Skip to main content

Advertisement

Log in

AXL Inhibitors: Status of Clinical Development

  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The AXL signaling pathway is associated with tumor growth as well as poor prognosis in cancer. Here, we highlight recent strategies for targeting AXL in the treatment of solid and hematological malignancies.

Recent Findings

AXL is a key player in survival, metastasis, and therapeutic resistance in many cancers. A range of AXL-targeted therapies, including tyrosine kinase inhibitors, monoclonal antibodies, antibody–drug conjugates, and soluble receptors, have entered clinical development. Notably, AXL inhibitors in combination with immune checkpoint inhibitors demonstrate early promise; however, further understanding of predictive biomarkers and treatment sequencing is necessary.

Summary

Based on its role in tumor growth and drug resistance, AXL represents a promising therapeutic target in oncology. Results from ongoing clinical trials will provide valuable insights into the role of AXL inhibitors, both as single agents and in combination with other therapies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Gay CM, Balaji K, Byers LA. Giving AXL the axe: targeting AXL in human malignancy. Br J Cancer. 2017;116(4):415–23. https://doi.org/10.1038/bjc.2016.428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Paccez JD, Vogelsang M, Parker MI, Zerbini LF. The receptor tyrosine kinase Axl in cancer: biological functions and therapeutic implications. Int J Cancer. 2014;134(5):1024–33. https://doi.org/10.1002/ijc.28246.

    Article  CAS  PubMed  Google Scholar 

  3. Zhu C, Wei Y, Wei X. AXL receptor tyrosine kinase as a promising anti-cancer approach: functions, molecular mechanisms and clinical applications. Mol Cancer. 2019;18(1):153. https://doi.org/10.1186/s12943-019-1090-3.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Ishikawa M, Sonobe M, Nakayama E, Kobayashi M, Kikuchi R, Kitamura J, et al. Higher expression of receptor tyrosine kinase Axl, and differential expression of its ligand, Gas6, predict poor survival in lung adenocarcinoma patients. Ann Surg Oncol. 2013;20(Suppl 3):S467–76. https://doi.org/10.1245/s10434-012-2795-3.

    Article  PubMed  Google Scholar 

  5. Tanaka K, Tokunaga E, Inoue Y, Yamashita N, Saeki H, Okano S, et al. Impact of expression of vimentin and Axl in breast cancer. Clin Breast Cancer. 2016;16(6):520-6 e2. https://doi.org/10.1016/j.clbc.2016.06.015.

    Article  CAS  PubMed  Google Scholar 

  6. Cardone C, Blauensteiner B, Moreno-Viedma V, Martini G, Simeon V, Vitiello PP, et al. AXL is a predictor of poor survival and of resistance to anti-EGFR therapy in RAS wild-type metastatic colorectal cancer. Eur J Cancer. 2020;138:1–10. https://doi.org/10.1016/j.ejca.2020.07.010.

    Article  CAS  PubMed  Google Scholar 

  7. Hsieh MS, Yang PW, Wong LF, Lee JM. The AXL receptor tyrosine kinase is associated with adverse prognosis and distant metastasis in esophageal squamous cell carcinoma. Oncotarget. 2016;7(24):36956–70. https://doi.org/10.18632/oncotarget.9231.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhang S, Xu XS, Yang JX, Guo JH, Chao TF, Tong Y. The prognostic role of Gas6/Axl axis in solid malignancies: a meta-analysis and literature review. Onco Targets Ther. 2018;11:509–19. https://doi.org/10.2147/OTT.S150952.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Liu E, Hjelle B, Bishop JM. Transforming genes in chronic myelogenous leukemia. Proc Natl Acad Sci U S A. 1988;85(6):1952-6. https://doi.org/10.1073/pnas.85.6.1952

