Skip to main content

Advertisement

Log in

Poor correlation between preclinical and patient efficacy data for tumor targeted monotherapies in glioblastoma: the results of a systematic review

  • Review
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

A Correction to this article was published on 22 August 2022

This article has been updated

Abstract

Purpose

Limited progress has been made in treating glioblastoma, and we hypothesise that poor concordance between preclinical and clinical efficacy in this disease is a major barrier to drug development. We undertook a systematic review to quantify this issue.

Methods

We identified phase I trials (P1Ts) of tumor targeted drugs, subsequent trial results and preceding relevant preclinical data published in adult glioblastoma patients between 2006–2019 via structured searches of EMBASE/MEDLINE/PUBMED. Detailed clinical/preclinical information was extracted. Associations between preclinical and clinical efficacy metrics were determined using appropriate non-parametric statistical tests.

Results

A total of 28 eligible P1Ts were identified, with median ORR of 2.9% (range 0.0–33.3%). Twenty-three (82%) had published relevant preclinical data available. Five (18%) had relevant later phase clinical trial data available. There was overall poor correlation between preclinical and clinical efficacy metrics on univariate testing. However, drugs that had undergone in vivo testing had significantly longer median overall survival (7.9 vs 5.6mo, p = 0.02). Additionally, drugs tested in ≥ 2 biologically-distinct in vivo models (‘multiple models’) had a significantly better median response rate than those tested using only one (‘single model’) or those lacking in vivo data (6.8% vs 1.2% vs. 0.0% respectively, p = 0.027).

Conclusion

Currently used preclinical models poorly predict subsequent activity in P1Ts, and generally over-estimate the anti-tumor activity of these drugs. This underscores the need for better preclinical models to aid the development of novel anti-glioblastoma drugs. Until these become widely available and used, the use of multiple biologically-distinct in vivo models should be strongly encouraged.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

All data collected was publicly available at the time of the systematic review. The dataset generated during this review and used for subsequent analyses is included as a supplementary material. R code is available from the corresponding author on reasonable request.

Change history

References

  1. Stupp R, Hegi ME, Mason WP et al (2009) Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 10:459–466. https://doi.org/10.1016/S1470-2045(09)70025-7

    Article  CAS  PubMed  Google Scholar 

  2. Balasubramanian A, Gunjur A, Hafeez U et al (2021) Inefficiencies in phase II to phase III transition impeding successful drug development in glioblastoma. Neuro-Oncol Adv. https://doi.org/10.1093/noajnl/vdaa171

    Article  Google Scholar 

  3. Wen PY, Weller M, Lee EQ et al (2020) Glioblastoma in adults: a Society for Neuro-Oncology (SNO) and European Society of Neuro-Oncology (EANO) consensus review on current management and future directions. Neuro-Oncol 22:1073–1113. https://doi.org/10.1093/neuonc/noaa106

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Weller M, van den Bent M, Preusser M et al (2021) EANO guidelines on the diagnosis and treatment of diffuse gliomas of adulthood. Nat Rev Clin Oncol 18:170–186. https://doi.org/10.1038/s41571-020-00447-z

    Article  PubMed  Google Scholar 

  5. Verhaak RGW, Hoadley KA, Purdom E et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98–110. https://doi.org/10.1016/j.ccr.2009.12.020

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Louis DN, Perry A, Reifenberger G et al (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol (Berl) 131:803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  Google Scholar 

  7. Huszthy PC, Daphu I, Niclou SP et al (2012) In vivo models of primary brain tumors: pitfalls and perspectives. Neuro-Oncol 14:979–993. https://doi.org/10.1093/neuonc/nos135

    Article  PubMed Central  PubMed  Google Scholar 

  8. Lenting K, Verhaak R, Ter Laan M et al (2017) Glioma: experimental models and reality. Acta Neuropathol (Berl) 133:263–282. https://doi.org/10.1007/s00401-017-1671-4

    Article  Google Scholar 

  9. Aldape K, Brindle KM, Chesler L et al (2019) Challenges to curing primary brain tumours. Nat Rev Clin Oncol 16:509–520. https://doi.org/10.1038/s41571-019-0177-5

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Wohlin C (2014) Guidelines for snowballing in systematic literature studies and a replication in software engineering. In: Proceedings of the 18th International Conference on Evaluation and Assessment in Software Engineering - EASE ’14. ACM Press, London, England, United Kingdom 1–10

