Skip to main content

Advertisement

Log in

Immunotherapy as a Potential Treatment for Chordoma: a Review

  • Sarcomas (SR Patel, Section Editor)
  • Published:
Current Oncology Reports Aims and scope Submit manuscript

Abstract

Chordoma is a locally aggressive primary malignancy of the axial skeleton. The gold standard for treatment is en bloc resection, with some centers now advocating for the use of radiation to help mitigate the risk of recurrence. Local recurrence is common, and salvaging local failures is quite difficult. Chemotherapy has been ineffective and small molecule targeted therapy has had only marginal benefits in small subsets of patients with rare tumor phenotypes or refractory disease. Recent successes utilizing immunotherapy in a variety of cancers has led to a resurgence of interest in modifying the host immune system to develop new ways to treat tumors. This review will discuss these studies and will highlight the early studies employing immune strategies for the treatment of chordoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Boriani S et al. Chordoma of the mobile spine: fifty years of experience. Spine (Phila Pa 1976). 2006;31(4):493–503.

    Article  Google Scholar 

  2. Choi KS, Cohn MJ, Harfe BD. Identification of nucleus pulposus precursor cells and notochordal remnants in the mouse: implications for disk degeneration and chordoma formation. Dev Dyn. 2008;237(12):3953–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Heffelfinger MJ et al. Chordomas and cartilaginous tumors at the skull base. Cancer. 1973;32(2):410–20.

    Article  CAS  PubMed  Google Scholar 

  4. Vujovic S et al. Brachyury, a crucial regulator of notochordal development, is a novel biomarker for chordomas. J Pathol. 2006;209(2):157–65.

    Article  CAS  PubMed  Google Scholar 

  5. Phukan R et al. How does the level of sacral resection for primary malignant bone tumors affect physical and mental health, pain, mobility, incontinence, and sexual function? Clin Orthop Relat Res. 2016;474(3):687–96.

    Article  PubMed  Google Scholar 

  6. Zoccali, C., et al., Residual neurological function after sacral root resection during en-bloc sacrectomy: a systematic review. Eur Spine J, 2016.

  7. Kayani B et al. A review of the surgical management of sacral chordoma. Eur J Surg Oncol. 2014;40(11):1412–20.

    Article  CAS  PubMed  Google Scholar 

  8. Hamamoto S et al. Effective palliative radiofrequency ablation for tumors causing pain, numbness and motor function disorders: case series. BMC Res Notes. 2014;7:765.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chen YL et al. Definitive high-dose photon/proton radiotherapy for unresected mobile spine and sacral chordomas. Spine (Phila Pa 1976). 2013;38(15):E930–6.

    Article  Google Scholar 

  10. DeLaney TF et al. Phase II study of high-dose photon/proton radiotherapy in the management of spine sarcomas. Int J Radiat Oncol Biol Phys. 2009;74(3):732–9.

    Article  CAS  PubMed  Google Scholar 

  11. DeLaney TF et al. Long-term results of Phase II study of high dose photon/proton radiotherapy in the management of spine chordomas, chondrosarcomas, and other sarcomas. J Surg Oncol. 2014;110(2):115–22. This study describes how long-term local control of chordoma can be achieved through the use of neoadjuvant and adjuvant proton beam radiotherapy in addition to en bloc resection.

    Article  PubMed  Google Scholar 

  12. Indelicato DJ et al. A prospective outcomes study of proton therapy for chordomas and chondrosarcomas of the spine. Int J Radiat Oncol Biol Phys. 2016;95(1):297–303.

    Article  PubMed  Google Scholar 

  13. Imai R et al. Carbon ion radiation therapy for unresectable sacral chordoma: an analysis of 188 cases. Int J Radiat Oncol Biol Phys. 2016;95(1):322–7.

    Article  PubMed  Google Scholar 

  14. Stacchiotti S et al. Phase II study of imatinib in advanced chordoma. J Clin Oncol. 2012;30(9):914–20.

    Article  CAS  PubMed  Google Scholar 

  15. Azzarelli A et al. Chordoma: natural history and treatment results in 33 cases. J Surg Oncol. 1988;37(3):185–91.

    Article  CAS  PubMed  Google Scholar 

  16. Stacchiotti S, Casali PG. Systemic therapy options for unresectable and metastatic chordomas. Curr Oncol Rep. 2011;13(4):323–30.

