Skip to main content

Advertisement

Log in

DNA Repair Mechanisms and Therapeutic Targets in Glioma

  • Neuro-oncology (KS Nevel, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review discusses current and investigative strategies for targeting DNA repair in the management of glioma.

Recent Findings

Recent strategies in glioma treatment rely on the production of overwhelming DNA damage and inhibition of repair mechanisms, resulting in lethal cytotoxicity. Many strategies are effective in preclinical glioma models while clinical feasibility remains under investigation. The presence of glioma biomarkers, including IDH mutation and/or MGMT promoter methylation, may confer particular susceptibility to DNA damage and inhibition of repair. These biomarkers have been adopted as eligibility criteria in the design of multiple ongoing clinical trials.

Summary

Targeting DNA repair mechanisms with novel agents or therapeutic combinations is a promising approach to the treatment of glioma. Further investigations are underway to optimize this approach in the clinical setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol. 2016;131(6):803–20.

    Article  PubMed  Google Scholar 

  2. Hoeijmakers JH. Genome maintenance mechanisms for preventing cancer. Nature. 2001;411(6835):366–74.

    Article  CAS  PubMed  Google Scholar 

  3. Maréchal A, Zou L. DNA damage sensing by the ATM and ATR kinases. Cold Spring Harb Perspect Biol. 2013;5(9).

  4. Tribius S, Pidel A, Casper D. ATM protein expression correlates with radioresistance in primary glioblastoma cells in culture. International Journal of Radiation Oncology*Biology*Physics. 2001;50(2):511–23.

    Article  CAS  PubMed  Google Scholar 

  5. Hickson I, Zhao Y, Richardson CJ, Green SJ, Martin NM, Orr AI, et al. Identification and characterization of a novel and specific inhibitor of the ataxia-telangiectasia mutated kinase ATM. Cancer Res. 2004;64(24):9152–9.

    Article  CAS  PubMed  Google Scholar 

  6. Durant ST, Zheng L, Wang Y, Chen K, Zhang L, Zhang T, et al. The brain-penetrant clinical ATM inhibitor AZD1390 radiosensitizes and improves survival of preclinical brain tumor models. Sci Adv. 2018;4(6):eaat1719 The oral ATM inhibitor AZD1390 demonstrated radiosensitization in glioma cell lines, CNS penetrance, and increased animal survival in orthotopic glioma models when compared to radiation alone. On this basis, AZD1390 is currently under clinical trial investigation for newly diagnosed and recurrent glioblastoma.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Biddlestone-Thorpe L, Sajjad M, Rosenberg E, Beckta JM, Valerie NC, Tokarz M, et al. ATM kinase inhibition preferentially sensitizes p53-mutant glioma to ionizing radiation. Clin Cancer Res. 2013;19(12):3189–200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Fokas E, Prevo R, Pollard JR, Reaper PM, Charlton PA, Cornelissen B, et al. Targeting ATR in vivo using the novel inhibitor VE-822 results in selective sensitization of pancreatic tumors to radiation. Cell Death Dis. 2012;3(12):e441.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fròsina G, Profumo A, Marubbi D, Marcello D, Ravetti JL, Daga A. ATR kinase inhibitors NVP-BEZ235 and AZD6738 effectively penetrate the brain after systemic administration. Radiat Oncol. 2018;13(1):76.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Ning J-F, Stanciu M, Humphrey MR, Gorham J, Wakimoto H, Nishihara R, et al. Myc targeted CDK18 promotes ATR and homologous recombination to mediate PARP inhibitor resistance in glioblastoma. Nature Communications. 2019;10(1):2910.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Ahmed SU, Carruthers R, Gilmour L, Yildirim S, Watts C, Chalmers AJ. Selective inhibition of parallel DNA damage response pathways optimizes radiosensitization of glioblastoma stem-like cells. Cancer Research. 2015;75(20):4416–28.

