Skip to main content

Advertisement

Log in

Bystander effect of antibody–drug conjugates: fact or fiction?

  • Breast Cancer (RA Leon Ferre, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of review

Summarizing the current preclinical and clinical evidence about bystander effect of antibody–drug conjugates (ADCs) in solid tumors.

Recent findings

One of the main challenges of treating solid tumors with ADCs is the heterogeneous expression of the target antigen (Ag), which however may be overcome by the so-called bystander killing effect. This unique, but still debated, feature of certain ADCs is represented by the unintentional payload diffusion from Ag-positive tumor cells to adjacent Ag-negative tumor cells. Some pharmacological characteristics, such as a hydrophobic payload or a cleavable linker, seem to play a major role in this effect.

Summary

Abundant preclinical evidence of the bystander effect has emerged, and the clinical activity of ADCs in tumors with a heterogeneous Ag expression suggests the relevance of this feature. Additional studies are required to investigate if the bystander effect is necessary for achieving a solid activity with ADCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: •• Of major importance

  1. •• Drago JZ, Modi S, Chandarlapaty S. Unlocking the potential of antibody–drug conjugates for cancer therapy. Nat Rev Clin Oncol [Internet]. 2021 Jun 8;18(6):327–44. Available from: http://www.nature.com/articles/s41571-021-00470-8. This is a comprhensive review on the topic of ADCs.

  2. Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer [Internet]. 2008;8(6):473–80. Available from: http://www.nature.com/articles/nrc2394.

  3. Donaghy H. Effects of antibody, drug and linker on the preclinical and clinical toxicities of antibody-drug conjugates. MAbs [Internet]. 2016 May 18;8(4):659–71. Available from: http://www.tandfonline.com/doi/full/10.1080/19420862.2016.1156829.

  4. Kovtun Y V., Audette CA, Ye Y, Xie H, Ruberti MF, Phinney SJ, et al. Antibody-drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. Cancer Res [Internet]. 2006 Mar 15;66(6):3214–21. Available from: http://cancerres.aacrjournals.org/lookup/doi/10.1158/0008-5472.CAN-05-3973.

  5. Kovtun Y V., Goldmacher VS. Cell killing by antibody–drug conjugates. Cancer Lett [Internet]. 2007 Oct;255(2):232–40. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0304383507001991.

  6. Li F, Emmerton KK, Jonas M, Zhang X, Miyamoto JB, Setter JR, et al. Intracellular released payload influences potency and bystander-killing effects of antibody-drug conjugates in preclinical models. Cancer Res [Internet]. 2016;76(9):2710–9. Available from: http://cancerres.aacrjournals.org/lookup/doi/10.1158/0008-5472.CAN-15-1795.

  7. Singh AP, Sharma S, Shah DK. Quantitative characterization of in vitro bystander effect of antibody-drug conjugates. J Pharmacokinet Pharmacodyn [Internet]. 2016;;43(6):567–82. Available from: http://link.springer.com/10.1007/s10928-016-9495-8.

  8. Ogitani Y, Hagihara K, Oitate M, Naito H, Agatsuma T. Bystander killing effect of <scp>DS</scp> ‐8201a, a novel anti‐human epidermal growth factor receptor 2 antibody–drug conjugate, in tumors with human epidermal growth factor receptor 2 heterogeneity. Cancer Sci [Internet]. 2016;107(7):1039–46. Available from: https://onlinelibrary.wiley.com/doi/10.1111/cas.12966.

  9. Aggarwal N, Sloane BF. Cathepsin B: Multiple roles in cancer. PROTEOMICS - Clin Appl [Internet]. 2014;8(5–6):427–37. Available from: https://onlinelibrary.wiley.com/doi/10.1002/prca.201300105.

