Skip to main content

Advertisement

Log in

Current Approaches in Hepatoblastoma—New Biological Insights to Inform Therapy

  • Pediatric Oncology (KL Davis, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

As the most common pediatric primary liver cancer with rising incidence, hepatoblastoma remains challenging to treat. Here, we review the current understanding of the biology of hepatoblastoma and discuss how recent advances may lead to new treatment modalities.

Recent Findings

Standard chemotherapy regimens including cisplatin, in addition to surgery, have led to high cure rates among patients with low stage hepatoblastoma; however, metastatic and relapsed disease continue to have poor outcomes. Recent genomics and functional studies in cell lines and mouse models have established a central role for the Wnt/β-catenin pathway in tumorigenesis. Targeted agents and immunotherapy approaches are emerging as potential treatment avenues.

Summary

With recent gains in knowledge of the genomic and transcriptomic landscape of hepatoblastoma, new therapeutic mechanisms can now be explored to improve outcomes for metastatic and relapsed hepatoblastoma and to reduce the toxicity of current treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Surveillance, Epidemiology, and End Results (SEER) Program (https://www.cancer.gov) SEER*Stat Database: Incidence - SEER Research Limited-Field Data, 21 Registries, Nov 2020 Sub (2000–2018) - Linked To County Attributes - Time Dependent (1990–2018) Income/Rurality, 1969–2019 Counties, National Cancer Institute, DCCPS, Surveillance Research Program, released April 2021, based on the November 2020 submission. Accessed 10/25/21.

  2. Hubbard AK, Spector LG, Fortuna G, Marcotte EL, Poynter JN. Trends in international incidence of pediatric cancers in children under 5 years of age: 1988–2012. JNCI Cancer Spectrum. 2019;3(1):pkz007. https://doi.org/10.1093/jncics/pkz007.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Heck JE, Meyers TJ, Lombardi C, Park AS, Cockburn M, Reynolds P, Ritz B. Case-control study of birth characteristics and the risk of hepatoblastoma. Cancer Epidemiol. 2013;37(4):390–5. https://doi.org/10.1016/j.canep.2013.03.004.

    Article  PubMed  PubMed Central  Google Scholar 

  4. de Fine LS, Schmidt LS, Rod NH, Schmiegelow K, Lähteenmäki PM, Kogner P, Träger C, Stokland T, Schüz J. Hepatoblastoma in the Nordic countries. Int J Cancer. 2012;131(4):E555–61. https://doi.org/10.1002/ijc.27351.

    Article  CAS  Google Scholar 

  5. Spector LG, Puumala SE, Carozza SE, Chow EJ, Fox EE, Horel S, Johnson KJ, McLaughlin CC, Reynolds P, Behren JV, Mueller BA. Cancer risk among children with very low birth weights. Pediatrics. 2009;124:96–104. https://doi.org/10.1542/peds.2008-3069.

    Article  PubMed  Google Scholar 

  6. Giardiello FM, Offerhaus GJ, Krush AJ, Booker SV, Tersmette AC, Mulder JW, Kelley CN, Hamilton SR. Risk of hepatoblastoma in familial adenomatous polyposis. J Pediatr. 1991;119(5):766–8. https://doi.org/10.1016/s0022-3476(05)80297-5.

    Article  CAS  PubMed  Google Scholar 

  7. DeBaun MR, Tucker MA. Risk of cancer during the first four years of life in children from The Beckwith-Wiedemann Syndrome Registry. J Pediatr. 1998;132:398–400. https://doi.org/10.1016/s0022-3476(98)70008-3.

    Article  CAS  PubMed  Google Scholar 

  8. • Lupo PJ, Schraw JM, Desrosiers TA, Nembhard WN, Langlois PH, Canfield MA, Copeland G, Meyer RE, Brown AL, Chambers TM, Sok P, Danysh HE, Carozza SE, Sisoudiya SD, Hilsenbeck SG, Janitz AE, Oster ME, Scheuerle AE, Schiffman JD, Luo C, Mian A, Mueller BA, Huff CD, Rasmussen SA, Scheurer ME, Plon SE. Association between birth defects and cancer risk among children and adolescents in a population-based assessment of 10 million live births. JAMA Oncol. 2019;5(8):1150–8. https://doi.org/10.1001/jamaoncol.2019.1215. Large population study of over 10 million children from Texas, Arkansas, Michigan, and North Carolina born between 1992-2013, showing an association of hepatoblastoma with birth defects.

