Skip to main content

Advertisement

Log in

Immunotherapy in Prostate Cancer: Teaching an Old Dog New Tricks

  • Genitourinary Cancers (DP Petrylak and JW Kim, Section Editors)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Immunotherapy is rapidly transforming cancer care across a range of tumor types. Although Sipuleucel-T represented the first successful vaccine for the treatment of established cancer, other immunotherapeutic approaches for prostate cancer such as checkpoint inhibitors have been relatively disappointing to date. However, significant promise is on the horizon as there is a wide array trials evaluating immunotherapy in prostate cancer patients. These include both immune checkpoint inhibitors and antigen-specific approaches including vaccines, antibody-drug conjugates, and antitumor antibodies. Furthermore, a better understanding of the key mechanisms that promote the immunosuppressive microenvironment of prostate cancer is emerging. These insights may eventually make it possible to determine which patients will benefit from immunotherapy. This review will discuss the successes and failures of immunotherapy in prostate cancer. We will also present key lessons learned from completed trials and highlight important ongoing studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major Importance

  1. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67:7–30.

    Article  PubMed  Google Scholar 

  2. Walsh PC, DeWeese TL, Eisenberger MA. Clinical practice. Localized prostate cancer. N Engl J Med. 2007;357:2696–705.

    Article  PubMed  CAS  Google Scholar 

  3. Paller CJ, Antonarakis ES. Management of biochemically recurrent prostate cancer after local therapy: evolving standards of care and new directions. Clin Adv Hematol Oncol. 2013;11:14–23.

    PubMed  PubMed Central  Google Scholar 

  4. Tannock IF, de Wit R, Berry WR, Horti J, Pluzanska A, Chi KN, et al. Docetaxel plus prednisone or mitoxantrone plus prednisone for advanced prostate cancer. N Engl J Med. 2004;351:1502–12.

    Article  PubMed  CAS  Google Scholar 

  5. Petrylak DP, Tangen CM, Hussain MH, et al. Docetaxel and estramustine compared with mitoxantrone and prednisone for advanced refractory prostate cancer. N Engl J Med. 2004;351:1513–20.

    Article  PubMed  CAS  Google Scholar 

  6. Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363:411–22.

    Article  PubMed  CAS  Google Scholar 

  7. LaFleur MW, Muroyama Y, Drake CG, Sharpe AH. Inhibitors of the PD-1 pathway in tumor therapy. J Immunol. 2018;200:375–83.

    Article  PubMed  CAS  Google Scholar 

  8. Lipson EJ, Drake CG. Ipilimumab: an anti-CTLA-4 antibody for metastatic melanoma. Clin Cancer Res. 2011;17:6958–62.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366:2443–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. •• Le DT, Durham JN, Smith KN, et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science. 2017;357:409–13. Pembrolizumab was found to be active in MSI-H tumors. This led to the approval of pembrolizumab for treatment of all MSI-H tumors, including prostate tumors. Although it is rare, < 5% of mCRPC patients, it marks the first approved checkpoint inhibitor treatment in prostate cancer.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Pritchard CC, Morrissey C, Kumar A, Zhang X, Smith C, Coleman I, et al. Complex MSH2 and MSH6 mutations in hypermutated microsatellite unstable advanced prostate cancer. Nat Commun. 2014;5:4988.

    Article  PubMed  CAS  Google Scholar 

  12. Slovin SF, Higano CS, Hamid O, Tejwani S, Harzstark A, Alumkal JJ, et al. Ipilimumab alone or in combination with radiotherapy in metastatic castration-resistant prostate cancer: results from an open-label, multicenter phase I/II study. Ann Oncol. 2013;24:1813–21.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. van den Eertwegh AJ, Versluis J, van den Berg HP, et al. Combined immunotherapy with granulocyte-macrophage colony-stimulating factor-transduced allogeneic prostate cancer cells and ipilimumab in patients with metastatic castration-resistant prostate cancer: a phase 1 dose-escalation trial. Lancet Oncol. 2012;13:509–17.

    Article  PubMed  CAS  Google Scholar 

  14. •• Kwon ED, Drake CG, Scher HI, Fizazi K, Bossi A, van den Eertwegh A, et al. Ipilimumab versus placebo after radiotherapy in patients with metastatic castration-resistant prostate cancer that had progressed after docetaxel chemotherapy (CA184-043): a multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2014;15:700–12. This is a phase 3 trial that evaluated ipilimumab monotherapy in patients with mCRPC who progressed after chemotherapy. There was no difference in overall survival with ipilimumab. However, subgroup analysis suggested patients with normal alkaline phospatase, normal hemoglobin, and no visceral metastases may be more responsive to ipilimumab.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. • Beer TM, Kwon ED, Drake CG, et al. Randomized, double-blind, phase III trial of ipilimumab versus placebo in asymptomatic or minimally symptomatic patients with metastatic chemotherapy-naive castration-resistant prostate cancer. J Clin Oncol. 2017;35:40–7. This is a phase 3 trial that evaluated ipilimumab monotherapy in patients with chemotherapy-naïve mCRPC. There was no significant difference in overall survival with ipilimumab.

