Advertisement

Where Do We Stand on the Integration of PARP Inhibitors for the Treatment of Breast Cancer?

Abstract

Purpose of Review

To provide an overview of the clinical development of poly(ADP-ribose) polymerase inhibitors (PARPi) in breast cancer to date and to review existing challenges and future research directions.

Recent Findings

We summarize the clinical development of PARPi in breast cancer from bench to bedside, and discuss the results of recent phase 3 trials in patients with metastatic breast cancer (MBC) and germline mutations in BRCA1/2 (gBRCAm). We will also provide an update regarding mechanisms of action and resistance to PARPi, and review clinical trials of PARPi as monotherapy or in combination regimens.

Summary

PARPi are a novel treatment approach in persons with gBRCA1/2m-associated MBC. Going forward, the clinical applicability of these compounds outside the gBRCAm setting will be studied in greater detail. The identification of accurate predictive biomarkers of response is a research priority.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 99

This is the net price. Taxes to be calculated in checkout.

Fig. 1

References

    Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

    1. 1.

      Trivers KF, Lund MJ, Porter PL, Liff JM, Flagg EW, Coates RJ, et al. The epidemiology of triple-negative breast cancer, including race. Cancer Causes Control. 2009;20(7):1071–82. https://doi.org/10.1007/s10552-009-9331-1.

    2. 2.

      Couch FJ, Nathanson KL, Offit K. Two decades after BRCA: setting paradigms in personalized cancer care and prevention. Science. 2014;343(6178):1466–70. https://doi.org/10.1126/science.1251827.

    3. 3.

      Tun NM, Villani G, Ong K, Yoe L, Bo ZM. Risk of having BRCA1 mutation in high-risk women with triple-negative breast cancer: a meta-analysis. Clin Genet. 2014;85(1):43–8. https://doi.org/10.1111/cge.12270.

    4. 4.

      Couch FJ, Hart SN, Sharma P, Toland AE, Wang X, Miron P, et al. Inherited mutations in 17 breast cancer susceptibility genes among a large triple-negative breast cancer cohort unselected for family history of breast cancer. J Clin Oncol. 2015;33(4):304–11. https://doi.org/10.1200/jco.2014.57.1414.

    5. 5.

      Bryant HE, Schultz N, Thomas HD, Parker KM, Flower D, Lopez E, et al. Specific killing of BRCA2-deficient tumours with inhibitors of poly(ADP-ribose) polymerase. Nature. 2005;434(7035):913–7. https://doi.org/10.1038/nature03443.

    6. 6.

      Farmer H, McCabe N, Lord CJ, Tutt AN, Johnson DA, Richardson TB, et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature. 2005;434(7035):917–21. https://doi.org/10.1038/nature03445.

    7. 7.

      Balmaña J, Tung NM, Isakoff SJ, Graña B, Ryan PD, Saura C, et al. Phase I trial of olaparib in combination with cisplatin for the treatment of patients with advanced breast, ovarian and other solid tumors. Ann Oncol. 2014;25(8):1656–63. https://doi.org/10.1093/annonc/mdu187.

    8. 8.

      Gelmon KA, Tischkowitz M, Mackay H, Swenerton K, Robidoux A, Tonkin K, et al. Olaparib in patients with recurrent high-grade serous or poorly differentiated ovarian carcinoma or triple-negative breast cancer: a phase 2, multicentre, open-label, non-randomised study. Lancet Oncol. 2011;12(9):852–61. https://doi.org/10.1016/S1470-2045(11)70214-5.

    9. 9.

      Tutt A, Robson M, Garber JE, Domchek SM, Audeh MW, Weitzel JN, et al. Oral poly(ADP-ribose) polymerase inhibitor olaparib in patients with BRCA1 or BRCA2 mutations and advanced breast cancer: a proof-of-concept trial. Lancet. 2010;376(9737):235–44. https://doi.org/10.1016/S0140-6736(10)60892-6.

    10. 10.

      Ledermann J, Harter P, Gourley C, Friedlander M, Vergote I, Rustin G, et al. Olaparib maintenance therapy in platinum-sensitive relapsed ovarian cancer. N Engl J Med. 2012;366(15):1382–92. https://doi.org/10.1056/NEJMoa1105535.

    11. 11.