    Article  PubMed  Google Scholar 

  9. Schraw JM, Desrosiers TA, Nembhard WN, Langlois PH, Meyer RE, Canfield MA, Rasmussen SA, Chambers TM, Spector LG, Plon SE, Lupo PJ. Cancer diagnostic profile in children with structural birth defects: an assessment in 15,000 childhood cancer cases. Cancer. 2020;26(15):3483–92. https://doi.org/10.1002/cncr.32982.

    Article  Google Scholar 

  10. Towbin AJ, Meyers RL, Woodley H, Miyazaki O, Weldon CB, Morland B, Hiyama E, Czauderna P, Roebuck DJ, Tiao GM. 2017 PRETEXT: radiologic staging system for primary hepatic malignancies of childhood revised for the Paediatric Hepatic International Tumour Trial (PHITT). Pediatr Radiol. 2018;48(4):536–54. https://doi.org/10.1007/s00247-018-4078-z. Description of the PRETEXT radiologic staging guidelines, used for the ongoing PHITT trial.

    Article  PubMed  Google Scholar 

  11. Meyers RL, Maibach R, Hiyama E, Häberle B, Krailo M, Rangaswami A, Aronson DC, Malogolowkin MH, Perilongo G, von Schweinitz D, Ansari M, Lopez-Terrada D, Tanaka Y, Alaggio R, Leuschner I, Hishiki T, Schmid I, Watanabe K, Yoshimura K, Feng Y, Rinaldi E, Saraceno D, Derosa M, Czauderna P. Risk-stratified staging in paediatric hepatoblastoma: a unified analysis from the Children’s Hepatic tumors International Collaboration. Lancet Oncol. 2017;18(1):122–31. https://doi.org/10.1016/S1470-2045(16)30598-8. Analysis of 1605 children treated in eight multicenter international hepatoblastoma trials over 25 years, identifying prognostic risk factors of hepatoblastoma and proposing a new stratification system.

    Article  PubMed  Google Scholar 

  12. Haeberle B, Rangaswami A, Krailo M, Czauderna P, Hiyama E, Maibach R, Lopez-Terrada D, Aronson DC, Alaggio R, Ansari M, Malogolowkin MH, Perilongo G, O’Neill AF, Trobaugh-Lotrario AD, Watanabe K, Schmid I, von Schweinitz D, Ranganathan S, Yoshimura K, Hishiki T, Tanaka Y, Piao J, Feng Y, Rinaldi E, Saraceno D, Derosa M, Meyers RL. The importance of age as prognostic factor for the outcome of patients with hepatoblastoma: analysis from the Children’s Hepatic tumors International Collaboration (CHIC) database. Pediatr Blood Cancer. 2020;67(8):e28350. https://doi.org/10.1002/pbc.28350.

    Article  PubMed  Google Scholar 

  13. Lopez-Terrada D, Alaggio R, de Davila MT, Czauderna P, Hiyama E, Katzenstein H, Leuschner I, Malogolowkin M, Meyers R, Ranganathan S, Tanaka Y, Tomlinson G, Fabre M, Zimmermann A, Finegold MJ. Towards an international pediatric liver tumor consensus classification: proceedings of the Los Angeles COG liver tumors symposium. Mod Pathol. 2014;27:472–91. https://doi.org/10.1038/modpathol.2013.80.

    Article  PubMed  Google Scholar 

  14. Malogolowkin MH, Katzenstein HM, Meyers RL, Krailo MD, Rowland JM, Haas J, Finegold MJ. Complete surgical resection is curative for children with hepatoblastoma with pure fetal histology: a report from the Children’s Oncology Group. JCO. 2011;29(24):3301–6. https://doi.org/10.1200/JCO.2010.29.3837.

    Article  Google Scholar 

  15. Trobaugh-Lotrario AD, Tomlinson GE, Finegold MJ, Gore L, Feusner JH. Small cell undifferentiated variant of hepatoblastoma: adverse clinical and molecular features similar to rhabdoid tumors. Pediatr Blood Cancer. 2009;52(3):328–34. https://doi.org/10.1002/pbc.21834.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Sumazin P, Chen Y, Trevino LR, Sarabia SF, Hampton OA, Patel K, Mistretta T-A, Zorman B, Thompson P, Heczey A, Comerford S, Wheeler DA, Chintagumpala M, Meyers R, Rakheja D, Finegold MJ, Tomlinson G, Parsons DW, Lopez-Terrada D. Genomic analysis of hepatoblastoma identifies distinct molecular and prognostic subgroups. Hepatology. 2017;65(1):104–21. https://doi.org/10.1002/hep.28888. Genomic analysis of 88 clinically annotated hepatoblastomas.