    Article  PubMed  Google Scholar 

  17. Murphy, K.M., P. Travers, and M. Walport, Janeway’s Immunobiology. 7 ed. 2007: Garland Science.

  18. Horton R et al. Gene map of the extended human MHC. Nat Rev Genet. 2004;5(12):889–99.

    Article  CAS  PubMed  Google Scholar 

  19. Zinkernagel RM, Doherty PC. MHC-restricted cytotoxic T cells: studies on the biological role of polymorphic major transplantation antigens determining T-cell restriction-specificity, function, and responsiveness. Adv Immunol. 1979;27:51–177.

    Article  CAS  PubMed  Google Scholar 

  20. Chang CC, Campoli M, Ferrone S. Classical and nonclassical HLA class I antigen and NK Cell-activating ligand changes in malignant cells: current challenges and future directions. Adv Cancer Res. 2005;93:189–234.

    Article  CAS  PubMed  Google Scholar 

  21. Campoli M, Chang CC, Ferrone S. HLA class I antigen loss, tumor immune escape and immune selection. Vaccine. 2002;20 Suppl 4:A40–5.

    Article  CAS  PubMed  Google Scholar 

  22. Campoli M et al. Immunotherapy of malignant disease with tumor antigen-specific monoclonal antibodies. Clin Cancer Res. 2010;16(1):11–20.

    Article  CAS  PubMed  Google Scholar 

  23. Campoli M, Ferrone S. HLA antigen and NK cell activating ligand expression in malignant cells: a story of loss or acquisition. Semin Immunopathol. 2011;33(4):321–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Campoli M, Ferrone S. HLA antigen changes in malignant cells: epigenetic mechanisms and biologic significance. Oncogene. 2008;27(45):5869–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Campoli M, Ferrone S. Tumor escape mechanisms: potential role of soluble HLA antigens and NK cells activating ligands. Tissue Antigens. 2008;72(4):321–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Campoli M et al. Mechanisms of tumor evasion. Cancer Treat Res. 2005;123:61–88.

    Article  CAS  PubMed  Google Scholar 

  27. Chang CC, Ferrone S. Immune selective pressure and HLA class I antigen defects in malignant lesions. Cancer Immunol Immunother. 2007;56(2):227–36.

    Article  CAS  PubMed  Google Scholar 

  28. Ferris RL, Jaffee EM, Ferrone S. Tumor antigen-targeted, monoclonal antibody-based immunotherapy: clinical response, cellular immunity, and immunoescape. J Clin Oncol. 2010;28(28):4390–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Ferris RL, Whiteside TL, Ferrone S. Immune escape associated with functional defects in antigen-processing machinery in head and neck cancer. Clin Cancer Res. 2006;12(13):3890–5.

    Article  CAS  PubMed  Google Scholar 

  30. Ferrone S, Whiteside TL. Tumor microenvironment and immune escape. Surg Oncol Clin N Am. 2007;16(4):755–74. viii.

    Article  PubMed  Google Scholar 

  31. Marincola FM et al. Escape of human solid tumors from T-cell recognition: molecular mechanisms and functional significance. Adv Immunol. 2000;74:181–273.

    Article  CAS  PubMed  Google Scholar 

  32. Seliger B et al. Identification and characterization of human leukocyte antigen class I ligands in renal cell carcinoma cells. Proteomics. 2011;11(12):2528–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Clark Jr WH et al. Model predicting survival in stage I melanoma based on tumor progression. J Natl Cancer Inst. 1989;81(24):1893–904.

    Article  PubMed  Google Scholar 

  34. Clemente CG et al. Prognostic value of tumor infiltrating lymphocytes in the vertical growth phase of primary cutaneous melanoma. Cancer. 1996;77(7):1303–10.

    Article  CAS  PubMed  Google Scholar 

  35. Mackensen A et al. Evidence for in situ amplification of cytotoxic T-lymphocytes with antitumor activity in a human regressive melanoma. Cancer Res. 1993;53(15):3569–73.