      Dizon DS. PARP inhibitors for targeted treatment in ovarian cancer. Lancet. 2017;390(10106):1929–30. https://doi.org/10.1016/S0140-6736(17)32418-2.

    12. 12.

      Coleman RL, Oza AM, Lorusso D, Aghajanian C, Oaknin A, Dean A, et al. Rucaparib maintenance treatment for recurrent ovarian carcinoma after response to platinum therapy (ARIEL3): a randomised, double-blind, placebo-controlled, phase 3 trial. Lancet. 2017;390(10106):1949–61. https://doi.org/10.1016/S0140-6736(17)32440-6.

    13. 13.

      Fong PC, Boss DS, Yap TA, Tutt A, Wu P, Mergui-Roelvink M, et al. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 2009;361(2):123–34. https://doi.org/10.1056/NEJMoa0900212.

    14. 14.

      O'Sullivan CC, Moon DH, Kohn EC, Lee JM. Beyond breast and ovarian cancers: PARP inhibitors for BRCA mutation-associated and BRCA-like solid tumors. Front Oncol. 2014;4:42. https://doi.org/10.3389/fonc.2014.00042.

    15. 15.

      •• Robson M, Im SA, Senkus E, Xu B, Domchek SM, Masuda N, et al. Olaparib for metastatic breast cancer in patients with a germline BRCA mutation. N Engl J Med. 2017;377(6):523–33. https://doi.org/10.1056/NEJMoa1706450. This was the phase 3 trial that led to the FDA approval of olaparib for gBRCAm-associated MBC. Patients in the olaparib arm had superior PFS outcomes (7.0 months vs. 4.2 months, p< 0.001) and fewer adverse events compared to the control group

    16. 16.

      FDA approves olaparib for germline BRCA-mutated metastatic breast cancer. FDA, www.fda.gov. 2018. https://www.fda.gov/Drugs/InformationOnDrugs/ApprovedDrugs/ucm592357.htm. Accessed 1/18/2018 2018.

    17. 17.

      Bernstein C, Bernstein H, Payne CM, Garewal H. DNA repair/pro-apoptotic dual-role proteins in five major DNA repair pathways: fail-safe protection against carcinogenesis. Mutat Res. 2002;511(2):145–78.

    18. 18.

      Morales J, Li L, Fattah FJ, Dong Y, Bey EA, Patel M, et al. Review of poly (ADP-ribose) polymerase (PARP) mechanisms of action and rationale for targeting in cancer and other diseases. Crit Rev Eukaryot Gene Expr. 2014;24(1):15–28.

    19. 19.

      Cerrato A, Morra F, Celetti A. Use of poly ADP-ribose polymerase [PARP] inhibitors in cancer cells bearing DDR defects: the rationale for their inclusion in the clinic. J Exp Clin Cancer Res. 2016;35(1):179. https://doi.org/10.1186/s13046-016-0456-2.

    20. 20.

      O'Sullivan Coyne G, Chen AP, Meehan R, Doroshow JH. PARP inhibitors in reproductive system cancers: current use and developments. Drugs. 2017;77(2):113–30. https://doi.org/10.1007/s40265-016-0688-7.

    21. 21.

      • Pommier Y, O'Connor MJ, de Bono J. Laying a trap to kill cancer cells: PARP inhibitors and their mechanisms of action. Sci Transl Med. 2016;8(362):362ps17. https://doi.org/10.1126/scitranslmed.aaf9246. This article covers the importance of understanding the mechanisms of action of PARPi, especially PARP trapping, and the clinical relevance of the different mechanisms of action of different PARPi

    22. 22.

      Shen Y, Aoyagi-Scharber M, Wang B. Trapping poly(ADP-ribose) polymerase. J Pharmacol Exp Ther. 2015;353(3):446–57. https://doi.org/10.1124/jpet.114.222448.

    23. 23.

      Aguilar-Quesada R, Munoz-Gamez JA, Martin-Oliva D, Peralta A, Valenzuela MT, Matinez-Romero R, et al. Interaction between ATM and PARP-1 in response to DNA damage and sensitization of ATM deficient cells through PARP inhibition. BMC Mol Biol. 2007;8:29. https://doi.org/10.1186/1471-2199-8-29.

    24. 24.

      Lee JM, Ledermann JA, Kohn EC. PARP inhibitors for BRCA1/2 mutation-associated and BRCA-like malignancies. Ann Oncol. 2014;25(1):32–40. https://doi.org/10.1093/annonc/mdt384.