    Article  CAS  PubMed  Google Scholar 

  17. Eichenmüller M, Trippel F, Kreuder M, Beck A, Schwarzmayr T, Häberle B, Cairo S, Leuschner I, von Schweinitz D, Strom TM, Kappler R. The genomic landscape of hepatoblastoma and their progenies with HCC-like features. J Hepatol. 2014;61(6):1312–20. https://doi.org/10.1016/j.jhep.2014.08.009.

    Article  CAS  PubMed  Google Scholar 

  18. • Gröbner SN, Worst BC, Weischenfeldt J, Buchhalter I, Kleinheinz K, Rudneva VA, Johann PD, Balasubramanian GP, Segura-Wang M, Brabetz S, Bender S, Hutter B, Sturm D, Pfaff E, Hübschmann D, Zipprich G, Heinold M, Eils J, Lawerenz C, Erkek S, Lambo S, Waszak S, Blattmann C, Borkhardt A, Kuhlen M, Eggert A, Fulda S, Gessler M, Wegert J, Kappler R, Baumhoer D, Burdach S, Kirschner-Schwabe R, Kontny U, Kulozik AE, Lohmann D, Hettmer S, Eckert C, Bielack S, Nathrath M, Niemeyer C, Richter GH, Schulte J, Siebert R, Westermann F, Molenaar JJ, Vassal G, Witt H, ICGC PedBrain-Seq Project, ICGC MMML-Seq Project, Burkhardt B, Kratz CP, Witt O, van Tilburg CM, Kramm CM, Fleischhack G, Dirksen U, Rutkowski S, Frühwald M, von Hoff K, Wolf S, Klingebiel T, Koscielniak E, Landgraf P, Koster J, Resnick AC, Zhang J, Liu Y, Zhou X, Waanders AJ, Zwijnenburg DA, Raman P, Brors B, Weber UD, Northcott PA, Pajtler KW, Kool M, Piro RM, Korbel JO, Schlesner M, Eils R, Jones DTW, Lichter P, Chavez L, Zapatka M, Pfister SM. The landscape of genomic alterations across childhood cancers. Nature. 2018;555(7696):321–7. https://doi.org/10.1038/nature25480. ()

    Article  CAS  PubMed  Google Scholar 

  19. Jin X, Gong L, Peng Y, Li L, Liu G. Enhancer-bound Nrf2 licenses HIF-1α transcription under hypoxia to promote cisplatin resistance in hepatocellular carcinoma cells. Aging (Albany). 2021;13(1):364–75. https://doi.org/10.18632/aging.202137.

    Article  CAS  Google Scholar 

  20. Hirsch TZ, Pilet J, Morcrette G, Roehrig A, Monteiro BJ, Molina L, Bayard Q, Trepo E, Meunier L, Caruso S, Renault V, Deleuze JF, Fresneau B, Chardot C, Gonzales E, Jacquemin E, Guerin F, Fabre M, Aerts I, Taque S, Laithier V, Branchereau S, Guettier C, Brugieres L, Rebouissou S, Letouze E, Zucman-Rossi J. Integrated genomic analysis identifies driver genes and cisplatin resistant progenitor phenotype in pediatric liver cancer. Cancer Discov. 2021;11(10):2524–43. https://doi.org/10.1158/2159-8290.CD-20-1809.

    Article  CAS  PubMed  Google Scholar 

  21. Weber RG, Pietsch T, von Schweinitz D, Lichter P. Characterization of genomic alterations of hepatoblastomas. A role for gains on chromosomes 8q and 20 as predictors of poor outcome. Am J Pathol. 2000;157(2):571–8. https://doi.org/10.1016/S0002-9440(10)64567-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chitragar S, Iyer VK, Agarwala S, Gupta SD, Sharma A, Wari MN. Loss of heterozygosity on chromosome 11p15.5 and relapse in hepatoblastomas. Eur J Pediatr Surg. 2011;21(1):50–3. https://doi.org/10.1055/s-0030-1267208.