    Article  PubMed  CAS  Google Scholar 

  16. Martin AM, Nirschl TR, Nirschl CJ, Francica BJ, Kochel CM, van Bokhoven A, et al. Paucity of PD-L1 expression in prostate cancer: innate and adaptive immune resistance. Prostate Cancer Prostatic Dis. 2015;18:325–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Hansen A, Massard C, Ott PA, Haas N, Lopez J, Ejadi S, et al. Pembrolizumab for patients with advanced prostate adenocarcinoma: preliminary results from the KEYNOTE-028 study. Ann Oncol. 2016;27:725PD-PD.

    Article  Google Scholar 

  18. Bishop JL, Sio A, Angeles A, Roberts ME, Azad AA, Chi KN, et al. PD-L1 is highly expressed in Enzalutamide resistant prostate cancer. Oncotarget. 2015;6:234–42.

    Article  PubMed  Google Scholar 

  19. • Graff JN, Alumkal JJ, Drake CG, Thomas GV, Redmond WL, Farhad M, et al. Early evidence of anti-PD-1 activity in enzalutamide-resistant prostate cancer. Oncotarget. 2016;7:52810–7. Patients with mCRPC who progressed on enzalutamide were treated with pembrolizumab and surprisingly showed antitumor activity. PD-1 immune checkpoint inhibitors have had little success in mCRPC patients, so these results were unexpected and warrant further investigation.

    PubMed  PubMed Central  Google Scholar 

  20. Le DT, Uram JN, Wang H, et al. PD-1 blockade in tumors with mismatch-repair deficiency. N Engl J Med. 2015;372:2509–20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369:122–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Boudadi K, Suzman DL, Luber B, et al. Phase 2 biomarker-driven study of ipilimumab plus nivolumab (Ipi/Nivo) for ARV7-positive metastatic castrate-resistant prostate cancer (mCRPC). J Clin Oncol. 2017;35:5035.

    Article  Google Scholar 

  23. Dallos MC, Drake CG. Blocking PD-1/PD-L1 in genitourinary malignancies: to immunity and beyond. Cancer J. 2018;24:20–30.

    Article  PubMed  CAS  Google Scholar 

  24. Muroyama Y, Nirschl TR, Kochel CM, Lopez-Bujanda Z, Theodros D, Mao W, et al. Stereotactic radiotherapy increases functionally suppressive regulatory T cells in the tumor microenvironment. Cancer Immunol Res. 2017;5:992–1004.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Jeske SJ, Milowsky MI, Smith CR, Smith KA, Bander NH, Nanus DM. Phase II trial of the anti-prostate specific membrane antigen (PSMA) monoclonal antibody (mAb) J591 plus low-dose interleukin-2 (IL-2) in patients (pts) with recurrent prostate cancer (PC). J Clin Oncol. 2007;25:15558.

    Google Scholar 

  26. Chang SS, Reuter VE, Heston WD, Bander NH, Grauer LS, Gaudin PB. Five different anti-prostate-specific membrane antigen (PSMA) antibodies confirm PSMA expression in tumor-associated neovasculature. Cancer Res. 1999;59:3192–8.

    PubMed  CAS  Google Scholar 

  27. Nanus DM, Milowsky MI, Kostakoglu L, et al. Clinical use of monoclonal antibody HuJ591 therapy: targeting prostate specific membrane antigen. J Urol. 2003;170:S84–8. discussion S8–9

    Article  PubMed  Google Scholar 

  28. Bander NH, Nanus DM, Milowsky MI, et al. Phase II trial of 177Lutetium radiolabeled anti-prostate-specific membrane antigen (PSMA) monoclonal antibody J591 (177Lu- J591) in patients (pts) with metastatic androgen-independent prostate cancer (AIPC). J Clin Oncol. 2007;25:15523.

    Google Scholar 

  29. Tagawa ST, Milowsky MI, Morris M, Vallabhajosula S, Christos P, Akhtar NH, et al. Phase II study of Lutetium-177-labeled anti-prostate-specific membrane antigen monoclonal antibody J591 for metastatic castration-resistant prostate cancer. Clin Cancer Res. 2013;19:5182–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. Huehls AM, Coupet TA, Sentman CL. Bispecific T-cell engagers for cancer immunotherapy. Immunol Cell Biol. 2015;93:290–6.