  11. Prados MD, Lamborn KR, Chang S et al (2006) Phase 1 study of erlotinib HCl alone and combined with temozolomide in patients with stable or recurrent malignant glioma. Neuro-Oncol 8:67–78. https://doi.org/10.1215/S1522851705000451

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Kesavabhotla K, Schlaff CD, Shin B et al (2012) Phase I/II study of oral erlotinib for treatment of relapsed/refractory glioblastoma multiforme and anaplastic astrocytoma. J Exp Ther Oncol 10:71–81

    CAS  PubMed  Google Scholar 

  13. Wen PY, Yung WKA, Lamborn KR et al (2006) Phase I/II study of imatinib mesylate for recurrent malignant gliomas: North American Brain Tumor Consortium Study 99–08. Clin Cancer Res Off J Am Assoc Cancer Res 12:4899–4907. https://doi.org/10.1158/1078-0432.CCR-06-0773

    Article  CAS  Google Scholar 

  14. Nabors LB, Mikkelsen T, Rosenfeld SS et al (2007) Phase I and correlative biology study of cilengitide in patients with recurrent malignant glioma. J Clin Oncol 25:1651–1657. https://doi.org/10.1200/JCO.2006.06.6514

    Article  CAS  PubMed  Google Scholar 

  15. Cloughesy TF, Yoshimoto K, Nghiemphu P et al (2008) Antitumor activity of rapamycin in a phase I trial for patients with recurrent PTEN-deficient glioblastoma. PLoS Med 5:e8. https://doi.org/10.1371/journal.pmed.0050008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Phuphanich S, Carson KA, Grossman SA et al (2008) Phase I safety study of escalating doses of atrasentan in adults with recurrent malignant glioma. Neuro-Oncol 10:617–623. https://doi.org/10.1215/15228517-2008-013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Kreisl TN, Kotliarova S, Butman JA et al (2010) A phase I/II trial of enzastaurin in patients with recurrent high-grade gliomas. Neuro-Oncol 12:181–189. https://doi.org/10.1093/neuonc/nop042

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Phuphanich S, Supko JG, Carson KA et al (2010) Phase 1 clinical trial of bortezomib in adults with recurrent malignant glioma. J Neurooncol. https://doi.org/10.1007/s11060-010-0143-7

    Article  PubMed Central  PubMed  Google Scholar 

  19. Thiessen B, Stewart C, Tsao M et al (2010) A phase I/II trial of GW572016 (lapatinib) in recurrent glioblastoma multiforme: clinical outcomes, pharmacokinetics and molecular correlation. Cancer Chemother Pharmacol 65:353–361. https://doi.org/10.1007/s00280-009-1041-6

    Article  CAS  PubMed  Google Scholar 

  20. Couldwell WT, Surnock AA, Tobia AJ et al (2011) A phase 1/2 study of orally administered synthetic hypericin for treatment of recurrent malignant gliomas. Cancer 117:4905–4915. https://doi.org/10.1002/cncr.26123

    Article  CAS  PubMed  Google Scholar 

  21. Iwamoto FM, Lamborn KR, Kuhn JG et al (2011) A phase I/II trial of the histone deacetylase inhibitor romidepsin for adults with recurrent malignant glioma: North American Brain Tumor Consortium Study 03–03. Neuro-Oncol 13:509–516. https://doi.org/10.1093/neuonc/nor017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Nabors LB, Supko JG, Rosenfeld M et al (2011) Phase I trial of sorafenib in patients with recurrent or progressive malignant glioma. Neuro-Oncol 13:1324–1330. https://doi.org/10.1093/neuonc/nor145

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Rudek MA, New P, Mikkelsen T et al (2011) Phase I and pharmacokinetic study of COL-3 in patients with recurrent high-grade gliomas. J Neurooncol 105:375–381. https://doi.org/10.1007/s11060-011-0602-9

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Kreisl TN, McNeill KA, Sul J et al (2012) A phase I/II trial of vandetanib for patients with recurrent malignant glioma. Neuro-Oncol 14:1519–1526. https://doi.org/10.1093/neuonc/nos265

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Reardon DA, Conrad CA, Cloughesy T et al (2012) Phase I study of AEE788, a novel multitarget inhibitor of ErbB- and VEGF-receptor-family tyrosine kinases, in recurrent glioblastoma patients. Cancer Chemother Pharmacol 69:1507–1518. https://doi.org/10.1007/s00280-012-1854-6