    25. 25.

      Lord CJ, Ashworth A. PARP inhibitors: synthetic lethality in the clinic. Science. 2017;355(6330):1152–8. https://doi.org/10.1126/science.aam7344.

    26. 26.

      Rouleau M, Patel A, Hendzel MJ, Kaufmann SH, Poirier GG. PARP inhibition: PARP1 and beyond. Nat Rev Cancer. 2010;10(4):293–301. https://doi.org/10.1038/nrc2812.

    27. 27.

      Cancer Genome Atlas Research N. Integrated genomic analyses of ovarian carcinoma. Nature. 2011;474(7353):609–15. https://doi.org/10.1038/nature10166.

    28. 28.

      Turner N, Tutt A, Ashworth A. Hallmarks of 'BRCAness' in sporadic cancers. Nat Rev Cancer. 2004;4(10):814–9. https://doi.org/10.1038/nrc1457.

    29. 29.

      Metzger-Filho O, Tutt A, de Azambuja E, Saini KS, Viale G, Loi S, et al. Dissecting the heterogeneity of triple-negative breast cancer. J Clin Oncol. 2012;30(15):1879–87. https://doi.org/10.1200/JCO.2011.38.2010.

    30. 30.

      Mendes-Pereira AM, Martin SA, Brough R, McCarthy A, Taylor JR, Kim JS, et al. Synthetic lethal targeting of PTEN mutant cells with PARP inhibitors. EMBO Mol Med. 2009;1(6–7):315–22. https://doi.org/10.1002/emmm.200900041.

    31. 31.

      Alli E, Sharma VB, Sunderesakumar P, Ford JM. Defective repair of oxidative DNA damage in triple-negative breast cancer confers sensitivity to inhibition of poly(ADP-ribose) polymerase. Cancer Res. 2009;69(8):3589–96. https://doi.org/10.1158/0008-5472.CAN-08-4016.

    32. 32.

      O'Shaughnessy J, Osborne C, Pippen JE, Yoffe M, Patt D, Rocha C, et al. Iniparib plus chemotherapy in metastatic triple-negative breast cancer. N Engl J Med. 2011;364(3):205–14. https://doi.org/10.1056/NEJMoa1011418.

    33. 33.

      Sinha G. Downfall of iniparib: a PARP inhibitor that doesn't inhibit PARP after all. J Natl Cancer Inst. 2014;106(1):djt447. https://doi.org/10.1093/jnci/djt447.

    34. 34.

      Yap TA, Sandhu SK, Carden CP, de Bono JS. Poly(ADP-ribose) polymerase (PARP) inhibitors: exploiting a synthetic lethal strategy in the clinic. CA Cancer J Clin. 2011;61(1):31–49. https://doi.org/10.3322/caac.20095.

    35. 35.

      Livraghi L, Garber JE. PARP inhibitors in the management of breast cancer: current data and future prospects. BMC Med. 2015;13:188. https://doi.org/10.1186/s12916-015-0425-1.

    36. 36.

      O'Shaughnessy J, Schwartzberg L, Danso MA, Miller KD, Rugo HS, Neubauer M, et al. Phase III study of iniparib plus gemcitabine and carboplatin versus gemcitabine and carboplatin in patients with metastatic triple-negative breast cancer. J Clin Oncol. 2014;32(34):3840–7. https://doi.org/10.1200/jco.2014.55.2984.

    37. 37.

      Yamamoto N, Nokihara H, Yamada Y, Goto Y, Tanioka M, Shibata T, et al. A phase I, dose-finding and pharmacokinetic study of olaparib (AZD2281) in Japanese patients with advanced solid tumors. Cancer Sci. 2012;103(3):504–9. https://doi.org/10.1111/j.1349-7006.2011.02179.x.

    38. 38.

      Domchek SM, Aghajanian C, Shapira-Frommer R, Schmutzler RK, Audeh MW, Friedlander M, et al. Efficacy and safety of olaparib monotherapy in germline BRCA1/2 mutation carriers with advanced ovarian cancer and three or more lines of prior therapy. Gynecol Oncol. 2016;140(2):199–203. https://doi.org/10.1016/j.ygyno.2015.12.020.

    39. 39.