    Article  CAS  PubMed  Google Scholar 

  23. Cairo S, Armengol C, Reynies AD, Wei Y, Thomas E, Renard C-A, Goga A, Balakrishnan A, Semeraro M, Gresh L, Pontoglio M, Strick-Marchand H, Levillayer F, Nouet Y, Rickman D, Gauthier F, Branchereau S, Brugieres L, Laithier V, Bouvier R, Boman F, Basso G, Michiels J-F, Hofman P. Hepatic stem-like phenotype and interplay of Wnt/beta-catenin and Myc signaling in aggressive childhood liver cancer. Cancer Cell. 2008;14(6):471–84. https://doi.org/10.1016/j.ccr.2008.11.002.

    Article  CAS  PubMed  Google Scholar 

  24. Hooks KB, Audoux J, Fazli H, Lesjean S, Ernault T, Dugot-Senant N, Leste-Lasserre T, Hagedorn M, Rousseau B, Danet C, Branchereau S, Brugières L, Taque S, Guettier C, Fabre M, Rullier A, Buendia MA, Commes T, Grosset CF, Raymond AA. New insights into diagnosis and therapeutic options for proliferative hepatoblastoma. Hepatology. 2018;68(1):89–102. https://doi.org/10.1002/hep.29672.

    Article  CAS  PubMed  Google Scholar 

  25. Carrillo-Reixach J, Torrens L, Simon-Coma M, Royo L, Domingo-Sàbat M, Abril-Fornaguera J, Akers N, Sala M, Ragull S, Arnal M, Villalmanzo N, Cairo S, Villanueva A, Kappler R, Garrido M, Guerra L, Sábado C, Guillén G, Mallo M, Piñeyro D, Vázquez-Vitali M, Kuchuk O, Mateos ME, Ramírez G, Santamaría ML, Mozo Y, Soriano A, Grotzer M, Branchereau S, de Andoin NG, López-Ibor B, López-Almaraz R, Salinas JA, Torres B, Hernández F, Uriz JJ, Fabre M, Blanco J, Paris C, Bajčiová V, Laureys G, Masnou H, Clos A, Belendez C, Guettier C, Sumoy L, Planas R, Jordà M, Nonell L, Czauderna P, Morland B, Sia D, Losic B, Buendia MA, Sarrias MR, Llovet JM, Armengol C. Epigenetic footprint enables molecular risk stratification of hepatoblastoma with clinical implications. J Hepatol. 2020;73(2):328–41. https://doi.org/10.1016/j.jhep.2020.03.025.

    Article  CAS  PubMed  Google Scholar 

  26. Bondoc A, Glaser K, Jin K, Lake C, Cairo S, Geller J, Tiao G, Aronow B. Identification of distinct tumor cell populations and key genetic mechanisms through single cell sequencing in hepatoblastoma. Commun Biol. 2021;4(1):1049. https://doi.org/10.1038/s42003-021-02562-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Song H, Bucher S, Rosenberg K, Tsui M, Burhan D, Cho S-J, Rangaswami A, Huang FW, Nijagal A, Wang B. Single-cell analysis of hepatoblastoma identifies distinct tumor cell signatures that predict susceptibility to chemotherapy using patient-specific tumor spheroids. bioRxiv. 2021. https://doi.org/10.1101/2021.10.13.464268.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Rikhi RR, Spady KK, Hoffman RI, Bateman MS, Bateman M, Howard LE. Hepatoblastoma: a need for cell lines and tissue banks to develop targeted drug therapies. Front Pediatr. 2016;4:22. https://doi.org/10.3389/fped.2016.00022.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Sangkhathat S, Kusafuka T, Miao J, Yoneda A, Nara K, Yamamoto S, Kaneda Y, Fukuzawa M. In vitro RNA interference against beta-catenin inhibits the proliferation of pediatric hepatic tumors. Int J Oncol. 2006;28(3):715–22. https://doi.org/10.3892/ijo.28.3.715.

    Article  CAS  PubMed  Google Scholar 

  30. Renard CA, Labalette C, Armengol C, Cougot D, Wei Y, Cairo S, Pineau P, Neuveut C, de Reyniès A, Dejean A, Perret C, Buendia MA. Tbx3 is a downstream target of the Wnt/beta-catenin pathway and a critical mediator of beta-catenin survival functions in liver cancer. Cancer Res. 2007;67(3):901–10. https://doi.org/10.1158/0008-5472.CAN-06-2344.