  10. O’Bryan JP, Frye RA, Cogswell PC, Neubauer A, Kitch B, Prokop C, et al. axl, a transforming gene isolated from primary human myeloid leukemia cells, encodes a novel receptor tyrosine kinase. Mol Cell Biol. 1991;11(10):5016–31. https://doi.org/10.1128/mcb.11.10.5016-5031.1991.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Levin PA, Brekken RA, Byers LA, Heymach JV, Gerber DE. Axl receptor axis: a new therapeutic target in lung cancer. J Thorac Oncol. 2016;11(8):1357–62. https://doi.org/10.1016/j.jtho.2016.04.015.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Scaltriti M, Elkabets M, Baselga J. Molecular Pathways: AXL, a membrane receptor mediator of resistance to therapy. Clin Cancer Res. 2016;22(6):1313–7. https://doi.org/10.1158/1078-0432.CCR-15-1458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Axelrod H, Pienta KJ. Axl as a mediator of cellular growth and survival. Oncotarget. 2014;5(19):8818–52. https://doi.org/10.18632/oncotarget.2422.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Tanaka M, Siemann DW. Gas6/Axl signaling pathway in the tumor immune microenvironment. Cancers (Basel). 2020;12(7):1850. https://doi.org/10.3390/cancers12071850.

    Article  CAS  PubMed  Google Scholar 

  15. Fridell YW, Jin Y, Quilliam LA, Burchert A, McCloskey P, Spizz G, et al. Differential activation of the Ras/extracellular-signal-regulated protein kinase pathway is responsible for the biological consequences induced by the Axl receptor tyrosine kinase. Mol Cell Biol. 1996;16(1):135–45. https://doi.org/10.1128/MCB.16.1.135.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yanagita M, Arai H, Nakano T, Ohashi K, Mizuno K, Fukatsu A, et al. Gas6 induces mesangial cell proliferation via latent transcription factor STAT3. J Biol Chem. 2001;276(45):42364–9. https://doi.org/10.1074/jbc.M107488200.

    Article  CAS  PubMed  Google Scholar 

  17. Abu-Thuraia A, Gauthier R, Chidiac R, Fukui Y, Screaton RA, Gratton JP, et al. Axl phosphorylates Elmo scaffold proteins to promote Rac activation and cell invasion. Mol Cell Biol. 2015;35(1):76–87. https://doi.org/10.1128/MCB.00764-14.

    Article  CAS  PubMed  Google Scholar 

  18. Zhang G, Kong X, Wang M, Zhao H, Han S, Hu R, et al. AXL is a marker for epithelial-mesenchymal transition in esophageal squamous cell carcinoma. Oncol Lett. 2018;15(2):1900–6. https://doi.org/10.3892/ol.2017.7443.

    Article  CAS  PubMed  Google Scholar 

  19. Ying X, Chen J, Huang X, Huang P, Yan S. Effect of AXL on the epithelial-to-mesenchymal transition in non-small cell lung cancer. Exp Ther Med. 2017;14(1):785–90. https://doi.org/10.3892/etm.2017.4532.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Byers LA, Diao L, Wang J, Saintigny P, Girard L, Peyton M, et al. An epithelial-mesenchymal transition gene signature predicts resistance to EGFR and PI3K inhibitors and identifies Axl as a therapeutic target for overcoming EGFR inhibitor resistance. Clin Cancer Res. 2013;19(1):279–90. https://doi.org/10.1158/1078-0432.CCR-12-1558.

    Article  CAS  PubMed  Google Scholar 

  21. Li Y, Ye X, Tan C, Hongo JA, Zha J, Liu J, et al. Axl as a potential therapeutic target in cancer: role of Axl in tumor growth, metastasis and angiogenesis. Oncogene. 2009;28(39):3442–55. https://doi.org/10.1038/onc.2009.212.