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Reardon DA, Wen PY, Alfred Yung WK et al (2012) Ridaforolimus for patients with progressive or recurrent malignant glioma: a perisurgical, sequential, ascending-dose trial. Cancer Chemother Pharmacol 69:849–860. https://doi.org/10.1007/s00280-011-1773-y

    Article  CAS  PubMed  Google Scholar 

  27. Drappatz J, Brenner A, Wong ET et al (2013) Phase I study of GRN1005 in recurrent malignant glioma. Clin Cancer Res Off J Am Assoc Cancer Res 19:1567–1576. https://doi.org/10.1158/1078-0432.CCR-12-2481

    Article  CAS  Google Scholar 

  28. Schäfer N, Gielen GH, Kebir S et al (2016) Phase I trial of dovitinib (TKI258) in recurrent glioblastoma. J Cancer Res Clin Oncol 142:1581–1589. https://doi.org/10.1007/s00432-016-2161-0

    Article  CAS  PubMed  Google Scholar 

  29. Ahmed N, Brawley V, Hegde M et al (2017) HER2-Specific Chimeric Antigen Receptor-Modified Virus-Specific T Cells for Progressive Glioblastoma. JAMA Oncol 3:1094–1101. https://doi.org/10.1001/jamaoncol.2017.0184

    Article  PubMed Central  PubMed  Google Scholar 

  30. Aiken R, Axelson M, Harmenberg J et al (2017) Phase I clinical trial of AXL1717 for treatment of relapsed malignant astrocytomas: analysis of dose and response. Oncotarget 8(46):81501–81510. https://doi.org/10.18632/oncotarget.20662

    Article  PubMed Central  PubMed  Google Scholar 

  31. Batchelor TT, Gerstner ER, Ye X et al (2017) Feasibility, phase I, and phase II studies of tandutinib, an oral platelet-derived growth factor receptor-β tyrosine kinase inhibitor, in patients with recurrent glioblastoma. Neuro-Oncol 19:567–575. https://doi.org/10.1093/neuonc/now185

    Article  CAS  PubMed  Google Scholar 

  32. van den Bent M, Gan HK, Lassman AB et al (2017) Efficacy of depatuxizumab mafodotin (ABT-414) monotherapy in patients with EGFR-amplified, recurrent glioblastoma: results from a multi-center, international study. Cancer Chemother Pharmacol 80:1209–1217. https://doi.org/10.1007/s00280-017-3451-1

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Brown NF, Williams M, Arkenau H-T et al (2018) A study of the focal adhesion kinase inhibitor GSK2256098 in patients with recurrent glioblastoma with evaluation of tumor penetration of [11C]GSK2256098. Neuro-Oncol 20:1634–1642. https://doi.org/10.1093/neuonc/noy078

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Hu H, Mu Q, Bao Z et al (2018) Mutational landscape of secondary glioblastoma guides MET-targeted trial in brain tumor. Cell 175:1665-1678.e18. https://doi.org/10.1016/j.cell.2018.09.038

    Article  CAS  PubMed  Google Scholar 

  35. O’Rourke DM, Nasrallah MP, Desai A et al (2017) A single dose of peripherally infused EGFRvIII-directed CAR T cells mediates antigen loss and induces adaptive resistance in patients with recurrent glioblastoma. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aaa0984

    Article  PubMed Central  PubMed  Google Scholar 

  36. Goff SL, Morgan RA, Yang JC et al (1997) (2019) Pilot trial of adoptive transfer of chimeric antigen receptor-transduced T cells targeting EGFRvIII in patients with glioblastoma. J Immunother Hagerstown Md 42:126–135. https://doi.org/10.1097/CJI.0000000000000260

    Article  CAS  Google Scholar 

  37. Guo J-X, Wu C-X, Wang P-F et al (2019) Bioactivity and safety of chimeric switch receptor T cells in glioblastoma patients. Front Biosci Landmark Ed 24:1158–1166

    Article  CAS  PubMed  Google Scholar 

  38. Rosenthal M, Curry R, Reardon DA et al (2019) Safety, tolerability, and pharmacokinetics of anti-EGFRvIII antibody-drug conjugate AMG 595 in patients with recurrent malignant glioma expressing EGFRvIII. Cancer Chemother Pharmacol 84:327–336. https://doi.org/10.1007/s00280-019-03879-2