    Article  CAS  PubMed  Google Scholar 

  31. Tao J, Calvisi DF, Ranganathan S, Cigliano A, Zhou L, Singh S, Jiang L, Fan B, Terracciano L, Armeanu-Ebinger S, Ribback S, Dombrowski F, Evert M, Chen X, Monga SPS. Activation of β-catenin and Yap1 in human hepatoblastoma and induction of hepatocarcinogenesis in mice. Gastroenterology. 2014;147(3):690–701. https://doi.org/10.1053/j.gastro.2014.05.004.

    Article  CAS  PubMed  Google Scholar 

  32. Wang H, Lu J, Mandel JA, Zhang W, Schwalbe M, Gorka J, Liu Y, Marburger B, Wang J, Ranganathan S, Prochownik EV. Patient-derived mutant forms of NFE2L2/NRF2 drive aggressive murine hepatoblastomas. Cell Mol Gastroenterol Hepatol. 2021;12(1):199–228. https://doi.org/10.1016/j.jcmgh.2021.02.004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Comerford SA, Hinnant EA, Chen Y, Bansal H, Klapproth S, Rakheja D, Finegold MJ, Lopez-Terrada D, O’Donnell KA, Tomlinson GE, Hammer RE. Hepatoblastoma modeling in mice places Nrf2 within a cancer field established by mutant β-catenin. JCI Insight. 2016;1(16):e88549. https://doi.org/10.1172/jci.insight.88549.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Shachaf CM, Kopelman AM, Arvanitis C, Karlsson A, Beer S, Mandl S, Bachmann MH, Borowsky AD, Ruebner B, Cardiff RD, Yang Q, Bishop JM, Contag CH, Felsher DW. MYC inactivation uncovers pluripotent differentiation and tumour dormancy in hepatocellular cancer. Nature. 2004;431(7012):1112–7. https://doi.org/10.1038/nature03043.

    Article  PubMed  Google Scholar 

  35. Ellerkamp V, Armeanu-Ebinger S, Wenz J, Warmann SW, Schafer J, Ruck P, Fuchs J. Successful establishment of an orthotopic hepatoblastoma in vivo model in NOD/LtSz-scid/IL2Rγnull mice. PLoS ONE. 2011;6(8):e23419. https://doi.org/10.1371/journal.pone.0023419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Bissig-Choisat B, Kettlun-Leyton C, Legras XD, Zorman B, Barzi M, Chen LL, Amin MD, Huang YH, Pautler RG, Hampton OA, Prakash MM, Yang D, Borowiak M, Muzny D, Doddapaneni HV, Hu J, Shi Y, Gaber MW, Hicks MJ, Thompson PA, Lu Y, Mills GB, Finegold M, Goss JA, Parsons DW, Vasudevan SA, Sumazin P, López-Terrada D, Bissig KD. Novel patient-derived xenograft and cell line models for therapeutic testing of pediatric liver cancer. J Hepatol. 2016;65(2):325–33. https://doi.org/10.1016/j.jhep.2016.04.009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nicolle D, Fabre M, Simon-Coma M, Gorse A, Kappler R, Nonell L, Mallo M, Haidar H, Déas O, Mussini C, Guettier C, Redon MJ, Brugières L, Ghigna MR, Fadel E, Galmiche-Rolland L, Chardot C, Judde JG, Armengol C, Branchereau S, Cairo S. Patient-derived mouse xenografts from pediatric liver cancer predict tumor recurrence and advise clinical management. Hepatology. 2016;64(4):1121–35. https://doi.org/10.1002/hep.28621.

    Article  CAS  PubMed  Google Scholar 

  38. Woodfield SE, Shi Y, Patel RH, Jin J, Major A, Sarabia SF, Starosolski Z, Zorman B, Gupta SS, Chen Z, Ibarra AM, Bissig KD, Ghaghada KB, Sumazin P, López-Terrada D, Vasudevan SA. A novel cell line based orthotopic xenograft mouse model that recapitulates human hepatoblastoma. Sci Rep. 2017;7(1):17751. https://doi.org/10.1038/s41598-017-17665-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Saltsman JA, Hammond WJ, Narayan NJC, Requena D, Gehart H, Lalazar G, LaQuaglia MP, Clevers H, Simon S. A human organoid model of aggressive hepatoblastoma for disease modeling and drug testing. Cancers (Basel). 2020;12(9):2668. https://doi.org/10.3390/cancers12092668.