    Article  CAS  PubMed  Google Scholar 

  22. • Engelsen AST, Lotsberg ML, AbouKhouzam R, Thiery JP, Lorens JB, Chouaib S, et al. Dissecting the role of AXL in cancer immune escape and resistance to immune checkpoint inhibition. Front Immunol. 2022;13:869676. https://doi.org/10.3389/fimmu.2022.869676. Review article highlighting the role of AXL in immunosuppresion and the potential for combining AXL-targeted therapies with immune checkpoint inhibitors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. • Lin JZ, Wang ZJ, De W, Zheng M, Xu WZ, Wu HF, et al. Targeting AXL overcomes resistance to docetaxel therapy in advanced prostate cancer. Oncotarget. 2017;8(25):41064–77. https://doi.org/10.18632/oncotarget.17026. Pre-clinical study demonstrating the role of AXL in taxane resistance, which has prompted further study of AXL inhibition plus chemotherapy.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Brand TM, Iida M, Stein AP, Corrigan KL, Braverman CM, Luthar N, et al. AXL mediates resistance to cetuximab therapy. Cancer Res. 2014;74(18):5152–64. https://doi.org/10.1158/0008-5472.CAN-14-0294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Debruyne DN, Bhatnagar N, Sharma B, Luther W, Moore NF, Cheung NK, et al. ALK inhibitor resistance in ALK(F1174L)-driven neuroblastoma is associated with AXL activation and induction of EMT. Oncogene. 2016;35(28):3681–91. https://doi.org/10.1038/onc.2015.434.

    Article  CAS  PubMed  Google Scholar 

  26. • Taniguchi H, Yamada T, Wang R, Tanimura K, Adachi Y, Nishiyama A, et al. AXL confers intrinsic resistance to osimertinib and advances the emergence of tolerant cells. Nat Commun. 2019;10(1):259. https://doi.org/10.1038/s41467-018-08074-0. Pre-clinical study demonostrating the potential role of AXL inhibition in overcoming intrinsic resistance to EGFR inhibitors.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zhang Z, Lee JC, Lin L, Olivas V, Au V, LaFramboise T, et al. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat Genet. 2012;44(8):852–60. https://doi.org/10.1038/ng.2330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang C, Jin H, Wang N, Fan S, Wang Y, Zhang Y, et al. Gas6/Axl axis contributes to chemoresistance and metastasis in breast cancer through Akt/GSK-3beta/beta-catenin signaling. Theranostics. 2016;6(8):1205–19. https://doi.org/10.7150/thno.15083.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Aguilera TA, Rafat M, Castellini L, Shehade H, Kariolis MS, Hui AB, et al. Reprogramming the immunological microenvironment through radiation and targeting Axl. Nat Commun. 2016;7:13898. https://doi.org/10.1038/ncomms13898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Scherschinski L, Prem M, Kremenetskaia I, Tinhofer I, Vajkoczy P, Karbe AG, et al. Regulation of the receptor tyrosine kinase AXL in response to therapy and its role in therapy resistance in glioblastoma. Int J Mol Sci. 2022;23(2):982. https://doi.org/10.3390/ijms23020982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hugo W, Zaretsky JM, Sun L, Song C, Moreno BH, Hu-Lieskovan S, et al. Genomic and transcriptomic features of response to anti-PD-1 therapy in metastatic melanoma. Cell. 2016;165(1):35–44. https://doi.org/10.1016/j.cell.2016.02.065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Holland SJ, Pan A, Franci C, Hu Y, Chang B, Li W, et al. R428, a selective small molecule inhibitor of Axl kinase, blocks tumor spread and prolongs survival in models of metastatic breast cancer. Cancer Res. 2010;70(4):1544–54. https://doi.org/10.1158/0008-5472.CAN-09-2997.

    Article  CAS  PubMed  Google Scholar 

  33. Brand TM, Iida M, Stein AP, Corrigan KL, Braverman CM, Coan JP, et al. AXL is a logical molecular target in head and neck squamous cell carcinoma. Clin Cancer Res. 2015;21(11):2601–12. https://doi.org/10.1158/1078-0432.CCR-14-2648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Byers LA, Gold KA, Peguero JA, et al. Ph I/II study of oral selective AXL inhibitor bemcentinib (BGB324) in combination with erlotinib in patients with advanced EGFRm NSCLC: End of trial update. J Clin Oncol. 2021;39(15_suppl):9110.

