Skip to main content
Log in

Machine Learning and Artificial Intelligence Applications to Epilepsy: a Review for the Practicing Epileptologist

  • Review
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Machine Learning (ML) and Artificial Intelligence (AI) are data-driven techniques to translate raw data into applicable and interpretable insights that can assist in clinical decision making. Some of these tools have extremely promising initial results, earning both great excitement and creating hype. This non-technical article reviews recent developments in ML/AI in epilepsy to assist the current practicing epileptologist in understanding both the benefits and limitations of integrating ML/AI tools into their clinical practice.

Recent Findings

ML/AI tools have been developed to assist clinicians in almost every clinical decision including (1) predicting future epilepsy in people at risk, (2) detecting and monitoring for seizures, (3) differentiating epilepsy from mimics, (4) using data to improve neuroanatomic localization and lateralization, and (5) tracking and predicting response to medical and surgical treatments. We also discuss practical, ethical, and equity considerations in the development and application of ML/AI tools including chatbots based on Large Language Models (e.g., ChatGPT).

Summary

ML/AI tools will change how clinical medicine is practiced, but, with rare exceptions, the transferability to other centers, effectiveness, and safety of these approaches have not yet been established rigorously. In the future, ML/AI will not replace epileptologists, but epileptologists with ML/AI will replace epileptologists without ML/AI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Kwan P, et al. Definition of drug resistant epilepsy: consensus proposal by the ad hoc Task Force of the ILAE Commission on Therapeutic Strategies. Epilepsia. 2010;51(6):1069–77.

    Article  CAS  PubMed  Google Scholar 

  2. Gotman J, Ives JR, Gloor P. Automatic recognition of inter-ictal epileptic activity in prolonged EEG recordings. Electroencephalogr Clin Neurophysiol. 1979;46(5):510–20.

    Article  CAS  PubMed  Google Scholar 

  3. Abbasi B, Goldenholz DM. Machine learning applications in epilepsy. Epilepsia. 2019;60(10):2037–47.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Kaur T, et al. Artificial intelligence in epilepsy. Neurol India. 2021;69(3):560–6.

    Article  PubMed  Google Scholar 

  5. Xu Z, et al. AI/ML in precision medicine: a look beyond the hype. Ther Innov Regul Sci. 2023;57(5):957–62.

    Article  PubMed  Google Scholar 

  6. Safdar NM, Banja JD, Meltzer CC. Ethical considerations in artificial intelligence. Eur J Radiol. 2020;122:108768.

    Article  PubMed  Google Scholar 

  7. Wilkinson J, et al. Time to reality check the promises of machine learning-powered precision medicine. Lancet Digit Health. 2020;2(12):e677–80.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bhattacharya S, et al. Artificial intelligence enabled healthcare: a hype, hope or harm. J Family Med Prim Care. 2019;8(11):3461–4.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Hollis KF, Soualmia LF, Seroussi B. Artificial intelligence in health informatics: hype or reality? Yearb Med Inform. 2019;28(1):3–4.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Kulkarni PA, Singh H. Artificial intelligence in clinical diagnosis: opportunities, challenges, and hype. JAMA. 2023;330(4):317–8.

    Article  PubMed  Google Scholar 

  11. Dunnmon J. Separating hope from hype: artificial intelligence pitfalls and challenges in radiology. Radiol Clin North Am. 2021;59(6):1063–74.

    Article  PubMed  Google Scholar 

  12. Emanuel EJ, Wachter RM. Artificial intelligence in health care: will the value match the hype? JAMA. 2019;321(23):2281–2.

    Article  PubMed  Google Scholar 

  13. • Chiang S, et al. Guidelines for conducting ethical artificial intelligence research in neurology: a systematic approach for clinicians and researchers. Neurology. 2021;97(13):632–40. The ethics and perpetuation of bias of AI/ML.

  14. • Norori N. et al. Addressing bias in big data and AI for health care: a call for open science. Patterns (N Y). 2021;2(10):100347. The ethics and perpetuation of bias of AI/ML.

  15. Mezrich JL. Is artificial intelligence (AI) a pipe dream? Why legal issues present significant hurdles to AI autonomy. AJR Am J Roentgenol. 2022;219(1):152–6.

    Article  PubMed  Google Scholar 

  16. Mezrich JL. Demystifying medico-legal challenges of artificial intelligence applications in molecular imaging and therapy. PET Clin. 2022;17(1):41–9.