    Article  CAS  Google Scholar 

  40. Wu P, Nusse R. 3D culture of primary patient-derived hepatoblastoma tumoroids. Methods in Molecular Biology. (in press). Practical protocol for 3D culture of primary hepatoblastoma cells.

  41. Haeberle B, Schweinitz DV. Treatment of hepatoblastoma in the German cooperative pediatric liver tumor studies. Front Biosci (Elite Ed). 2012;4:493–8.

    Article  Google Scholar 

  42. Hiyama E, Hishiki T, Watanabe K, Ida K, Ueda Y, Kurihara S, Yano M, Hoshino K, Yokoi A, Takama Y, Nogami Y, Taguchi T, Mori M, Kihira K, Miyazaki O, Fuji H, Honda S, Iehara T, Kazama T, Fujimura J, Tanaka Y, Inoue T, Tajiri T, Kondo S, Oue T, Yoshimura K. Outcome and late complications of hepatoblastomas treated using the Japanese Study Group for Pediatric Liver Tumor 2 Protocol. J Clin Oncol. 2020;38(22):2488–98. https://doi.org/10.1200/JCO.19.01067.

    Article  PubMed  Google Scholar 

  43. Czauderna P. Hepatoblastoma throughout SIOPEL trials - clinical lessons learnt. Front Biosci (Elite Ed). 2012;4:470–9. https://doi.org/10.2741/392.

    Article  Google Scholar 

  44. Zsiros J, Brugieres L, Brock P, Roebuck D, Maibach R, Zimmermann A, Childs M, Pariente D, Laithier V, Otte JB, Branchereau S, Aronson D, Rangaswami A, Ronghe M, Casanova M, Sullivan M, Morland B, Czauderna P, Perilongo G, International Childhood Liver Tumours Strategy Group (SIOPEL). Dose-dense cisplatin-based chemotherapy and surgery for children with high-risk hepatoblastoma (SIOPEL-4): a prospective, single-arm, feasibility study. Lancet Oncol. 2013;14(9):834–42. https://doi.org/10.1016/S1470-2045(13)70272-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Brock PR, Maibach R, Childs M, Rajput K, Roebuck D, Sullivan MJ, Laithier V, Ronghe M, Dall’Igna P, Hiyama E, Brichard B, Skeen J, Mateos ME, Capra M, Rangaswami AA, Ansari M, Rechnitzer C, Veal GJ, Covezzoli A, Brugières L, Perilongo G, Czauderna P, Morland B, Neuwelt EA. Sodium thiosulfate for protection from cisplatin-induced hearing loss. N Engl J Med. 2018;378(25):2376–85. https://doi.org/10.1056/NEJMoa1801109. Results of the SIOPEL-6 study demonstrating efficacy of sodium thiosulfate in preventing cisplatin-associated hearing loss related to treatment for hepatoblastoma.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Katzenstein HM, Langham MR, Malogolowkin MH, Krailo MD, Towbin AJ, McCarville MB, Finegold MJ, Ranganathan S, Dunn S, McGahren ED, Tiao GM, O’Neill AF, Qayed M, Furman WL, Xia C, Rodriguez-Galindo C, Meyers RL. Minimal adjuvant chemotherapy for children with hepatoblastoma resected at diagnosis (AHEP0731): a Children’s Oncology Group, multicentre, phase 3 trial. Lancet Oncol. 2019;20(5):719–27. https://doi.org/10.1016/S1470-2045(18)30895-7.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Perilongo G, Maibach R, Shafford E, Brugieres L, Brock P, Morland B, de Camargo B, Zsiros J, Roebuck D, Zimmermann A, Aronson D, Childs M, Widing E, Laithier V, Plaschkes J, Pritchard J, Scopinaro M, MacKinlay G, Czauderna P. Cisplatin versus cisplatin plus doxorubicin for standard-risk hepatoblastoma. N Engl J Med. 2009;361(17):1662–70. https://doi.org/10.1056/NEJMoa0810613.

    Article  CAS  PubMed  Google Scholar 

  48. Katzenstein HM, Furman WL, Malogolowkin MH, Krailo MD, McCarville MB, Towbin AJ, Tiao GM, Finegold MJ, Ranganathan S, Dunn SP, Langham MR, McGahren ED, Rodriguez-Galindo C, Meyers RL. Upfront window vincristine/irinotecan treatment of high-risk hepatoblastoma: a report from the Children’s Oncology Group AHEP0731 study committee. Cancer. 2017;123(12):2360–7. https://doi.org/10.1002/cncr.30591.