    Article  CAS  PubMed  Google Scholar 

  39. Wick W, Puduvalli VK, Chamberlain MC et al (2010) Phase III Study of enzastaurin compared with lomustine in the treatment of recurrent intracranial glioblastoma. J Clin Oncol 28:1168–1174. https://doi.org/10.1200/JCO.2009.23.2595

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Raymond E, Brandes AA, Dittrich C et al (2008) Phase II study of imatinib in patients with recurrent gliomas of various histologies: a European Organisation for Research and Treatment of Cancer Brain Tumor Group Study. J Clin Oncol 26:4659–4665. https://doi.org/10.1200/JCO.2008.16.9235

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  41. Reardon DA, Fink KL, Mikkelsen T et al (2008) Randomized phase II study of cilengitide, an integrin-targeting arginine-glycine-aspartic acid peptide, in recurrent glioblastoma multiforme. J Clin Oncol 26:5610–5617. https://doi.org/10.1200/JCO.2008.16.7510

    Article  CAS  PubMed  Google Scholar 

  42. van den Bent MJ, Brandes AA, Rampling R et al (2009) Randomized phase II trial of erlotinib versus temozolomide or carmustine in recurrent glioblastoma: EORTC brain tumor group study 26034. J Clin Oncol 27:1268–1274. https://doi.org/10.1200/JCO.2008.17.5984

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Sharma M, Schilero C, Peereboom DM et al (2019) Phase II study of dovitinib in recurrent glioblastoma. J Neurooncol 144:359–368. https://doi.org/10.1007/s11060-019-03236-6

    Article  CAS  PubMed  Google Scholar 

  44. Van Den Bent M, Eoli M, Sepulveda JM et al (2020) INTELLANCE 2/EORTC 1410 randomized phase II study of Depatux-M alone and with temozolomide vs temozolomide or lomustine in recurrent EGFR amplified glioblastoma. Neuro-Oncol 22:684–693. https://doi.org/10.1093/neuonc/noz222

    Article  CAS  Google Scholar 

  45. Pan E, Bogumil D, Cortessis V et al (2020) A systematic review of the efficacy of preclinical models of lung cancer drugs. Front Oncol. https://doi.org/10.3389/fonc.2020.00591

    Article  PubMed Central  PubMed  Google Scholar 

  46. Kim H, Zheng S, Amini SS et al (2015) Whole-genome and multisector exome sequencing of primary and post-treatment glioblastoma reveals patterns of tumor evolution. Genome Res 25:316–327. https://doi.org/10.1101/gr.180612.114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Patel AP, Tirosh I, Trombetta JJ et al (2014) Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma. Science 344:1396–1401. https://doi.org/10.1126/science.1254257

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Hirst TC, Vesterinen HM, Sena ES et al (2013) Systematic review and meta-analysis of temozolomide in animal models of glioma: was clinical efficacy predicted? Br J Cancer 108:64–71. https://doi.org/10.1038/bjc.2012.504

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Ms. Shreya Hariharan for her assistance with the generation of figures, Dr Emily Jenkins for her assistance with data management, and Ms. Kerryn Westcott for her advice and feedback on the manuscript at various stages.

Funding

Author AG is supported by the Cancer Research UK Clinical Research Training Fellowship Programme and a John Monash Scholarship. Author HKG is a recipient of a Victorian Government Centre of Research Excellence in Brain Cancer award through the Victorian Cancer Agency.

Author information

Authors and Affiliations

Authors

Contributions

AG, AB, SP, HKG: research, manuscript writing and revision. SM, UH, LC: review, contribution to discussion, editing of manuscript. HG: Overall supervision.

Corresponding author

Correspondence to Hui Kong Gan.

Ethics declarations

Conflict of interest

Author AG has received speaker honorarium from company Bristol Myers Squibb.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original version of this article has been revised: The last two sentences in the Results section have been corrected and the missing Supplementary Figs. 1 and 2 have been added to the Supplementary Information.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (CSV 2 KB)

Supplementary file2 (DOCX 449 KB)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gunjur, A., Balasubramanian, A., Hafeez, U. et al. Poor correlation between preclinical and patient efficacy data for tumor targeted monotherapies in glioblastoma: the results of a systematic review. J Neurooncol 159, 539–549 (2022). https://doi.org/10.1007/s11060-022-04092-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-022-04092-7

Keywords

Navigation