    Article  PubMed  Google Scholar 

  17. Ngiam KY, Khor IW. Big data and machine learning algorithms for health-care delivery. Lancet Oncol. 2019;20(5):e262–73.

    Article  PubMed  Google Scholar 

  18. Karakis I. Sage against the machine: promise and challenge of artificial intelligence in epilepsy. Epilepsy Curr. 2022;22(5):279–81.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Caciagli L, Bassett DS. Epilepsy imaging meets machine learning: a new era of individualized patient care. Brain. 2022;145(3):807–10.

    Article  PubMed  Google Scholar 

  20. Steriade C. Entering the era of personalized medicine in epilepsy through neuroimaging machine learning. Epilepsy Curr. 2022;22(3):168–9.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Terman SW. Rise of the machines? Predicting brivaracetam response using machine learning. Epilepsy Curr. 2022;22(2):111–3.

    Article  PubMed  Google Scholar 

  22. Elmahdy M, Sebro R. A snapshot of artificial intelligence research 2019–2021: is it replacing or assisting physicians? J Am Med Inform Assoc. 2023;30(9):1552–7.

    Article  PubMed  Google Scholar 

  23. Kao YS. Do people use ChatGPT to replace doctor? A Google trends analysis. Ann Biomed Eng 2023;51:2652–3.

  24. Jeon Y, et al. Deep learning-based detection of epileptiform discharges for self-limited epilepsy with centrotemporal spikes. IEEE Trans Neural Syst Rehabil Eng. 2022;30:2939–49.

    Article  PubMed  Google Scholar 

  25. Kural MA, et al. Accurate identification of EEG recordings with interictal epileptiform discharges using a hybrid approach: artificial intelligence supervised by human experts. Epilepsia. 2022;63(5):1064–73.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Peltola J. et al. Semiautomated classification of nocturnal seizures using video recordings. Epilepsia. 2022. https://doi.org/10.1111/epi.17207.

  27. Gomez-Quintana S, et al. A method for AI assisted human interpretation of neonatal EEG. Sci Rep. 2022;12(1):10932.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fearns N, et al. Quantitative analysis of the morphometric analysis program MAP in patients with truly MRI-negative focal epilepsy. Epilepsy Res. 2023;192:107133.

    Article  PubMed  Google Scholar 

  29. Jonas S, et al. Diagnostic and prognostic EEG analysis of critically ill patients: a deep learning study. Neuroimage Clin. 2022;36:103167.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Egger J, et al. Medical deep learning—a systematic meta-review. Comput Methods Programs Biomed. 2022;221:106874.

    Article  PubMed  Google Scholar 

  31. Park Y, et al. Comparison of methods to reduce bias from clinical prediction models of postpartum depression. JAMA Netw Open. 2021;4(4):e213909.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Huang J, et al. Evaluation and mitigation of racial bias in clinical machine learning models: scoping review. JMIR Med Inform. 2022;10(5):e36388.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Thompson AC, et al. Delays in time to surgery for minorities with temporal lobe epilepsy. Epilepsia. 2014;55(9):1339–46.

    Article  PubMed  Google Scholar 

  34. Samanta D, et al. Underutilization of epilepsy surgery: Part I: a scoping review of barriers. Epilepsy Behav. 2021;117:107837.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Wissel BD, et al. Investigation of bias in an epilepsy machine learning algorithm trained on physician notes. Epilepsia. 2019;60(9):e93–8.

    Article  PubMed  PubMed Central  Google Scholar 

  36. • Tveit J. et al. Automated interpretation of clinical electroencephalograms using artificial intelligence. JAMA Neurol. 2023;80(8): 805-812. SCORE-AI is the current standard for automated reading of outpatient EEGs.

  37. • Jing J. et al. Development of expert-level classification of seizures and rhythmic and periodic patterns during EEG interpretation. Neurology. 2023;100(17): e1750-e1762. SPaRCNet is the current standard for the automated analysis of critical care EEG.

  38. Bosselmann CM, Leu C, Lal D. Are AI language models such as ChatGPT ready to improve the care of individuals with epilepsy? Epilepsia. 2023;64(5):1195–9.