    CAS  PubMed  Google Scholar 

  36. Tefany FJ et al. Immunocytochemical analysis of the cellular infiltrate in primary regressing and non-regressing malignant melanoma. J Invest Dermatol. 1991;97(2):197–202.

    Article  CAS  PubMed  Google Scholar 

  37. Alexe G et al. High expression of lymphocyte-associated genes in node-negative HER2+ breast cancers correlates with lower recurrence rates. Cancer Res. 2007;67(22):10669–76.

    Article  CAS  PubMed  Google Scholar 

  38. Mahmoud SM et al. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol. 2011;29(15):1949–55.

    Article  PubMed  Google Scholar 

  39. Marrogi AJ et al. Study of tumor infiltrating lymphocytes and transforming growth factor-beta as prognostic factors in breast carcinoma. Int J Cancer. 1997;74(5):492–501.

    Article  CAS  PubMed  Google Scholar 

  40. Menegaz RA et al. Peri- and intratumoral T and B lymphocytic infiltration in breast cancer. Eur J Gynaecol Oncol. 2008;29(4):321–6.

    CAS  PubMed  Google Scholar 

  41. Al-Shibli KI et al. Prognostic effect of epithelial and stromal lymphocyte infiltration in non-small cell lung cancer. Clin Cancer Res. 2008;14(16):5220–7.

    Article  CAS  PubMed  Google Scholar 

  42. Dieu-Nosjean MC et al. Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol. 2008;26(27):4410–7.

    Article  CAS  PubMed  Google Scholar 

  43. Hiraoka N et al. Prevalence of FOXP3+ regulatory T cells increases during the progression of pancreatic ductal adenocarcinoma and its premalignant lesions. Clin Cancer Res. 2006;12(18):5423–34.

    Article  CAS  PubMed  Google Scholar 

  44. Ito N et al. Prognostic significance of T helper 1 and 2 and T cytotoxic 1 and 2 cells in patients with non-small cell lung cancer. Anticancer Res. 2005;25(3B):2027–31.

    CAS  PubMed  Google Scholar 

  45. Kawai O et al. Predominant infiltration of macrophages and CD8(+) T Cells in cancer nests is a significant predictor of survival in stage IV nonsmall cell lung cancer. Cancer. 2008;113(6):1387–95.

    Article  CAS  PubMed  Google Scholar 

  46. Baier PK et al. Analysis of the T cell receptor variability of tumor-infiltrating lymphocytes in colorectal carcinomas. Tumour Biol. 1998;19(3):205–12.

    Article  CAS  PubMed  Google Scholar 

  47. Baker K et al. Differential significance of tumour infiltrating lymphocytes in sporadic mismatch repair deficient versus proficient colorectal cancers: a potential role for dysregulation of the transforming growth factor-beta pathway. Eur J Cancer. 2007;43(3):624–31.

    Article  CAS  PubMed  Google Scholar 

  48. Camus M et al. Coordination of intratumoral immune reaction and human colorectal cancer recurrence. Cancer Res. 2009;69(6):2685–93.

    Article  CAS  PubMed  Google Scholar 

  49. Dahlin AM et al. Colorectal cancer prognosis depends on T-cell infiltration and molecular characteristics of the tumor. Mod Pathol. 2011;24(5):671–82.

    Article  CAS  PubMed  Google Scholar 

  50. Dalerba P et al. Immunology and immunotherapy of colorectal cancer. Crit Rev Oncol Hematol. 2003;46(1):33–57.

    Article  PubMed  Google Scholar 

  51. Diederichsen AC et al. Prognostic value of the CD4+/CD8+ ratio of tumour infiltrating lymphocytes in colorectal cancer and HLA-DR expression on tumour cells. Cancer Immunol Immunother. 2003;52(7):423–8.

    Article  CAS  PubMed  Google Scholar 

  52. Galon J et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome. Science. 2006;313(5795):1960–4.

    Article  CAS  PubMed  Google Scholar 

  53. Halama N et al. The localization and density of immune cells in primary tumors of human metastatic colorectal cancer shows an association with response to chemotherapy. Cancer Immun. 2009;9:1.

    PubMed  PubMed Central  Google Scholar 

  54. Harrison JC et al. From Dukes through Jass: pathological prognostic indicators in rectal cancer. Hum Pathol. 1994;25(5):498–505.