    Article  Google Scholar 

  35. • Felip E, Brunsvig P, Helland Å, et al. MA03.06 Efficacy results of selective AXL inhibitor bemcentinib with pembrolizumab following chemotherapy in patients with NSCLC. J Thorac Oncol. 2019;14(10, Supplement):S258–9. Preliminary results of the phase II study of bemcentinib plus pembrolizumab in previously treated, advanced NSCLC.

    Article  Google Scholar 

  36. Bhalla S, Farjana FJ, Williams JN, et al. Phase 1 dose escalation and expansion study of bemcentinib (BGB324), a first-in-class, selective AXL inhibitor, with docetaxel in patients with previously treated advanced NSCLC. J Clin Oncol. 2022;40(16_suppl):9081.

    Article  Google Scholar 

  37. Guo Z, Li Y, Zhang D, Ma J. Axl inhibition induces the antitumor immune response which can be further potentiated by PD-1 blockade in the mouse cancer models. Oncotarget. 2017;8(52):89761–74. https://doi.org/10.18632/oncotarget.21125.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Son HY, Jeong HK. Immune evasion mechanism and AXL. Front Oncol. 2021;11:756225. https://doi.org/10.3389/fonc.2021.756225.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Skoulidis F, Goldberg ME, Greenawalt DM, Hellmann MD, Awad MM, Gainor JF, et al. STK11/LKB1 mutations and PD-1 inhibitor resistance in KRAS-mutant lung adenocarcinoma. Cancer Discov. 2018;8(7):822–35. https://doi.org/10.1158/2159-8290.CD-18-0099.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. •• Li H, Liu Z, Liu L, Zhang H, Han C, Girard L, et al. AXL targeting restores PD-1 blockade sensitivity of STK11/LKB1 mutant NSCLC through expansion of TCF1(+) CD8 T cells. Cell Rep Med. 2022;3(3):100554. https://doi.org/10.1016/j.xcrm.2022.100554. Pre-clinical study providing rationale for the study of AXL inhibition in the treatment of NSCLC harboring STK11/LKB1 mutations.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sinha S, Boysen J, Nelson M, Secreto C, Warner SL, Bearss DJ, et al. Targeted Axl inhibition primes chronic lymphocytic leukemia B cells to apoptosis and shows synergistic/additive effects in combination with BTK inhibitors. Clin Cancer Res. 2015;21(9):2115–26. https://doi.org/10.1158/1078-0432.CCR-14-1892.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang Y, Arner EN, Rizvi A, Toombs JE, Huang H, Warner SL, et al. AXL Inhibitor TP-0903 reduces metastasis and therapy resistance in pancreatic cancer. Mol Cancer Ther. 2022;21(1):38–47. https://doi.org/10.1158/1535-7163.MCT-21-0293.

    Article  CAS  PubMed  Google Scholar 

  43. Adjei AA, Melear J, Thompson J, et al. 536MO a phase I, first-in-human, safety, pharmacokinetic, and pharmacokinetic study of oral dubermatinib (TP-0903) in patients with advanced solid tumours. Ann Oncol. 2020;31(suppl_4):S469.

    Article  Google Scholar 

  44. Mims AS, Huang Y, Eisenmann E, et al. A phase 1b/2 study of TP-0903 and decitabine targeting mutant TP53 and/or complex karyotype in patients with untreated acute myeloid leukemia ≥ age 60 years: phase 1b interim results. J Clin Oncol. 2022;40(16_suppl):9081.