    Article  PubMed  Google Scholar 

  39. Wissel BD, et al. Early identification of epilepsy surgery candidates: a multicenter, machine learning study. Acta Neurol Scand. 2021;144(1):41–50.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Glauser T, et al. Identifying epilepsy psychiatric comorbidities with machine learning. Acta Neurol Scand. 2020;141(5):388–96.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Wissel BD, et al. Prospective validation of a machine learning model that uses provider notes to identify candidates for resective epilepsy surgery. Epilepsia. 2020;61(1):39–48.

    Article  PubMed  Google Scholar 

  42. Fisher RS, et al. Operational classification of seizure types by the International League Against Epilepsy: position paper of the ILAE Commission for Classification and Terminology. Epilepsia. 2017;58(4):522–30.

    Article  PubMed  Google Scholar 

  43. Hirsch LJ, et al. American Clinical Neurophysiology Society’s standardized critical care EEG terminology: 2021 version. J Clin Neurophysiol. 2021;38(1):1–29.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Budd J. Burnout related to electronic health record use in primary care. J Prim Care Community Health. 2023;14:21501319231166920.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Muhiyaddin R, et al. Electronic health records and physician burnout: a scoping review. Stud Health Technol Inform. 2022;289:481–4.

    PubMed  Google Scholar 

  46. Khalil N, et al. Multiple sclerosis and MyChart messaging: a retrospective chart review evaluating its use. Int J MS Care. 2022;24(6):271–4.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mueller B, et al. A retrospective cohort study of clinical factors, visit patterns, and demographic factors associated with use of remote communications in patients with headache. Headache. 2021;61(10):1521–8.

    Article  PubMed  Google Scholar 

  48. Co Z, et al. The tradeoffs between safety and alert fatigue: data from a national evaluation of hospital medication-related clinical decision support. J Am Med Inform Assoc. 2020;27(8):1252–8.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Jankovic I, Chen JH. Clinical decision support and implications for the clinician burnout crisis. Yearb Med Inform. 2020;29(1):145–54.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Zeng-Treitler Q, Nelson SJ. Will artificial intelligence translate big data into improved medical care or be a source of confusing intrusion? A discussion between a (cautious) physician informatician and an (optimistic) medical informatics researcher. J Med Internet Res. 2019;21(11):e16272.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Ayers JW, et al. Comparing physician and artificial intelligence chatbot responses to patient questions posted to a public social media forum. JAMA Intern Med. 2023;183(6):589–96.

    Article  PubMed  Google Scholar 

  52. Nov O, Singh N, Mann D. Putting ChatGPT’s medical advice to the (Turing) test: survey study. JMIR Med Educ. 2023;9:e46939.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Li R, Kumar A, Chen JH. How chatbots and large language model artificial intelligence systems will reshape modern medicine: fountain of creativity or Pandora’s box? JAMA Intern Med. 2023;183(6):596–7.

    Article  PubMed  Google Scholar 

  54. Preilowski B. Remembering an amnesic patient (and half a century of memory research). Fortschr Neurol Psychiatr. 2009;77(10):568–76.

    Article  CAS  PubMed  Google Scholar 

  55. Chen A, Chen DO. Accuracy of chatbots in citing journal articles. JAMA Netw Open. 2023;6(8):e2327647.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Chen G, et al. Update on the neuroimaging and electroencephalographic biomarkers of epileptogenesis: a literature review. Front Neurol. 2021;12:738658.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Ritter AC, et al. Prognostic models for predicting posttraumatic seizures during acute hospitalization, and at 1 and 2 years following traumatic brain injury. Epilepsia. 2016;57(9):1503–14.

    Article  PubMed  Google Scholar 

  58. Bertoncelli CM, et al. PredictMed-epilepsy: a multi-agent based system for epilepsy detection and prediction in neuropediatrics. Comput Methods Programs Biomed. 2023;236:107548.

    Article  PubMed  Google Scholar 

  59. Lekoubou A, et al. Risk models to predict late-onset seizures after stroke: a systematic review. Epilepsy Behav. 2021;121(Pt A):108003.

    Article  PubMed  Google Scholar 

  60. Akrami H, et al. Neuroanatomic markers of posttraumatic epilepsy based on MR imaging and machine learning. AJNR Am J Neuroradiol. 2022;43(3):347–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Pitkanen A, et al. Biomarkers for posttraumatic epilepsy. Epilepsy Behav. 2021;121(Pt B):107080.