    Article  CAS  PubMed  Google Scholar 

  55. Lee WS et al. Clinical impact of tumor-infiltrating lymphocytes for survival in stage II colon cancer. Cancer. 2010;116(22):5188–99.

    Article  PubMed  Google Scholar 

  56. Lugli A et al. CD8+ lymphocytes/tumour-budding index: an independent prognostic factor representing a ’pro-/anti-tumour’ approach to tumour host interaction in colorectal cancer. Br J Cancer. 2009;101(8):1382–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Menon AG et al. Immune system and prognosis in colorectal cancer: a detailed immunohistochemical analysis. Lab Invest. 2004;84(4):493–501.

    Article  CAS  PubMed  Google Scholar 

  58. Mlecnik B et al. Histopathologic-based prognostic factors of colorectal cancers are associated with the state of the local immune reaction. J Clin Oncol. 2011;29(6):610–8.

    Article  PubMed  Google Scholar 

  59. Nagtegaal ID et al. Local and distant recurrences in rectal cancer patients are predicted by the nonspecific immune response; specific immune response has only a systemic effect—a histopathological and immunohistochemical study. BMC Cancer. 2001;1:7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Naito Y et al. CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res. 1998;58(16):3491–4.

    CAS  PubMed  Google Scholar 

  61. Nosho K et al. Tumour-infiltrating T-cell subsets, molecular changes in colorectal cancer, and prognosis: cohort study and literature review. J Pathol. 2010;222(4):350–66.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Pages F et al. Effector memory T cells, early metastasis, and survival in colorectal cancer. N Engl J Med. 2005;353(25):2654–66.

    Article  CAS  PubMed  Google Scholar 

  63. Pages F et al. In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J Clin Oncol. 2009;27(35):5944–51.

    Article  CAS  PubMed  Google Scholar 

  64. Prall F et al. Prognostic role of CD8+ tumor-infiltrating lymphocytes in stage III colorectal cancer with and without microsatellite instability. Hum Pathol. 2004;35(7):808–16.

    Article  CAS  PubMed  Google Scholar 

  65. Salama P et al. Tumor-infiltrating FOXP3+ T regulatory cells show strong prognostic significance in colorectal cancer. J Clin Oncol. 2009;27(2):186–92.

    Article  PubMed  Google Scholar 

  66. Sinicrope FA et al. Intraepithelial effector (CD3+)/regulatory (FoxP3+) T-cell ratio predicts a clinical outcome of human colon carcinoma. Gastroenterology. 2009;137(4):1270–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Tosolini M et al. Clinical impact of different classes of infiltrating T cytotoxic and helper cells (Th1, th2, treg, th17) in patients with colorectal cancer. Cancer Res. 2011;71(4):1263–71.

    Article  CAS  PubMed  Google Scholar 

  68. Hamanishi J et al. Programmed cell death 1 ligand 1 and tumor-infiltrating CD8+ T lymphocytes are prognostic factors of human ovarian cancer. Proc Natl Acad Sci U S A. 2007;104(9):3360–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sato E et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A. 2005;102(51):18538–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhang L et al. Intratumoral T cells, recurrence, and survival in epithelial ovarian cancer. N Engl J Med. 2003;348(3):203–13.

    Article  CAS  PubMed  Google Scholar 

  71. Senovilla L et al. Trial watch: prognostic and predictive value of the immune infiltrate in cancer. Oncoimmunology. 2012;1(8):1323–43.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Chouaib S. At the crossroads of cancer. Bull Cancer. 2013;100(6):569–74.

    CAS  PubMed  Google Scholar 

  73. Bordon Y. Immunotherapy: checkpoint parley. Nat Rev Cancer. 2015;15(1):3. This review explains immune checkpoint blockade in clear detail for those desiring further detail.

    Article  CAS  PubMed  Google Scholar 

  74. Bordon Y. Tumour immunology: checkpoint parley. Nat Rev Immunol. 2015;15(1):5.

    Article  CAS  PubMed  Google Scholar 

  75. Francisco LM, Sage PT, Sharpe AH. The PD-1 pathway in tolerance and autoimmunity. Immunol Rev. 2010;236:219–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Robert, C., et al., Nivolumab in Previously Untreated Melanoma without BRAF Mutation. N Engl J Med, 2014.

