utm_source=email (2022). Accessed 01/02/2022.

  83. Lee EQ, Trippa L, Fell G, Rahman R, Arrillaga-Romany I, Drappatz J, et al. Feasibility and conduct of INSIGhT, a platform trial of patients with glioblastoma using Bayesian adaptive randomization. J Clin Oncol. 2022;40(16_suppl):2012-. https://doi.org/10.1200/JCO.2022.40.16_suppl.2012.

  84. Alexander BM, Trippa L, Gaffey S, Arrillaga-Romany IC, Lee EQ, Rinne ML, et al. Individualized Screening Trial of Innovative Glioblastoma Therapy (INSIGhT): a Bayesian adaptive platform trial to develop precision medicines for patients with glioblastoma. JCO Precis Oncol. 2019;3:PO.18.00071. https://doi.org/10.1200/po.18.00071

  85. Wick W, Dettmer S, Berberich A, Kessler T, Karapanagiotou-Schenkel I, Wick A, et al. N2M2 (NOA-20) phase I/II trial of molecularly matched targeted therapies plus radiotherapy in patients with newly diagnosed non-MGMT hypermethylated glioblastoma. Neuro Oncology. 2019;21(1):95–105. https://doi.org/10.1093/neuonc/noy161.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Kong Gan.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, H.K., Day, B.W., Harrup, R. et al. Clinical Trials in the Brain Tumour Population: Challenges and Strategies for the Future. Curr Oncol Rep 25, 589–598 (2023). https://doi.org/10.1007/s11912-023-01394-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-023-01394-5

Keywords

Navigation