      Sandhu SK, Schelman WR, Wilding G, Moreno V, Baird RD, Miranda S, et al. The poly(ADP-ribose) polymerase inhibitor niraparib (MK4827) in BRCA mutation carriers and patients with sporadic cancer: a phase 1 dose-escalation trial. Lancet Oncol. 2013;14(9):882–92. https://doi.org/10.1016/S1470-2045(13)70240-7.

    40. 40.

      de Bono J, Ramanathan RK, Mina L, Chugh R, Glaspy J, Rafii S, et al. Phase I, dose-escalation, two-part trial of the PARP inhibitor talazoparib in patients with advanced germline BRCA1/2 mutations and selected sporadic cancers. Cancer Discov. 2017;7(6):620–9. https://doi.org/10.1158/2159-8290.CD-16-1250.

    41. 41.

      Drew Y, Ledermann J, Hall G, Rea D, Glasspool R, Highley M, et al. Phase 2 multicentre trial investigating intermittent and continuous dosing schedules of the poly(ADP-ribose) polymerase inhibitor rucaparib in germline BRCA mutation carriers with advanced ovarian and breast cancer. Br J Cancer. 2016;114(7):723–30. https://doi.org/10.1038/bjc.2016.41.

    42. 42.

      Dent RA, Lindeman GJ, Clemons M, Wildiers H, Chan A, McCarthy NJ, et al. Phase I trial of the oral PARP inhibitor olaparib in combination with paclitaxel for first- or second-line treatment of patients with metastatic triple-negative breast cancer. Breast Cancer Res. 2013;15(5):R88. https://doi.org/10.1186/bcr3484.

    43. 43.

      Lee JM, Hays JL, Annunziata CM, Noonan AM, Minasian L, Zujewski JA, et al. Phase I/Ib study of olaparib and carboplatin in BRCA1 or BRCA2 mutation-associated breast or ovarian cancer with biomarker analyses. J Natl Cancer Inst. 2014;106(6):dju089. https://doi.org/10.1093/jnci/dju089.

    44. 44.

      Han HS, Dieras V, Robson M, Palacova M, Marcom PK, Jager A, et al. Veliparib with temozolomide or carboplatin/paclitaxel versus placebo with carboplatin/paclitaxel in patients with BRCA1/2 locally recurrent/metastatic breast cancer: randomized phase II study. Ann Oncol. 2017;29:154–61. https://doi.org/10.1093/annonc/mdx505.

    45. 45.

      Rodler ET, Kurland BF, Griffin M, Gralow JR, Porter P, Yeh RF, et al. Phase I study of veliparib (ABT-888) combined with cisplatin and vinorelbine in advanced triple-negative breast cancer and/or BRCA mutation-associated breast cancer. Clin Cancer Res. 2016;22(12):2855–64. https://doi.org/10.1158/1078-0432.CCR-15-2137.

    46. 46.

      •• Kaufman B, Shapira-Frommer R, Schmutzler RK, Audeh MW, Friedlander M, Balmaña J, et al. Olaparib monotherapy in patients with advanced cancer and a germline BRCA1/2 mutation. J Clin Oncol. 2015;33(3):244–50. https://doi.org/10.1200/jco.2014.56.2728. This was a phase 2 clinical trial of olaparib monotherapy for patients with solid tumors (breast, ovarian, pancreatic, and prostate cancer) associated with gBRCA1/2m . The tumor response rate in the breast cohort was 12.9% and stable disease was observed in 46.8% of breast cancer patients at 8 weeks. This study led to the design of breast cancer focused clinical trials of olaparib

    47. 47.

      Juvekar A, Burga LN, Hu H, Lunsford EP, Ibrahim YH, Balmana J, et al. Combining a PI3K inhibitor with a PARP inhibitor provides an effective therapy for BRCA1-related breast cancer. Cancer Discov. 2012;2(11):1048–63. https://doi.org/10.1158/2159-8290.CD-11-0336.

    48. 48.

      •• Turner NC, Telli ML, Rugo HS, Mailliez A, Ettl J, Grischke E-M et al. Final results of a phase 2 study of talazoparib (TALA) following platinum or multiple cytotoxic regimens in advanced breast cancer patients (pts) with germline BRCA1/2 mutations (ABRAZO). American Society of Clinical Oncology; 2017.This was a phase 2 trial of talazoparib in patients with gBRCAm -associated advanced or MBC, following platinum-based therapy or ≥ 3 platinum-free cytotoxic-based regimens. The ORR for gBRCA1m- and gBRCA2m- associated breast cancer was 24% and 34%, respectively. Most of the adverse events were hematologic in nature. This trial led to the design of the phase 3 trial of talazoparib in patients with gBRCAm -associated MBC.