    Article  CAS  PubMed  Google Scholar 

  12. Jackson CB, Noorbakhsh SI, Sundaram RK, Kalathil AN, Ganesa S, Jia L, et al. Temozolomide sensitizes MGMT-deficient tumor cells to ATR inhibitors. Cancer research. 2019;79(17):4331–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zenke FT, Zimmermann A, Sirrenberg C, Dahmen H, Kirkin V, Pehl U, et al. Pharmacologic inhibitor of DNA-PK, M3814, potentiates radiotherapy and regresses human tumors in mouse models. Mol Cancer Ther. 2020;19(5):1091–101.

    Article  CAS  PubMed  Google Scholar 

  14. Timme CR, Rath BH, O'Neill JW, Camphausen K, Tofilon PJ. The DNA-PK inhibitor VX-984 enhances the radiosensitivity of glioblastoma cells grown in vitro and as orthotopic xenografts. Molecular cancer therapeutics. 2018;17(6):1207–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bergman K, Irtenkauf SM, Hasselbach LA, Mueller C, Petricoin E, Raymon H, et al. Abstract 1755: TORK/DNA-PK inhibitor CC-115 is effective as a single agent in a subset of glioblastoma patient-derived cancer stem cells and xenografts and potentiates temozolomide therapy. Cancer Research. 2015;75(15 Supplement):1755.

    Google Scholar 

  16. Munster P, Mita M, Mahipal A, Nemunaitis J, Massard C, Mikkelsen T, et al. First-in-human phase I study of a dual mTOR kinase and DNA-PK inhibitor (CC-115) in advanced malignancy. Cancer Manag Res. 2019;11:10463–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Margison GP, Santibáñez-Koref MF. O6-alkylguanine-DNA alkyltransferase: role in carcinogenesis and chemotherapy. Bioessays. 2002;24(3):255–66.

    Article  CAS  PubMed  Google Scholar 

  18. Ochs K, Kaina B. Apoptosis induced by DNA damage <em>O</em> -methylguanine is Bcl-2 and caspase-9/3 regulated and Fas/caspase-8 independent. Cancer Research. 2000;60(20):5815–24.

    CAS  PubMed  Google Scholar 

  19. Pegg AE. Repair of O6-alkylguanine by alkyltransferases. Mutation Research/Reviews in Mutation Research. 2000;462(2):83–100.

    Article  CAS  Google Scholar 

  20. Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med. 2005;352(10):987–96.

    Article  CAS  PubMed  Google Scholar 

  21. Perry JR, Bélanger K, Mason WP, Fulton D, Kavan P, Easaw J, et al. Phase II trial of continuous dose-intense temozolomide in recurrent malignant glioma: RESCUE study. J Clin Oncol. 2010;28(12):2051–7.

    Article  CAS  PubMed  Google Scholar 

  22. Brandes AA, Tosoni A, Amistà P, Nicolardi L, Grosso D, Berti F, et al. How effective is BCNU in recurrent glioblastoma in the modern era? A phase II trial. Neurology. 2004;63(7):1281–4.

    Article  CAS  PubMed  Google Scholar 

  23. Schmidt F, Fischer J, Herrlinger U, Dietz K, Dichgans J, Weller M. PCV chemotherapy for recurrent glioblastoma. Neurology. 2006;66(4):587–9.

    Article  CAS  PubMed  Google Scholar 

  24. Baumert BG, Hegi ME, van den Bent MJ, von Deimling A, Gorlia T, Hoang-Xuan K, et al. Temozolomide chemotherapy versus radiotherapy in high-risk low-grade glioma (EORTC 22033-26033): a randomised, open-label, phase 3 intergroup study. Lancet Oncol. 2016;17(11):1521–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Buckner JC, Shaw EG, Pugh SL, Chakravarti A, Gilbert MR, Barger GR, et al. Radiation plus procarbazine, CCNU, and vincristine in low-grade glioma. New England Journal of Medicine. 2016;374(14):1344–55.

    Article  CAS  PubMed  Google Scholar 

  26. Nakagawachi T, Soejima H, Urano T, Zhao W, Higashimoto K, Satoh Y, et al. Silencing effect of CpG island hypermethylation and histone modifications on O6-methylguanine-DNA methyltransferase (MGMT) gene expression in human cancer. Oncogene. 2003;22(55):8835–44.