  10. Suzuki M, Yagishita S, Sugihara K, Ogitani Y, Nishikawa T, Ohuchi M, et al. Visualization of Intratumor Pharmacokinetics of [fam-] Trastuzumab Deruxtecan (DS-8201a) in HER2 Heterogeneous Model Using Phosphor-integrated Dots Imaging Analysis. Clin Cancer Res [Internet]. 2021;27(14):3970–9. Available from: http://clincancerres.aacrjournals.org/lookup/doi/10.1158/1078-0432.CCR-21-0397.

  11. van der Lee MMC, Groothuis PG, Ubink R, van der Vleuten MAJ, van Achterberg TA, Loosveld EM, et al. The preclinical profile of the duocarmycin-based HER2-targeting ADC SYD985 predicts for clinical benefit in low her2-expressing breast cancers. Mol Cancer Ther [Internet]. 2015;14(3):692–703. Available from: http://mct.aacrjournals.org/lookup/doi/10.1158/1535-7163.MCT-14-0881-T.

  12. Menderes G, Bonazzoli E, Bellone S, Black J, Altwerger G, Masserdotti A, et al. SYD985, a novel duocarmycin-based HER2-targeting antibody-drug conjugate, shows promising antitumor activity in epithelial ovarian carcinoma with HER2/Neu expression. Gynecol Oncol [Internet]. 2017;146(1):179–86. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0090825817308041.

  13. Perrone E, Lopez S, Zeybek B, Bellone S, Bonazzoli E, Pelligra S, et al. Preclinical activity of sacituzumab govitecan, an antibody-drug conjugate targeting trophoblast cell-surface antigen 2 (Trop-2) linked to the active metabolite of irinotecan (SN-38), in ovarian cancer. Front Oncol [Internet]. 2020;10. Available from: https://www.frontiersin.org/article/10.3389/fonc.2020.00118/full.

  14. Alley SC, Harris JR, Cao A, Heuvel EG den, Velayudhan J, Satijn D, et al. Abstract 221: Tisotumab vedotin induces anti-tumor activity through MMAE-mediated, Fc-mediated, and Fab-mediated effector functions in vitro. In: Experimental and Molecular Therapeutics [Internet]. American Association for Cancer Research; 2019. p. 221–221. Available from: http://cancerres.aacrjournals.org/lookup/doi/10.1158/1538-7445.AM2019-221.

  15. Liu BA, Olson D, Snead K, Gosink J, Tenn E-M, Zaval M, et al. Abstract 5581: Enfortumab vedotin, an anti-Nectin-4 ADC demonstrates bystander cell killing and immunogenic cell death anti-tumor activity mechanisms of action in urothelial cancers. In: Immunology [Internet]. American Association for Cancer Research; 2020. p. 5581–5581. Available from: http://cancerres.aacrjournals.org/lookup/doi/10.1158/1538-7445.AM2020-5581.

  16. Golfier S, Kopitz C, Kahnert A, Heisler I, Schatz CA, Stelte-Ludwig B, et al. Anetumab ravtansine: a novel mesothelin-targeting antibody–drug conjugate cures tumors with heterogeneous target expression favored by bystander effect. Mol Cancer Ther [Internet]. 2014;13(6):1537–48. Available from: http://mct.aacrjournals.org/lookup/doi/10.1158/1535-7163.MCT-13-0926.

  17. Khera E, Cilliers C, Bhatnagar S, Thurber GM. Computational transport analysis of antibody-drug conjugate bystander effects and payload tumoral distribution: implications for therapy. Mol Syst Des Eng [Internet]. 2018;3(1):73–88. Available from: http://xlink.rsc.org/?DOI=C7ME00093F.

  18. Tarantino P, Carmagnani Pestana R, Corti C, Modi S, Bardia A, Tolaney SM, et al. Antibody–drug conjugates: Smart chemotherapy delivery across tumor histologies. CA Cancer J Clin [Internet]. 2021; Available from: https://onlinelibrary.wiley.com/doi/10.3322/caac.21705

  19. Loibl S, Poortmans P, Morrow M, Denkert C, Curigliano G. Breast cancer. Lancet [Internet]. 2021;397(10286):1750–69. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673620323813.