    49. 49.

      Tarapchak P. Investigational PARP inhibitor talazoparib shows clinical benefit in EMBRACA phase III trial. Oncology Times. 2017.

    50. 50.

      Gourd K. San Antonio breast cancer symposium 2016. Lancet Oncol. 2017;18(2):176.

    51. 51.

      Higuchi T, Flies DB, Marjon NA, Mantia-Smaldone G, Ronner L, Gimotty PA et al. CTLA-4 blockade synergizes therapeutically with PARP inhibition in BRCA1-deficient ovarian cancer. Cancer immunology research. 2015.

    52. 52.

      Huang J, Wang L, Cong Z, Amoozgar Z, Kiner E, Xing D, et al. The PARP1 inhibitor BMN 673 exhibits immunoregulatory effects in a Brca1−/− murine model of ovarian cancer. Biochem Biophys Res Commun. 2015;463(4):551–6.

    53. 53.

      Tutt A, Ellis P, Kilburn L, Gilett C, Pinder S, Abraham J et al. Abstract S3-01: the TNT trial: a randomized phase III trial of carboplatin (C) compared with docetaxel (D) for patients with metastatic or recurrent locally advanced triple negative or BRCA1/2 breast cancer (CRUK/07/012). AACR; 2015.

    54. 54.

      Robson M, Goessl C, Domchek S. Olaparib for metastatic germline BRCA-mutated breast cancer. N Engl J Med. 2017;377(18):1792–3. https://doi.org/10.1056/NEJMc1711644.

    55. 55.

      Sonnenblick A, de Azambuja E, Azim Jr HA, Piccart M. An update on PARP inhibitors—moving to the adjuvant setting. Nat Rev Clin Oncol. 2014;12:27–41. https://doi.org/10.1038/nrclinonc.2014.163.

    56. 56.

      Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S, et al. γH2AX and cancer. Nat Rev Cancer. 2008;8:957–67. https://doi.org/10.1038/nrc2523.

    57. 57.

      Konstantinopoulos PA, Ceccaldi R, Shapiro GI, D'Andrea AD. Homologous recombination deficiency: exploiting the fundamental vulnerability of ovarian cancer. Cancer Discov. 2015;5(11):1137–54. https://doi.org/10.1158/2159-8290.CD-15-0714.

    58. 58.

      Barber LJ, Sandhu S, Chen L, Campbell J, Kozarewa I, Fenwick K, et al. Secondary mutations in BRCA2 associated with clinical resistance to a PARP inhibitor. J Pathol. 2013;229(3):422–9. https://doi.org/10.1002/path.4140.

    59. 59.

      Fojo T, Bates S. Mechanisms of resistance to PARP inhibitors—three and counting. Cancer Discov. 2013;3(1):20–3. https://doi.org/10.1158/2159-8290.cd-12-0514.

    60. 60.

      Jaspers JE, Kersbergen A, Boon U, Sol W, van Deemter L, Zander SA, et al. Loss of 53BP1 causes PARP inhibitor resistance in Brca1-mutated mouse mammary tumors. Cancer Discov. 2013;3(1):68–81. https://doi.org/10.1158/2159-8290.cd-12-0049.

    61. 61.

      Wurzer G, Herceg Z, Wȩsierska-Gądek J. Increased resistance to anticancer therapy of mouse cells lacking the poly (ADP-ribose) polymerase attributable to up-regulation of the multidrug resistance gene product P-glycoprotein. Cancer Res. 2000;60(15):4238–44.

    62. 62.

      Bouwman P, Jonkers J. The effects of deregulated DNA damage signalling on cancer chemotherapy response and resistance. Nat Rev Cancer. 2012;12(9):587–98.

    63. 63.

      Lord CJ, Ashworth A. Mechanisms of resistance to therapies targeting BRCA-mutant cancers. Nat Med. 2013;19:1381–8. https://doi.org/10.1038/nm.3369.

    64. 64.