    Article  CAS  PubMed  Google Scholar 

  27. Mellai M, Monzeglio O, Piazzi A, Caldera V, Annovazzi L, Cassoni P, et al. MGMT promoter hypermethylation and its associations with genetic alterations in a series of 350 brain tumors. J Neurooncol. 2012;107(3):617–31.

    Article  CAS  PubMed  Google Scholar 

  28. Esteller M, Garcia-Foncillas J, Andion E, Goodman SN, Hidalgo OF, Vanaclocha V, et al. Inactivation of the DNA-repair gene MGMT and the clinical response of gliomas to alkylating agents. New England J Med. 2000;343(19):1350–4.

    Article  CAS  Google Scholar 

  29. Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, et al. MGMT gene silencing and benefit from temozolomide in glioblastoma. N Engl J Med. 2005;352(10):997–1003.

    Article  CAS  PubMed  Google Scholar 

  30. Dolan ME, Mitchell RB, Mummert C, Moschel RC, Pegg AE. Effect of O6-benzylguanine analogues on sensitivity of human tumor cells to the cytotoxic effects of alkylating agents. Cancer Res. 1991;51(13):3367–72.

    CAS  PubMed  Google Scholar 

  31. Bobola MS, Tseng SH, Blank A, Berger MS, Silber JR. Role of O6-methylguanine-DNA methyltransferase in resistance of human brain tumor cell lines to the clinically relevant methylating agents temozolomide and streptozotocin. Clin Cancer Res. 1996;2(4):735–41.

    CAS  PubMed  Google Scholar 

  32. Taspinar M, Ilgaz S, Ozdemir M, Ozkan T, Oztuna D, Canpinar H, et al. Effect of lomeguatrib-temozolomide combination on MGMT promoter methylation and expression in primary glioblastoma tumor cells. Tumour Biol. 2013;34(3):1935–47.

    Article  CAS  PubMed  Google Scholar 

  33. Quinn JA, Jiang SX, Reardon DA, Desjardins A, Vredenburgh JJ, Rich JN, et al. Phase II trial of temozolomide plus o6-benzylguanine in adults with recurrent, temozolomide-resistant malignant glioma. Journal of clinical oncology : official journal of the American Society of Clinical Oncology. 2009;27(8):1262–7.

    Article  CAS  Google Scholar 

  34. Quinn JA, Pluda J, Dolan ME, Delaney S, Kaplan R, Rich JN, et al. Phase II trial of carmustine plus O(6)-benzylguanine for patients with nitrosourea-resistant recurrent or progressive malignant glioma. J Clin Oncol. 2002;20(9):2277–83.

    Article  CAS  PubMed  Google Scholar 

  35. Ranson M, Hersey P, Thompson D, Beith J, McArthur GA, Haydon A, et al. Randomized trial of the combination of lomeguatrib and temozolomide compared with temozolomide alone in chemotherapy naive patients with metastatic cutaneous melanoma. Journal of Clinical Oncology. 2007;25(18):2540–5.

    Article  CAS  PubMed  Google Scholar 

  36. Kaina B, Margison GP, Christmann M. Targeting O6-methylguanine-DNA methyltransferase with specific inhibitors as a strategy in cancer therapy. Cell Mol Life Sci. 2010;67(21):3663–81.

    Article  CAS  PubMed  Google Scholar 

  37. Sharpe MA, Raghavan S, Baskin DS. PAM-OBG: a monoamine oxidase B specific prodrug that inhibits MGMT and generates DNA interstrand crosslinks, potentiating temozolomide and chemoradiation therapy in intracranial glioblastoma. Oncotarget. 2018;9(35):23923–43.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Parker NR, Hudson AL, Khong P, Parkinson JF, Dwight T, Ikin RJ, et al. Intratumoral heterogeneity identified at the epigenetic, genetic and transcriptional level in glioblastoma. Scientific Reports. 2016;6(1):22477.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Lassman A, Dimino C, Mansukhani M, Murty V, Ansell PJ, Bain E, et al. ACTR-68. Concordance of EGFR and MGMT analyses between local and central laboratories: implications for clinical trial design and precision medicine for depatuxizumab-mafodotin (ABT-414) in glioblastoma (GBM). Neuro Oncol. 2017;19(Suppl 6):vi15-vi.