  20. Gennari A, André F, Barrios CH, Cortés J, de Azambuja E, DeMichele A, et al. ESMO Clinical Practice Guideline for the diagnosis, staging and treatment of patients with metastatic breast cancer. Ann Oncol [Internet]. 2021;32(12):1475–95. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0923753421044987.

  21. •• Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, et al. Trastuzumab Emtansine for HER2-Positive Advanced Breast Cancer. N Engl J Med [Internet]. 2012;367(19):1783–91. Available from: http://www.nejm.org/doi/10.1056/NEJMoa1209124. This is the EMILIA trial, that led to the approval of the first ADC for the treatment of solid tumours.

  22. von Minckwitz G, Huang C-S, Mano MS, Loibl S, Mamounas EP, Untch M, et al. Trastuzumab emtansine for residual invasive HER2-positive breast cancer. N Engl J Med [Internet]. 2019;380(7):617–28. Available from: http://www.nejm.org/doi/10.1056/NEJMoa1814017.

  23. Thuss-Patience PC, Shah MA, Ohtsu A, Van Cutsem E, Ajani JA, Castro H, et al. Trastuzumab emtansine versus taxane use for previously treated HER2-positive locally advanced or metastatic gastric or gastro-oesophageal junction adenocarcinoma (GATSBY): an international randomised, open-label, adaptive, phase 2/3 study. Lancet Oncol [Internet]. 2017;18(5):640–53. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1470204517301110.

  24. Sartore-Bianchi A, Lonardi S, Martino C, Fenocchio E, Tosi F, Ghezzi S, et al. Pertuzumab and trastuzumab emtansine in patients with HER2-amplified metastatic colorectal cancer: the phase II HERACLES-B trial. ESMO Open [Internet]. 2020;5(5):e000911. Available from: https://linkinghub.elsevier.com/retrieve/pii/S2059702920327150.

  25. Jhaveri KL, Wang XV, Makker V, Luoh S-W, Mitchell EP, Zwiebel JA, et al. Ado-trastuzumab emtansine (T-DM1) in patients with HER2-amplified tumors excluding breast and gastric/gastroesophageal junction (GEJ) adenocarcinomas: results from the NCI-MATCH trial (EAY131) subprotocol Q. Ann Oncol [Internet]. 2019;30(11):1821–30. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0923753420325904.

  26. Wang H, Wang W, Xu Y, Yang Y, Chen X, Quan H, et al. Aberrant intracellular metabolism of T-DM1 confers T-DM1 resistance in human epidermal growth factor receptor 2-positive gastric cancer cells. Cancer Sci [Internet]. 2017;108(7):1458–68. Available from: https://onlinelibrary.wiley.com/doi/10.1111/cas.13253.

  27. Smyth EC, Nilsson M, Grabsch HI, van Grieken NC, Lordick F. Gastric cancer. Lancet [Internet]. 2020;396(10251):635–48. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673620312885.

  28. Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet [Internet]. 2019;394(10207):1467–80. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0140673619323190.

  29. •• Modi S, Saura C, Yamashita T, Park YH, Kim S-B, Tamura K, et al. Trastuzumab Deruxtecan in Previously Treated HER2-Positive Breast Cancer. N Engl J Med [Internet]. 2020;382(7):610–21. Available from: http://www.nejm.org/doi/10.1056/NEJMoa1914510. These are the results of DESTINY-Breast01.

  30. Shitara K, Bang Y-J, Iwasa S, Sugimoto N, Ryu M-H, Sakai D, et al. Trastuzumab Deruxtecan in Previously Treated HER2-Positive Gastric Cancer. N Engl J Med [Internet]. 2020;382(25):2419–30. Available from: http://www.nejm.org/doi/10.1056/NEJMoa2004413.

  31. Siena S, Di Bartolomeo M, Raghav K, Masuishi T, Loupakis F, Kawakami H, et al. Trastuzumab deruxtecan (DS-8201) in patients with HER2-expressing metastatic colorectal cancer (DESTINY-CRC01): a multicentre, open-label, phase 2 trial. Lancet Oncol [Internet]. 2021;22(6):779–89. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1470204521000863.