    Article  PubMed  CAS  Google Scholar 

  31. Torisu-Itakura H, Schoellhammer HF, Sim MS, Irie RF, Hausmann S, Raum T, et al. Redirected lysis of human melanoma cells by a MCSP/CD3-bispecific BiTE antibody that engages patient-derived T cells. J Immunother. 2011;34:597–605.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Kantarjian H, Stein A, Gokbuget N, et al. Blinatumomab versus chemotherapy for advanced acute lymphoblastic leukemia. N Engl J Med. 2017;376:836–47.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Friedrich M, Raum T, Lutterbuese R, Voelkel M, Deegen P, Rau D, et al. Regression of human prostate cancer xenografts in mice by AMG 212/BAY2010112, a novel PSMA/CD3-Bispecific BiTE antibody cross-reactive with non-human primate antigens. Mol Cancer Ther. 2012;11:2664–73.

    Article  PubMed  CAS  Google Scholar 

  34. Moore PA, Zhang W, Rainey GJ, Burke S, Li H, Huang L, et al. Application of dual affinity retargeting molecules to achieve optimal redirected T-cell killing of B-cell lymphoma. Blood. 2011;117:4542–51.

    Article  PubMed  CAS  Google Scholar 

  35. Zang X, Thompson RH, Al-Ahmadie HA, et al. B7-H3 and B7x are highly expressed in human prostate cancer and associated with disease spread and poor outcome. Proc Natl Acad Sci U S A. 2007;104:19458–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Tolcher AW, Alley EW, Chichili G, et al. Phase 1, first-in-human, open label, dose escalation ctudy of MGD009, a humanized B7-H3 x CD3 dual-affinity re-targeting (DART) protein in patients with B7-H3-expressing neoplasms or B7-H3 expressing tumor vasculature. J Clin Oncol. 2016;34:TPS3105-TPS.

    Article  Google Scholar 

  37. Peters C, Brown S. Antibody-drug conjugates as novel anti-cancer chemotherapeutics. Biosci Rep. 2015;35:e00225.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, et al. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012;367:1783–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Petrylak DP, Kantoff PW, Mega AE, Vogelzang NJ, Stephenson J, Fleming MT, et al. Prostate-specific membrane antigen antibody drug conjugate (PSMA ADC): a phase I trial in metastatic castration-resistant prostate cancer (mCRPC) previously treated with a taxane. J Clin Oncol. 2013;31:119.

    Article  Google Scholar 

  40. Petrylak DP, Vogelzang NJ, Chatta GS, Fleming MT, Smith DC, Appleman LJ, et al. A phase 2 study of prostate specific membrane antigen antibody drug conjugate (PSMA ADC) in patients (pts) with progressive metastatic castration-resistant prostate cancer (mCRPC) following abiraterone and/or enzalutamide (abi/enz). J Clin Oncol. 2015;33:144.

    Article  Google Scholar 

  41. Drake CG, Lipson EJ, Brahmer JR. Breathing new life into immunotherapy: review of melanoma, lung and kidney cancer. Nat Rev Clin Oncol. 2014;11:24–37.

    Article  PubMed  CAS  Google Scholar 

  42. Westdorp H, Skold AE, Snijer BA, et al. Immunotherapy for prostate cancer: lessons from responses to tumor-associated antigens. Front Immunol. 2014;5:191.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Small EJ, Fratesi P, Reese DM, Strang G, Laus R, Peshwa MV, et al. Immunotherapy of hormone-refractory prostate cancer with antigen-loaded dendritic cells. J Clin Oncol. 2000;18:3894–903.

    Article  PubMed  CAS  Google Scholar 

  44. Gulley JL, Madan RA, Schlom J. Impact of tumour volume on the potential efficacy of therapeutic vaccines. Curr Oncol. 2011;18:e150–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. •• Antonarakis ES, Kibel AS, Yu EY, Karsh LI, Elfiky A, Shore ND, et al. Sequencing of Sipuleucel-T and androgen deprivation therapy in men with hormone-sensitive biochemically recurrent prostate cancer: a phase II randomized trial. Clin Cancer Res. 2017;23:2451–9. This phase 2 trial evaluated sequencing of Sipuleucel-T and ADT in patients with biochemically recurrent prostate cancer. The study showed that Sipuleucel-T treatment before ADT appears to induce a greater immune response than the reverse. These results indicate that further research into the sequencing of combination treatments is warranted.