    Article  Google Scholar 

  40. Schaff LR, Yan D, Thyparambil S, Tian Y, Cecchi F, Rosenblum M, et al. Characterization of MGMT and EGFR protein expression in glioblastoma and association with survival. Journal of Neuro-Oncology. 2020;146(1):163–70.

    Article  CAS  PubMed  Google Scholar 

  41. Bady P, Sciuscio D, Diserens AC, Bloch J, van den Bent MJ, Marosi C, et al. MGMT methylation analysis of glioblastoma on the Infinium methylation BeadChip identifies two distinct CpG regions associated with gene silencing and outcome, yielding a prediction model for comparisons across datasets, tumor grades, and CIMP-status. Acta Neuropathol. 2012;124(4):547–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. van den Bent MJ, Gravendeel LA, Gorlia T, Kros JM, Lapre L, Wesseling P, et al. A hypermethylated phenotype is a better predictor of survival than MGMT methylation in anaplastic oligodendroglial brain tumors: a report from EORTC study 26951. Clin Cancer Res. 2011;17(22):7148–55.

    Article  PubMed  Google Scholar 

  43. Nikolova T, Roos WP, Krämer OH, Strik HM, Kaina B. Chloroethylating nitrosoureas in cancer therapy: DNA damage, repair and cell death signaling. Biochim Biophys Acta Rev Cancer. 2017;1868(1):29–39.

    Article  CAS  PubMed  Google Scholar 

  44. Herrlinger U, Tzaridis T, Mack F, Steinbach JP, Schlegel U, Sabel M, et al. Lomustine-temozolomide combination therapy versus standard temozolomide therapy in patients with newly diagnosed glioblastoma with methylated MGMT promoter (CeTeG/NOA-09): a randomised, open-label, phase 3 trial. Lancet. 2019;393(10172):678–88 A phase III trial (CeTeG/NOA-09) in newly-diagnosed MGMT-methylated glioblastoma demonstrated a survival benefit using combination therapy with lomustine and temozolomide when compared to temozolomide alone.

    Article  CAS  PubMed  Google Scholar 

  45. Caldecott KW. Single-strand break repair and genetic disease. Nat Rev Genet. 2008;9(8):619–31.

    Article  CAS  PubMed  Google Scholar 

  46. Scully R, Panday A, Elango R, Willis NA. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat Rev Mol Cell Biol. 2019;20(11):698–714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Lieber MR. The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annu Rev Biochem. 2010;79:181–211.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Li X, Heyer W-D. Homologous recombination in DNA repair and DNA damage tolerance. Cell Research. 2008;18(1):99–113.

    Article  CAS  PubMed  Google Scholar 

  49. Murai J, Huang SY, Das BB, Renaud A, Zhang Y, Doroshow JH, et al. Trapping of PARP1 and PARP2 by clinical PARP inhibitors. Cancer Res. 2012;72(21):5588–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Helleday T, Petermann E, Lundin C, Hodgson B, Sharma RA. DNA repair pathways as targets for cancer therapy. Nat Rev Cancer. 2008;8(3):193–204.

    Article  CAS  PubMed  Google Scholar 

  51. Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005;434(7035):913–7.

    Article  CAS  PubMed  Google Scholar 

  52. Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434(7035):917–21.

    Article  CAS  PubMed  Google Scholar 

  53. Lesueur P, Chevalier F, Austry J-B, Waissi W, Burckel H, Noël G, et al. Poly-(ADP-ribose)-polymerase inhibitors as radiosensitizers: a systematic review of pre-clinical and clinical human studies. Oncotarget. 2017;8(40):69105–24.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Gupta SK, Smith EJ, Mladek AC, Tian S, Decker PA, Kizilbash SH, et al. PARP Inhibitors for sensitization of alkylation chemotherapy in glioblastoma: impact of blood-brain barrier and molecular heterogeneity. Front Oncol. 2019;8:670.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Dungey FA, Löser DA, Chalmers AJ. Replication-dependent radiosensitization of human glioma cells by inhibition of poly(ADP-Ribose) polymerase: mechanisms and therapeutic potential. Int J Radiat Oncol Biol Phys. 2008;72(4):1188–97.