  32. Erickson HK, Park PU, Widdison WC, Kovtun Y V., Garrett LM, Hoffman K, et al. Antibody-Maytansinoid Conjugates Are Activated in Targeted Cancer Cells by Lysosomal Degradation and Linker-Dependent Intracellular Processing. Cancer Res [Internet]. 2006;66(8):4426–33. Available from: http://cancerres.aacrjournals.org/lookup/doi/10.1158/0008-5472.CAN-05-4489.

  33. Masuda S, Miyagawa S, Sougawa N, Sawa Y. CD30-targeting immunoconjugates and bystander effects. Nat Rev Clin Oncol [Internet]. 2015;12(4):245–245. Available from: http://www.nature.com/articles/nrclinonc.2014.159-c1.

  34. Li JY, Perry SR, Muniz-Medina V, Wang X, Wetzel LK, Rebelatto MC, et al. A Biparatopic HER2-Targeting Antibody-Drug Conjugate Induces Tumor Regression in Primary Models Refractory to or Ineligible for HER2-Targeted Therapy. Cancer Cell [Internet]. 2016;29(1):117–29. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1535610815004729.

  35. Staudacher AH, Brown MP. Antibody drug conjugates and bystander killing: is antigen-dependent internalisation required? Br J Cancer [Internet]. 2017;117(12):1736–42. Available from: http://www.nature.com/articles/bjc2017367.

  36. Sharkey RM, Karacay H, Govindan S V., Goldenberg DM. Combination Radioimmunotherapy and Chemoimmunotherapy Involving Different or the Same Targets Improves Therapy of Human Pancreatic Carcinoma Xenograft Models. Mol Cancer Ther [Internet]. 2011;10(6):1072–81. Available fromhttp://mct.aacrjournals.org/lookup/doi/10.1158/1535-7163.MCT-11-0115.

  37. Bernardes GJL, Casi G, Trüssel S, Hartmann I, Schwager K, Scheuermann J, et al. A Traceless Vascular-Targeting Antibody-Drug Conjugate for Cancer Therapy. Angew Chemie Int Ed [Internet]. 2012;51(4):941–4. Available from: https://onlinelibrary.wiley.com/doi/10.1002/anie.201106527.

  38. Skidmore L, Sakamuri S, Knudsen NA, Hewet AG, Milutinovic S, Barkho W, et al. ARX788, a Site-specific Anti-HER2 Antibody–Drug Conjugate, Demonstrates Potent and Selective Activity in HER2-low and T-DM1–resistant Breast and Gastric Cancers. Mol Cancer Ther [Internet]. 2020;19(9):1833–43. Available from: http://mct.aacrjournals.org/lookup/doi/10.1158/1535-7163.MCT-19-1004.

  39. Hurvitz SA, Park H, Frentzas S, Shannon CM, Cuff K, Eek RW, et al. Safety and unique pharmacokinetic profile of ARX788, a site-specific ADC, in heavily pretreated patients with HER2-overexpresing solid tumors: Results from two phase 1 clinical trials. J Clin Oncol [Internet]. 2021;39(15_suppl):1038–1038. Available from: https://ascopubs.org/doi/10.1200/JCO.2021.39.15_suppl.1038.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Tarantino.

Ethics declarations

Conflict of interest

PT served as advisor/consultant for AstraZeneca. GC received honoraria for speaker, consultancy, or advisory rule from AstraZeneca, Roche, Pfizer, Novartis, Seattle Genetics, Lilly, Ellipses Pharma, Foundation Medicine, Daiichi Sankyo, and Samsung. The other authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Breast Cancer

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giugliano, F., Corti, C., Tarantino, P. et al. Bystander effect of antibody–drug conjugates: fact or fiction?. Curr Oncol Rep 24, 809–817 (2022). https://doi.org/10.1007/s11912-022-01266-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-022-01266-4

Keywords

Navigation