      Ang JE, Gourley C, Powell CB, High H, Shapira-Frommer R, Castonguay V, et al. Efficacy of chemotherapy in BRCA1/2 mutation carrier ovarian cancer in the setting of PARP inhibitor resistance: a multi-institutional study. Clin Cancer Res. 2013;19(19):5485–93. https://doi.org/10.1158/1078-0432.ccr-13-1262.

    65. 65.

      Ji J, Kinders RJ, Zhang Y, Rubinstein L, Kummar S, Parchment RE, et al. Modeling pharmacodynamic response to the poly(ADP-ribose) polymerase inhibitor ABT-888 in human peripheral blood mononuclear cells. PLoS One. 2011;6(10):e26152. https://doi.org/10.1371/journal.pone.0026152.

    66. 66.

      Timms KM, Abkevich V, Hughes E, Neff C, Reid J, Morris B, et al. Association of BRCA1/2 defects with genomic scores predictive of DNA damage repair deficiency among breast cancer subtypes. Breast Cancer Res. 2014;16(6):475. https://doi.org/10.1186/s13058-014-0475-x.

    67. 67.

      Telli ML, Timms KM, Reid J, Hennessy B, Mills GB, Jensen KC, et al. Homologous recombination deficiency (HRD) score predicts response to platinum-containing neoadjuvant chemotherapy in patients with triple-negative breast cancer. Clin Cancer Res. 2016;22(15):3764–73. https://doi.org/10.1158/1078-0432.ccr-15-2477.

    68. 68.

      Minckwitz GV, Timms K, Untch M, Elkin EP, Fasching PA, Schneeweiss A, et al. Prediction of pathological complete response (pCR) by homologous recombination deficiency (HRD) after carboplatin-containing neoadjuvant chemotherapy in patients with TNBC: results from GeparSixto. J Clin Oncol. 2015;33(15_suppl):1004. https://doi.org/10.1200/jco.2015.33.15_suppl.1004.

    69. 69.

      Abkevich V, Timms K, Hennessy B, Potter J, Carey M, Meyer L, et al. Patterns of genomic loss of heterozygosity predict homologous recombination repair defects in epithelial ovarian cancer. Br J Cancer. 2012;107(10):1776–82.

    70. 70.

      Stover EH, Konstantinopoulos PA, Matulonis UA, Swisher EM. Biomarkers of response and resistance to DNA repair targeted therapies. Clin Cancer Res. 2016;22(23):5651–60.

    71. 71.

      Balmaña J, Domchek SM, Tutt A, Garber JE. Stumbling blocks on the path to personalized medicine in breast cancer: the case of PARP inhibitors for BRCA1/2-associated cancers. Cancer Discov. 2011;1(1):29–34. https://doi.org/10.1158/2159-8274.cd-11-0048.

    72. 72.

      Moskwa P, Buffa FM, Pan Y, Panchakshari R, Gottipati P, Muschel RJ, et al. miR-182-mediated downregulation of BRCA1 impacts DNA repair and sensitivity to PARP inhibitors. Mol Cell. 2011;41(2):210–20. https://doi.org/10.1016/j.molcel.2010.12.005.

    73. 73.

      Oplustilova L, Wolanin K, Mistrik M, Korinkova G, Simkova D, Bouchal J, et al. Evaluation of candidate biomarkers to predict cancer cell sensitivity or resistance to PARP-1 inhibitor treatment. Cell Cycle. 2012;11(20):3837–50. https://doi.org/10.4161/cc.22026.

    Download references

    Author information

    Correspondence to Ciara C. O’Sullivan.

    Ethics declarations

    Conflict of Interest

    N.D., K.C.G., G.M.C., R.A.L.-F., and C.C.O. declare they have no conflict of interest.

    Human and Animal Rights and Informed Consent

    This article does not contain any studies with human or animal subjects performed by any of the authors.

    Additional information

    This article is part of the Topical Collection on Breast Cancer

    Rights and permissions

    Reprints and Permissions

    About this article

    Verify currency and authenticity via CrossMark

    Cite this article

    Duma, N., Gast, K.C., Choong, G.M. et al. Where Do We Stand on the Integration of PARP Inhibitors for the Treatment of Breast Cancer?. Curr Oncol Rep 20, 63 (2018) doi:10.1007/s11912-018-0709-7

    Download citation

    Keywords

    • Poly(ADP-ribose) polymerases
    • PARP inhibitors
    • Triple-negative breast cancer
    • BRCA1/2 mutations
    • BRCAness