    Article  CAS  PubMed  Google Scholar 

  56. Kleinberg L, Supko JG, Mikkelsen T, Blakeley JON, Stevens G, Ye X, et al. Phase I adult brain tumor consortium (ABTC) trial of ABT-888 (veliparib), temozolomide (TMZ), and radiotherapy (RT) for newly diagnosed glioblastoma multiforme (GBM) including pharmacokinetic (PK) data. J Clin Oncol. 2013;31(15_suppl):2065.

    Article  Google Scholar 

  57. Piotrowski A, Puduvalli V, Wen P, Campian J, Colman H, Pearlman M, et al. ACTR-39. Pamiparib in combination with radiation therapy (RT) and/or temozolomide (TMZ) in patients with newly diagnosed or recurrent/refractory (R/R) glioblastoma (GBM); phase 1B/2 study update. Neuro Oncol. 2019;21(Supplement_6):vi21–vi2.

    Article  PubMed Central  Google Scholar 

  58. Fulton B, Short SC, James A, Nowicki S, McBain C, Jefferies S, et al. PARADIGM-2: Two parallel phase I studies of olaparib and radiotherapy or olaparib and radiotherapy plus temozolomide in patients with newly diagnosed glioblastoma, with treatment stratified by MGMT status. Clin Transl Radiat Oncol. 2017;8:12–6.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Robins HI, Zhang P, Gilbert MR, Chakravarti A, de Groot JF, Grimm SA, et al. A randomized phase I/II study of ABT-888 in combination with temozolomide in recurrent temozolomide resistant glioblastoma: an NRG oncology RTOG group study. Journal of neuro-oncology. 2016;126(2):309–16.

    Article  CAS  PubMed  Google Scholar 

  60. Gupta SK, Kizilbash SH, Carlson BL, Mladek AC, Boakye-Agyeman F, Bakken KK, et al. Delineation of MGMT hypermethylation as a biomarker for veliparib-mediated temozolomide-sensitizing therapy of glioblastoma. J Natl Cancer Inst. 2016;108(5).

  61. Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. New England Journal of Medicine. 2009;361(2):123–34.

    Article  CAS  PubMed  Google Scholar 

  62. Hanna C, Kurian KM, Williams K, Watts C, Jackson A, Carruthers R, et al. Pharmacokinetics, safety and tolerability of olaparib and temozolomide for recurrent glioblastoma: results of the phase I OPARATIC trial. Neuro Oncol. 2020; Established a maximum tolerated dose for olaparib in combination with temozolomide in glioblastoma patients. Demonstrated olaparib penetration to tumor core and margins suggesting CNS penetrance.

  63. Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA, Yuan W, et al. IDH1 and IDH2 mutations in gliomas. New England Journal of Medicine. 2009;360(8):765–73.

    Article  CAS  PubMed  Google Scholar 

  64. Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, et al. Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 2009;462(7274):739–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Turcan S, Makarov V, Taranda J, Wang Y, Fabius AWM, Wu W, et al. Mutant-IDH1-dependent chromatin state reprogramming, reversibility, and persistence. Nat Genet. 2018;50(1):62–72.

    Article  CAS  PubMed  Google Scholar 

  66. Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, et al. Identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell. 2010;17(5):510–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Sulkowski PL, Corso CD, Robinson ND, Scanlon SE, Purshouse KR, Bai H, et al. 2-Hydroxyglutarate produced by neomorphic IDH mutations suppresses homologous recombination and induces PARP inhibitor sensitivity. Sci Transl Med. 2017;9(375) IDH mutations in glioma cell lines result in defects in HR and a “BRCA” phenotype that has marked sensitivity to PARP inhibition compared to wild-type cell lines.