    Article  PubMed  Google Scholar 

  62. Azriel R, et al. Machine learning to support triage of children at risk for epileptic seizures in the pediatric intensive care unit. Physiol Meas. 2022;43(9):095003.

    Article  Google Scholar 

  63. Xie D, Toutant D, Ng MC. Residual seizure rate of intermittent inpatient EEG compared to a continuous EEG model. Can J Neurol Sci. 2023. https://doi.org/10.1017/cjn.2023.241.

  64. Moffet EW, et al. Validation of the 2HELPS2B seizure risk score in acute brain injury patients. Neurocrit Care. 2020;33(3):701–7.

    Article  PubMed  Google Scholar 

  65. Struck AF, et al. Assessment of the validity of the 2HELPS2B score for inpatient seizure risk prediction. JAMA Neurol. 2020;77(4):500–7.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Struck AF, et al. Association of an electroencephalography-based risk score with seizure probability in hospitalized patients. JAMA Neurol. 2017;74(12):1419–24.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kamousi B, et al. Monitoring the burden of seizures and highly epileptiform patterns in critical care with a novel machine learning method. Neurocrit Care. 2021;34(3):908–17.

    Article  PubMed  Google Scholar 

  68. Vespa PM, et al. Evaluating the clinical impact of rapid response electroencephalography: the DECIDE multicenter prospective observational clinical study. Crit Care Med. 2020;48(9):1249–57.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Eberhard E, Beckerman SR. Rapid-response electroencephalography in seizure diagnosis and patient care: lessons from a community hospital. J Neurosci Nurs. 2023;55(5):157–63.

    Article  PubMed  Google Scholar 

  70. Kozak R, et al. Point-of-care electroencephalography enables rapid evaluation and management of non-convulsive seizures and status epilepticus in the emergency department. J Am Coll Emerg Physicians Open. 2023;4(4):e13004.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ward J, et al. Implementation and impact of a point of care electroencephalography platform in a community hospital: a cohort study. Front Digit Health. 2023;5:1035442.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lenio S, et al. Validation of a predictive calculator to distinguish between patients presenting with dissociative versus epileptic seizures. Epilepsy Behav. 2021;116:107767.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Kerr WT, et al. Reliability of additional reported seizure manifestations to identify dissociative seizures. Epilepsy Behav. 2021;115:107696.

    Article  PubMed  Google Scholar 

  74. Kerr WT, et al. Objective score from initial interview identifies patients with probable dissociative seizures. Epilepsy Behav. 2020;2020(113):107525.

    Article  Google Scholar 

  75. Wardrope A, et al. Machine learning as a diagnostic decision aid for patients with transient loss of consciousness. Neurol Clin Pract. 2019;10(2):96–105.

    Article  Google Scholar 

  76. Wardrope A, Newberry E, Reuber M. Diagnostic criteria to aid the differential diagnosis of patients presenting with transient loss of consciousness: a systematic review. Seizure. 2018;61:139–48.

    Article  PubMed  Google Scholar 

  77. Muthusamy S, et al. Using semiology to classify epileptic seizures vs psychogenic nonepileptic seizures: a meta-analysis. Neurol Clin Pract. 2022;12(3):234–47.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Trainor D, et al. Development and validation of a screening questionnaire for psychogenic nonepileptic seizures. Epilepsy Behav. 2020;112:107482.

    Article  PubMed  Google Scholar 

  79. Chen M, et al. Value of witness observations in the differential diagnosis of transient loss of consciousness. Neurology. 2019;92(9):e895–904.

    Article  PubMed  Google Scholar 

  80. Reuber M, et al. Value of patient-reported symptoms in the diagnosis of transient loss of consciousness. Neurology. 2016;87(6):625–33.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Sheldon R, et al. Historical criteria that distinguish syncope from seizures. J Am Coll Cardiol. 2002;40(1):142–8.

    Article  PubMed  Google Scholar 

  82. McInnis RP, et al. Epilepsy diagnosis using a clinical decision tool and artificially intelligent electroencephalography. Epilepsy Behav. 2023;141:109135.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Janocko NJ, et al. DDESVSFS: A simple, rapid and comprehensive screening tool for the Differential diagnosis of epileptic seizures vs functional seizures. Epilepsy Res. 2021;171:106563.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Asadi-Pooya AA. et al. Epilepsy classification using artificial intelligence: a web-based application. Epilepsia Open. 2023. https://doi.org/10.1002/epi4.12800.