    Article  CAS  PubMed  Google Scholar 

  49. Moke DJ, Luo C, Millstein J, Knight KR, Rassekh SR, Brooks B, Ross CJD, Wright M, Mena V, Rushing T, Esbenshade AJ, Carleton BC, Orgel E. Prevalence and risk factors for cisplatin-induced hearing loss in children, adolescents, and young adults: a multi-institutional North American cohort study. Lancet Child Adolesc Health. 2021;5(4):274–83. https://doi.org/10.1016/S2352-4642(21)00020-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Beyea JA, Lau C, Cooke B, Hall S, Nathan PC, Gupta S. Long-term incidence and predictors of significant hearing loss requiring hearing assistive devices among childhood cancer survivors: a population-based study. J Clin Oncol. 2020;38(23):2639–46. https://doi.org/10.1200/JCO.19.03166.

    Article  PubMed  Google Scholar 

  51. Lake CM, Tiao GM, Bondoc AJ. Surgical management of locally-advanced and metastatic hepatoblastoma. Semin Pediatr Surg. 2019;28(6):150856. https://doi.org/10.1016/j.sempedsurg.2019.150856.

    Article  PubMed  Google Scholar 

  52. Uchida H, Sakamoto S, Sasaki K, Takeda M, Hirata Y, Fukuda A, Hishiki T, Irie R, Nakazawa A, Miyazaki O, Nosaka S, Kasahara M. Surgical treatment strategy for advanced hepatoblastoma: resection versus transplantation. Pediatr Blood Cancer. 2018;65:e27383. https://doi.org/10.1002/pbc.27383.

    Article  CAS  PubMed  Google Scholar 

  53. Semeraro M, Branchereau S, Maibach R, Zsiros J, Casanova M, et al. Relapses in hepatoblastoma patients: Clinical characteristics and outcome – experience of the International Childhood Liver Tumour Strategy Group (SIOPEL). Eur J Cancer. 2013;49:915–22. https://doi.org/10.1016/j.ejca.2012.10.003.

    Article  CAS  PubMed  Google Scholar 

  54. Lepourcelet M, Chen YN, France DS, Wang H, Crews P, Petersen F, Bruseo C, Wood AW, Shivdasani RA. Small-molecule antagonists of the oncogenic Tcf/beta-catenin protein complex. Cancer Cell. 2004;5(1):91–102. https://doi.org/10.1016/s1535-6108(03)00334-9.

    Article  CAS  PubMed  Google Scholar 

  55. Cheltsov A, Nomura N, Yenugonda VM, Roper J, Mukthavaram R, Jiang P, Her NG, Babic I, Kesari S, Nurmemmedov E. Allosteric inhibitor of β-catenin selectively targets oncogenic Wnt signaling in colon cancer. Sci Rep. 2020;10(1):8096. https://doi.org/10.1038/s41598-020-60784-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Schmidtova S, Kalavska K, Liskova V, Plava J, Miklikova S, Kucerova L, Matuskova M, Rojikova L, Cierna Z, Rogozea A, Konig H, Albany C, Mego M, Chovanec M. Targeting of deregulated Wnt/β-catenin signaling by PRI-724 and LGK974 inhibitors in germ cell tumor cell lines. Int J Mol Sci. 2021;22(8):4263. https://doi.org/10.3390/ijms22084263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kats D, Ricker CA, Berlow NE, Noblet B, Nicolle D, Mevel K, Branchereau S, Judde JG, Stiverson CD, Stiverson CL, Svalina MN, Settelmeyer T, Matlock K, Lathara M, Mussini C, Geller JI, Noakes C, Sloma I, Bharathy N, Cairo S, Keller C. Volasertib preclinical activity in high-risk hepatoblastoma. Oncotarget. 2019;10(60):6403–17. https://doi.org/10.18632/oncotarget.27237.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Johnston ME 2nd, Rivas MP, Nicolle D, Gorse A, Gulati R, Kumbaji M, Weirauch MT, Bondoc A, Cairo S, Geller J, Tiao G, Timchenko N. Olaparib inhibits tumor growth of hepatoblastoma in patient derived xenograft models. Hepatology. 2021;74(4):2201–15. https://doi.org/10.1002/hep.31919.