  68. Wang P, Wu J, Ma S, Zhang L, Yao J, Hoadley KA, et al. Oncometabolite D-2-hydroxyglutarate inhibits ALKBH DNA repair enzymes and sensitizes IDH mutant cells to alkylating agents. Cell Rep. 2015;13(11):2353–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Lu Y, Kwintkiewicz J, Liu Y, Tech K, Frady LN, Su YT, et al. Chemosensitivity of IDH1-mutated gliomas due to an impairment in PARP1-mediated DNA repair. Cancer Res. 2017;77(7):1709–18 IDH-mutant glioma cell lines have impaired PARP-dependent repair mechanisms, and the effects of PARP inhibition combined with temozolomide demonstrated greater chemosensitivity in IDH-mutant cells.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Wang Y, Wild AT, Turcan S, Wu WH, Sigel C, Klimstra DS, et al. Targeting therapeutic vulnerabilities with PARP inhibition and radiation in IDH-mutant gliomas and cholangiocarcinomas. Sci Adv. 2020;6(17):eaaz3221.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. King HO, Brend T, Payne HL, Wright A, Ward TA, Patel K, et al. RAD51 Is a selective DNA repair target to radiosensitize glioma stem cells. Stem Cell Reports. 2017;8(1):125–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Berte N, Piée-Staffa A, Piecha N, Wang M, Borgmann K, Kaina B, et al. Targeting homologous recombination by pharmacological inhibitors enhances the killing response of glioblastoma cells treated with alkylating drugs. Molecular Cancer Therapeutics. 2016;15(11):2665–78.

    Article  CAS  PubMed  Google Scholar 

  73. Liu X, Yao W, Newton RC, Scherle PA. Targeting the c-MET signaling pathway for cancer therapy. Expert Opin Investig Drugs. 2008;17(7):997–1011.

    Article  CAS  PubMed  Google Scholar 

  74. Tolcher A, Berk G, Fine G, Choy G, Bearss D, Redkar S, et al. MP470, a potent oral Rad51 suppressor is safe and tolerable in first-in-human study. Cancer Research. 2008;68(9 Supplement):4083.

    Google Scholar 

  75. Welsh JW, Mahadevan D, Ellsworth R, Cooke L, Bearss D, Stea B. The c-Met receptor tyrosine kinase inhibitor MP470 radiosensitizes glioblastoma cells. Radiation Oncology. 2009;4(1):69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Byers LA, Horn L, Ghandi J, Kloecker G, Owonikoko T, Waqar SN, et al. A phase 2, open-label, multi-center study of amuvatinib in combination with platinum etoposide chemotherapy in platinum-refractory small cell lung cancer patients. Oncotarget. 2017;8(46):81441–54.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Krokan HE, Bjørås M. Base excision repair. Cold Spring Harbor perspectives in biology. 2013;5(4):a012583-a.

    Article  CAS  Google Scholar 

  78. Schärer OD. Nucleotide excision repair in eukaryotes. Cold Spring Harbor perspectives in biology. 2013;5(10):a012609-a.

    Article  CAS  Google Scholar 

  79. Li G-M. Mechanisms and functions of DNA mismatch repair. Cell Res. 2008;18(1):85–98.

    Article  CAS  PubMed  Google Scholar 

  80. Hanawalt PC, Spivak G. Transcription-coupled DNA repair: two decades of progress and surprises. Nature Reviews Molecular Cell Biology. 2008;9(12):958–70.

    Article  CAS  PubMed  Google Scholar 

  81. Santamaría Nuñez G, Robles CMG, Giraudon C, Martínez-Leal JF, Compe E, Coin F, et al. Lurbinectedin specifically triggers the degradation of phosphorylated RNA polymerase II and the formation of DNA breaks in cancer cells. Molecular Cancer Therapeutics. 2016;15(10):2399–412.

    Article  PubMed  CAS  Google Scholar 

  82. Ponce Aix S, Cote GM, Falcon Gonzalez A, Sepulveda JM, Jimenez Aguilar E, Sanchez-Simon I, et al. Lurbinectedin (LUR) in combination with Irinotecan (IRI) in patients (pts) with advanced solid tumors: updated results from a phase Ib-II trial. Journal of Clinical Oncology. 2020;38(15_suppl):3514.

    Article  Google Scholar 

  83. Deans AJ, West SC. DNA interstrand crosslink repair and cancer. Nat Rev Cancer. 2011;11(7):467–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Zhai B, Steinø A, Bacha J, Brown D, Daugaard M. Dianhydrogalactitol induces replication-dependent DNA damage in tumor cells preferentially resolved by homologous recombination. Cell death & disease. 2018;9(10):1016.