    Article  PubMed  CAS  Google Scholar 

  46. Kantoff PW, Gulley JL, Pico-Navarro C. Revised overall survival analysis of a phase II, randomized, double-blind, controlled study of PROSTVAC in men with metastatic castration-resistant prostate cancer. J Clin Oncol. 2017;35:124–5.

    Article  PubMed  Google Scholar 

  47. Simons JW, Sacks N. Granulocyte-macrophage colony-stimulating factor-transduced allogeneic cancer cellular immunotherapy: the GVAX vaccine for prostate cancer. Urol Oncol. 2006;24:419–24.

    Article  PubMed  CAS  Google Scholar 

  48. Sonpavde G, Slawin KM, Spencer DM, Levitt JM. Emerging vaccine therapy approaches for prostate cancer. Rev Urol. 2010;12:25–34.

    PubMed  PubMed Central  Google Scholar 

  49. Paterson Y, Maciag PC. Listeria-based vaccines for cancer treatment. Curr Opin Mol Ther. 2005;7:454–60.

    PubMed  CAS  Google Scholar 

  50. Gedde MM, Higgins DE, Tilney LG, Portnoy DA. Role of listeriolysin O in cell-to-cell spread of Listeria monocytogenes. Infect Immun. 2000;68:999–1003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Shahabi V, Reyes-Reyes M, Wallecha A, Rivera S, Paterson Y, Maciag P. Development of a Listeria monocytogenes based vaccine against prostate cancer. Cancer Immunol Immunother. 2008;57:1301–13.

    Article  PubMed  CAS  Google Scholar 

  52. Hannan R, Zhang H, Wallecha A, Singh R, Liu L, Cohen P, et al. Combined immunotherapy with Listeria monocytogenes-based PSA vaccine and radiation therapy leads to a therapeutic response in a murine model of prostate cancer. Cancer Immunol Immunother. 2012;61:2227–38.

    Article  PubMed  CAS  Google Scholar 

  53. Brockstedt DG, Giedlin MA, Leong ML, Bahjat KS, Gao Y, Luckett W, et al. Listeria-based cancer vaccines that segregate immunogenicity from toxicity. Proc Natl Acad Sci U S A. 2004;101:13832–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Le DT, Wang-Gillam A, Picozzi V, et al. Safety and survival with GVAX pancreas prime and Listeria monocytogenes-expressing mesothelin (CRS-207) boost vaccines for metastatic pancreatic cancer. J Clin Oncol. 2015;33:1325–33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Le DT, Dubenksy TW Jr, Brockstedt DG. Clinical development of Listeria monocytogenes-based immunotherapies. Semin Oncol. 2012;39:311–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Perica K, Varela JC, Oelke M, Schneck J. Adoptive T cell immunotherapy for cancer. Rambam Maimonides Med J. 2015;6:e0004.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Maus MV, Grupp SA, Porter DL, June CH. Antibody-modified T cells: CARs take the front seat for hematologic malignancies. Blood. 2014;123:2625–35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Gross G, Waks T, Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc Natl Acad Sci U S A. 1989;86:10024–8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Irving BA, Weiss A. The cytoplasmic domain of the T cell receptor zeta chain is sufficient to couple to receptor-associated signal transduction pathways. Cell. 1991;64:891–901.

    Article  PubMed  CAS  Google Scholar 

  60. Sadelain M, Brentjens R, Riviere I. The promise and potential pitfalls of chimeric antigen receptors. Curr Opin Immunol. 2009;21:215–23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Schuster SJ, Svoboda J, Chong EA, Nasta SD, Mato AR, Anak Ö, et al. Chimeric antigen receptor T cells in refractory B-cell lymphomas. N Engl J Med. 2017;377:2545–54.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377:2531–44.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles G. Drake.

Ethics declarations

Conflict of Interest

Michael C. Comiskey declares that he has no conflict of interest.

Matthew C. Dallos declares that he has no conflict of interest.

Charles G. Drake has received research support through grants from Janssen, Bristol-Myers Squibb, and Aduro Biotech; has compensation from Agenus, Dendreon, ImmunExcite, Janssen, Lilly, Merck, Pierre Fabre, and Roche/Genentech for service as a consultant; is a stockholder of Compugen, Potenza, Tizona, and Kleo; and has patents licensed to Janssen, AZ Immune, and Bristol-Myers Squibb.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Genitourinary Cancers

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Comiskey, M.C., Dallos, M.C. & Drake, C.G. Immunotherapy in Prostate Cancer: Teaching an Old Dog New Tricks. Curr Oncol Rep 20, 75 (2018). https://doi.org/10.1007/s11912-018-0712-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-018-0712-z

Keywords

Navigation