    Article  CAS  PubMed  Google Scholar 

  59. Molina L, Yang H, Adebayo Michael AO, Oertel M, Bell A, Singh S, Chen X, Tao J, Monga SPS. mTOR inhibition affects Yap1-beta-catenin-induced hepatoblastoma growth and development. Oncotarget. 2019;10(15):1475–90. https://doi.org/10.18632/oncotarget.26668.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Stafman LL, Mruthyunjayappa S, Waters AM, Garner EF, Aye JM, Stewart JE, Yoon KJ, Whelan K, Mroczek-Musulman E, Beierle EA. Targeting PIM kinase as a therapeutic strategy in human hepatoblastoma. Oncotarget. 2018;9(32):22665–79. https://doi.org/10.18632/oncotarget.25205.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Woodfield SE, Shi Y, Patel RH, Chen Z, Shah AP, Whitlock RS, Ibarra AM, Larson SR, Sarabia SF, Badachhape A, Starosolski Z, Ghaghada KB, Sumazin P, Annis DA, López-Terrada D, Vasudevan SA. MDM4 inhibition: a novel therapeutic strategy to reactivate p53 in hepatoblastoma. Sci Rep. 2021;11(1):2967. https://doi.org/10.1038/s41598-021-82542-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lieber J, Kirchner B, Eicher C, Warmann SW, Seitz G, Fuchs J, Armeanu-Ebinger S. Inhibition of Bcl-2 and Bcl-X enhances chemotherapy sensitivity in hepatoblastoma cells. Pediatr Blood Cancer. 2010;55(6):1089–95. https://doi.org/10.1002/pbc.22740.

    Article  PubMed  Google Scholar 

  63. Trobaugh-Lotrario AD, Meyers RL, Feusner JH. Outcomes of patients with relapsed hepatoblastoma enrolled on Children’s Oncology Group (COG) phase I and II studies. J Pediatr Hematol Oncol. 2016;38(3):187–90. https://doi.org/10.1097/MPH.0000000000000474.

    Article  PubMed  Google Scholar 

  64. Li W, Guo L, Rathi P, Marinova E, Gao X, Wu MF, Liu H, Dotti G, Gottschalk S, Metelitsa LS, Heczey A. Redirecting T cells to glypican-3 with 4–1BB zeta chimeric antigen receptors results in Th1 polarization and potent antitumor activity. Hum Gene Ther. 2017;28(5):437–48. https://doi.org/10.1089/hum.2016.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Liu H, Xu Y, Xiang J, Long L, Green S, Yang Z, Zimdahl B, Lu J, Cheng N, Horan LH, Liu B, Yan S, Wang P, Diaz J, Jin L, Nakano Y, Morales JF, Zhang P, Liu LX, Staley BK, Priceman SJ, Brown CE, Forman SJ, Chan VW, Liu C. Targeting alpha-fetoprotein (AFP)-MHC complex with CAR T-cell therapy for liver cancer. Clin Cancer Res. 2017;23(2):478–88. https://doi.org/10.1158/1078-0432.CCR-16-1203.

    Article  CAS  PubMed  Google Scholar 

  66. Tsai HL, Yeh YC, Yu TY, Lee CY, Hung GY, Yeh YT, Liu CS, Yen HJ. Complete and durable response to immune checkpoint inhibitor in a patient with refractory and metastatic hepatoblastoma. Pediatr Hematol Oncol. 2021;38(4):385–90. https://doi.org/10.1080/08880018.2020.1853859.

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

Peng Wu is funded by the Damon Runyon-Sohn Pediatric Cancer Fellowship Award from the Damon Runyon Cancer Research Foundation DSRG 28P-19.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arun Rangaswami.

Ethics declarations

Conflict of Interest

Peng V. Wu and Arun Rangaswami declare no conflict of interest.

Human and Animal Rights and Informed Consent

All studies with human subjects performed by any of the authors were approved by the institutional IRB and were performed with informed consent. This article does not contain any studies with animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Pediatric Oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, P.V., Rangaswami, A. Current Approaches in Hepatoblastoma—New Biological Insights to Inform Therapy. Curr Oncol Rep 24, 1209–1218 (2022). https://doi.org/10.1007/s11912-022-01230-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11912-022-01230-2

Keywords

Navigation