    Article  CAS  Google Scholar 

  85. Peng C, Qi XM, Miao LL, Ren J. 1,2:5,6-Dianhydrogalactitol inhibits human glioma cell growth in vivo and in vitro by arresting the cell cycle at G(2)/M phase. Acta Pharmacol Sin. 2017;38(4):561–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Guo C, Yang Q, Li J, Wu S, Deng M, Du X, et al. Phase 2 clinical trial of VAL-083 as first-line treatment in newly-diagnosed MGMT-unmethylated glioblastoma multiforme (GBM): halfway report. Glioma. 2019;2:167.

    Article  Google Scholar 

  87. Shih KC, Patel MR, Butowski NA, Falchook GS, Kizilbash SH, Jones SF, et al. Dianhydrogalactitol in bevacizumab-refractory GBM: further analysis of a phase 1-2 trial. Journal of Clinical Oncology. 2018;36(15_suppl):2061.

    Article  Google Scholar 

  88. O’Brien B, de Groot J, Kamiya-Matsuoka C, Weathers S-P, Bacha J, Brown D, et al. ACTR-27. Phase 2 study of dianhydrogalactitol (VAL-083) in patients with MGMT-unmethylated, bevacizumab-naïve recurrent glioblastoma. Neuro Oncol. 2018;20(Suppl 6):vi17-vi.

    Article  Google Scholar 

  89. Lee V, Murphy A, Le DT, Diaz LA Jr. Mismatch repair deficiency and response to immune checkpoint blockade. Oncologist. 2016;21(10):1200–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Stark AM, Doukas A, Hugo HH, Mehdorn HM. The expression of mismatch repair proteins MLH1, MSH2 and MSH6 correlates with the Ki67 proliferation index and survival in patients with recurrent glioblastoma. Neurol Res. 2010;32(8):816–20.

    Article  PubMed  Google Scholar 

  91. Felsberg J, Thon N, Eigenbrod S, Hentschel B, Sabel MC, Westphal M, et al. Promoter methylation and expression of MGMT and the DNA mismatch repair genes MLH1, MSH2, MSH6 and PMS2 in paired primary and recurrent glioblastomas. Int J Cancer. 2011;129(3):659–70.

    Article  CAS  PubMed  Google Scholar 

  92. Yip S, Miao J, Cahill DP, Iafrate AJ, Aldape K, Nutt CL, et al. MSH6 mutations arise in glioblastomas during temozolomide therapy and mediate temozolomide resistance. Clinical cancer research : an official journal of the American Association for Cancer Research. 2009;15(14):4622–9.

    Article  CAS  Google Scholar 

  93. Cahill DP, Levine KK, Betensky RA, Codd PJ, Romany CA, Reavie LB, et al. Loss of the mismatch repair protein MSH6 in human glioblastomas is associated with tumor progression during temozolomide treatment. Clinical cancer research : an official journal of the American Association for Cancer Research. 2007;13(7):2038–45.

    Article  CAS  Google Scholar 

  94. Cancer Genome Atlas Research N. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–8.

    Article  CAS  Google Scholar 

  95. Le DT, Uram JN, Wang H, Bartlett BR, Kemberling H, Eyring AD, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372(26):2509–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bouffet E, Larouche V, Campbell BB, Merico D, de Borja R, Aronson M, et al. Immune checkpoint inhibition for hypermutant glioblastoma multiforme resulting from germline biallelic mismatch repair deficiency. J Clin Oncol. 2016;34(19):2206–11.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lauren R. Schaff.

Ethics declarations

Conflict of Interest

Kevin B. Elmore declares that he has no conflict of interest. Lauren R. Schaff has received compensation from Debiopharm for service as a consultant.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neuro-oncology

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elmore, K.B., Schaff, L.R. DNA Repair Mechanisms and Therapeutic Targets in Glioma. Curr Oncol Rep 23, 87 (2021). https://doi.org/10.1007/s11912-021-01077-z

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11912-021-01077-z

Keywords

Navigation