    Article  Google Scholar 

  45. Rios-Doria J, Favata M, Lasky K, Feldman P, Lo Y, Yang G, et al. A potent and selective dual inhibitor of AXL and MERTK possesses both immunomodulatory and tumor-targeted activity. Front Oncol. 2020;10:598477. https://doi.org/10.3389/fonc.2020.598477.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Ruvolo PP, Ma H, Ruvolo VR, Zhang X, Mu H, Schober W, et al. Anexelekto/MER tyrosine kinase inhibitor ONO-7475 arrests growth and kills FMS-like tyrosine kinase 3-internal tandem duplication mutant acute myeloid leukemia cells by diverse mechanisms. Haematologica. 2017;102(12):2048–57. https://doi.org/10.3324/haematol.2017.168856.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Okura N, Nishioka N, Yamada T, Taniguchi H, Tanimura K, Katayama Y, et al. ONO-7475, a novel AXL Inhibitor, suppresses the adaptive resistance to initial EGFR-TKI treatment in. Clin Cancer Res. 2020;26(9):2244–56. https://doi.org/10.1158/1078-0432.CCR-19-2321.

    Article  CAS  PubMed  Google Scholar 

  48. Jimbo T, Hatanaka M, Komatsu T, Taira T, Kumazawa K, Maeda N, et al. DS-1205b, a novel selective inhibitor of AXL kinase, blocks resistance to EGFR-tyrosine kinase inhibitors in a non-small cell lung cancer xenograft model. Oncotarget. 2019;10(50):5152–67. https://doi.org/10.18632/oncotarget.27114.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yang JC, Su W, Chiu C, et al. P86.01 Phase 1 study of the AXL inhibitor DS-1205 in combination with osimertinib in subjects with metastatic or unresectable EGFR-mutant NSCLC. J Thorac Oncol. 2021;16(3, Supplement):S672.

    Google Scholar 

  50. •• Msaouel P, Goswami S, Thall PF, Wang X, Yuan Y, Jonasch E, et al. A phase 1–2 trial of sitravatinib and nivolumab in clear cell renal cell carcinoma following progression on antiangiogenic therapy. Sci Transl Med. 2022;14(641):eabm6420. https://doi.org/10.1126/scitranslmed.abm6420. Published results of the phase I/II study of sitravantinib plus nivolumab in RCC after progression on antiangiogenic therapy, showing notable clinical activity.

    Article  CAS  PubMed  Google Scholar 

  51. Scott AM, Wolchok JD, Old LJ. Antibody therapy of cancer. Nat Rev Cancer. 2012;12(4):278–87. https://doi.org/10.1038/nrc3236.

    Article  CAS  PubMed  Google Scholar 

  52. Ye X, Li Y, Stawicki S, Couto S, Eastham-Anderson J, Kallop D, et al. An anti-Axl monoclonal antibody attenuates xenograft tumor growth and enhances the effect of multiple anticancer therapies. Oncogene. 2010;29(38):5254–64. https://doi.org/10.1038/onc.2010.268.

    Article  CAS  PubMed  Google Scholar 

  53. Leconet W, Larbouret C, Chardès T, Thomas G, Neiveyans M, Busson M, et al. Preclinical validation of AXL receptor as a target for antibody-based pancreatic cancer immunotherapy. Oncogene. 2014;33(47):5405–14. https://doi.org/10.1038/onc.2013.487.

    Article  CAS  PubMed  Google Scholar 

  54. Chen TJ, Mydel P, Benedyk-Machaczka M, Kamińska M, Kalucka U, Blø M, et al. AXL targeting by a specific small molecule or monoclonal antibody inhibits renal cell carcinoma progression in an orthotopic mice model. Physiol Rep. 2021;9(23):e15140. https://doi.org/10.14814/phy2.15140.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Drago JZ, Modi S, Chandarlapaty S. Unlocking the potential of antibody-drug conjugates for cancer therapy. Nat Rev Clin Oncol. 2021;18(6):327–44. https://doi.org/10.1038/s41571-021-00470-8.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Breij EC, Verploegen S, Lingnau A, et al. Preclinical efficacy studies using HuMax-Axl-ADC, a novel antibody-drug conjugate targeting Axl-expressing solid cancers. J Clin Oncol. 2015;33(15_suppl):3066.

    Article  Google Scholar 

  57. Ameratunga M, Harvey RD, Mau-Sorensen M, et al. First-in-human, dose-escalation, phase (ph) I trial to evaluate safety of anti-Axl antibody-drug conjugate (ADC) enapotamab vedotin (EnaV) in solid tumors. J Clin Oncol. 2019;37(15_suppl):2525.