  77. Wolchok JD et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122–33. This was the groundbreaking study that described the use of immune checkpoint blockade, utilizing both anti-PD-1 and anti-CTLA-4 antibodies, in treating cancer.

    Article  CAS  PubMed  Google Scholar 

  78. Tumeh PC et al. PD-1 blockade induces responses by inhibiting adaptive immune resistance. Nature. 2014;515(7528):568–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Walunas TL et al. CTLA-4 can function as a negative regulator of T cell activation. Immunity. 1994;1(5):405–13.

    Article  CAS  PubMed  Google Scholar 

  80. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Feng Y et al. Expression of programmed cell death ligand 1 (PD-L1) and prevalence of tumor-infiltrating lymphocytes (TILs) in chordoma. Oncotarget. 2015;6(13):11139–49.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Mathios D et al. PD-1, PD-L1, PD-L2 expression in the chordoma microenvironment. J Neurooncol. 2015;121(2):251–9.

    Article  CAS  PubMed  Google Scholar 

  83. Ribas A. Tumor immunotherapy directed at PD-1. N Engl J Med. 2012;366(26):2517–9.

    Article  CAS  PubMed  Google Scholar 

  84. Pule M, Finney H, Lawson A. Artificial T-cell receptors. Cytotherapy. 2003;5(3):211–26.

    Article  CAS  PubMed  Google Scholar 

  85. Lipowska-Bhalla G et al. Targeted immunotherapy of cancer with CAR T cells: achievements and challenges. Cancer Immunol Immunother. 2012;61(7):953–62.

    Article  CAS  PubMed  Google Scholar 

  86. Wang X et al. CSPG4 in cancer: multiple roles. Curr Mol Med. 2010;10(4):419–29.

    Article  CAS  PubMed  Google Scholar 

  87. Schwab JH et al. Chordoma and chondrosarcoma gene profile: implications for immunotherapy. Cancer Immunol Immunother. 2009;58(3):339–49.

    Article  CAS  PubMed  Google Scholar 

  88. Schoenfeld, A.J., et al., CSPG4 as a prognostic biomarker in chordoma. Spine J, 2015. This paper describes how CSPG4 could be a vital prognostic biomarker in the treament of chordoma. It also suggests how future treatments directed against CSPG4 may be of significant value in treating chordoma.

  89. Beard RE et al. Multiple chimeric antigen receptors successfully target chondroitin sulfate proteoglycan 4 in several different cancer histologies and cancer stem cells. J Immunother Cancer. 2014;2:25.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Donahue RN et al. Identification of tumor associated immune responses against brachyury, a transcription factor and driver of EMT, in chordoma patients receiving a yeast-brachyury vaccine (gi-6301). J ImmunoTher Cancer. 2014;2 Suppl 3:148.

    Article  Google Scholar 

  91. Heery CR et al. Phase I trial of a yeast-based therapeutic cancer vaccine (GI-6301) targeting the transcription factor brachyury. Cancer Immunol Res. 2015;3(11):1248–56. This study describes the early successes with a tumor antigen vaccine directed against brachyury. If successful, this strategy may be useful in treating chordoma patients with tumors with intact HLA class I expression.

    Article  CAS  PubMed  Google Scholar 

  92. Gameiro SR et al. Radiation-induced immunogenic modulation of tumor enhances antigen processing and calreticulin exposure, resulting in enhanced T-cell killing. Oncotarget. 2014;5(2):403–16. This manuscript describes how tumor expression of antigen processing components can be modulated with the use of radiation. This data could be useful in combining radiation therapy with immunotherapeutic strategies for treating various cancers.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph H. Schwab.

Ethics declarations

Conflict of Interest

Shalin S. Patel and Joseph H. Schwab declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Sarcomas

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, S.S., Schwab, J.H. Immunotherapy as a Potential Treatment for Chordoma: a Review. Curr Oncol Rep 18, 55 (2016). https://doi.org/10.1007/s11912-016-0543-8

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11912-016-0543-8

Keywords

Navigation