    Article  Google Scholar 

  58. Genmab announces enapotamab vedotin update. 2020. https://ir.genmab.com/news-releases/news-release-details/genmab-announces-enapotamab-vedotin-update. Accessed 8 January 2023

  59. Sharp LL, Chang C, Frey G, et al. Anti-tumor efficacy of BA3011, a novel conditionally active biologic (CAB) anti-AXL-ADC. Cancer Res. 2018;78(13_Supplement):827.

    Article  Google Scholar 

  60. Zammarchi F, Havenith KE, Chivers S, Hogg P, Bertelli F, Tyrer P, et al. Preclinical development of ADCT-601, a Novel pyrrolobenzodiazepine dimer-based antibody-drug conjugate targeting AXL-expressing cancers. Mol Cancer Ther. 2022;21(4):582–93. https://doi.org/10.1158/1535-7163.MCT-21-0715.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Wei J, Sun H, Zhang A, Wu X, Li Y, Liu J, et al. A novel AXL chimeric antigen receptor endows T cells with anti-tumor effects against triple negative breast cancers. Cell Immunol. 2018;331:49–58. https://doi.org/10.1016/j.cellimm.2018.05.004.

    Article  CAS  PubMed  Google Scholar 

  62. Kariolis MS, Miao YR, Diep A, Nash SE, Olcina MM, Jiang D, et al. Inhibition of the GAS6/AXL pathway augments the efficacy of chemotherapies. J Clin Invest. 2017;127(1):183–98. https://doi.org/10.1172/JCI85610.

    Article  PubMed  Google Scholar 

  63. Kanlikilicer P, Ozpolat B, Aslan B, Bayraktar R, Gurbuz N, Rodriguez-Aguayo C, et al. Therapeutic targeting of AXL receptor tyrosine kinase inhibits tumor growth and intraperitoneal metastasis in ovarian cancer models. Mol Ther Nucleic Acids. 2017;9:251–62. https://doi.org/10.1016/j.omtn.2017.06.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. •• Fuh KC, Bookman MA, Liu JF, Coleman RL, Herzog TJ, Thaker PH, et al. Phase 1b study of AVB-500 in combination with paclitaxel or pegylated liposomal doxorubicin platinum-resistant recurrent ovarian cancer. Gynecol Oncol. 2021;163(2):254–61. https://doi.org/10.1016/j.ygyno.2021.08.020. Promising results of the phase I study of batiraxcept plus chemotherapy in platinum-resistant ovarian cancer, which prompted ongoing phase III trial of batiraxcept plus paclitaxel.

    Article  CAS  PubMed  Google Scholar 

  65. Shah NJ, Beckermann K, Vogelzang NJ, et al. A phase 1b/2 study of batiraxcept (AVB-56-500) in combination with cabozantinib in patients with advanced or metastatic clear cell renal cell carcinoma (ccRCC) carcinoma who have received front-line treatment (NCT04300140). J Clin Oncol. 2022;40(16_suppl):4511.

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank Mr. Brian Niemann for assistance with figure preparation.

Funding

Funded in part by the South Plains Oncology Consortium and the University of Texas Lung Specialized Program in Research Excellence (SPORE) (P50CA070907-21).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheena Bhalla.

Ethics declarations

Conflict of Interest

Sheena Bhalla has served in a consulting/advisory role for Takeda, Mirati. David Gerber has served in a consulting/advisory role for BeiGene, Catalyst, Daiichi-Sankyo, Elevation Oncology, Jansen, Mirati, Regeneron; is a shareholder in Gilead, OncoSeer Diagnostics, LLC is co-founder of OncoSeer Diagnostics, LLC.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhalla, S., Gerber, D.E. AXL Inhibitors: Status of Clinical Development. Curr Oncol Rep 25, 521–529 (2023). https://doi.org/10.1007/s11912-023-01392-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-023-01392-7

Keywords

Navigation