  85. Wardrope A, et al. How to do things with words: two seminars on the naming of functional (psychogenic, non-epileptic, dissociative, conversion, …) seizures. Seizure. 2021;93:102–10.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Tolchin B, et al. What’s in a name? Epilepsy Behav. 2020;112:107364.

    Article  PubMed  Google Scholar 

  87. Asadi-Pooya AA, et al. Terminology for psychogenic nonepileptic seizures: making the case for “functional seizures.” Epilepsy Behav. 2020;104(Pt A):106895.

    Article  PubMed  Google Scholar 

  88. Asadi-Pooya AA, et al. Machine learning applications to differentiate comorbid functional seizures and epilepsy from pure functional seizures. J Psychosom Res. 2022;153:110703.

    Article  PubMed  Google Scholar 

  89. Pevy N, et al. Differentiating between epileptic and functional/dissociative seizures using semantic content analysis of transcripts of routine clinic consultations. Epilepsy Behav. 2023;143:109217.

    Article  PubMed  Google Scholar 

  90. Jenkins L, et al. Neurologists can identify diagnostic linguistic features during routine seizure clinic interactions: results of a one-day teaching intervention. Epilepsy Behav. 2016;64(Pt A):257–61.

    Article  PubMed  Google Scholar 

  91. Robson C, et al. Catastrophising and normalising in patient’s accounts of their seizure experiences. Seizure. 2012;21(10):795–801.

    Article  PubMed  Google Scholar 

  92. Plug L, Sharrack B, Reuber M. Seizure metaphors differ in patients’ accounts of epileptic and psychogenic nonepileptic seizures. Epilepsia. 2009;50(5):994–1000.

    Article  PubMed  Google Scholar 

  93. Yew ANJ, et al. Transforming epilepsy research: a systematic review on natural language processing applications. Epilepsia. 2023;64(2):292–305.

    Article  PubMed  Google Scholar 

  94. Hamid H, et al. Validating a natural language processing tool to exclude psychogenic nonepileptic seizures in electronic medical record-based epilepsy research. Epilepsy Behav. 2013;29(3):578–80.

    Article  CAS  PubMed  Google Scholar 

  95. Chen DK, et al. Use of serum prolactin in diagnosing epileptic seizures: report of the Therapeutics and Technology Assessment Subcommittee of the American Academy of Neurology. Neurology. 2005;65(5):668–75.

    Article  CAS  PubMed  Google Scholar 

  96. Alving J. Serum prolactin levels are elevated also after pseudo-epileptic seizures. Seizure. 1998;7(2):85–9.

    CAS  PubMed  Google Scholar 

  97. Xia Y. et al. Differentiation of epilepsy and psychogenic nonepileptic events based on body fluid characteristics. Epilepsia Open. 2023;8(3):959–68.

  98. Li Y, et al. Potential use of leukocytosis and anion gap elevation in differentiating psychogenic nonepileptic seizures from epileptic seizures. Epilepsia Open. 2019;4(1):210–5.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Li Y. et al. Anion gap can differentiate between psychogenic and epileptic seizures in the emergency setting. Epilepsia. 2017;58(9):e132–e135.

  100. Tatum WO, et al. Video quality using outpatient smartphone videos in epilepsy: results from the OSmartViE study. Eur J Neurol. 2021;28(5):1453–62.

    Article  PubMed  Google Scholar 

  101. Tatum WO. et al. Assessment of the predictive value of outpatient smartphone videos for diagnosis of epileptic seizures. JAMA Neurol. 2020;77(5):593–600.

  102. LaFrance WC Jr, et al. Minimum requirements for the diagnosis of psychogenic nonepileptic seizures: a staged approach: a report from the International League Against Epilepsy Nonepileptic Seizures Task Force. Epilepsia. 2013;54(11):2005–18.

    Article  PubMed  Google Scholar 

  103. Moro M, et al. Automatic video analysis and classification of sleep-related hypermotor seizures and disorders of arousal. Epilepsia. 2023;64(6):1653–62.

    Article  PubMed  Google Scholar 

  104. Wasserman D, Herskovitz M. Epileptic vs psychogenic nonepileptic seizures: a video-based survey. Epilepsy Behav. 2017;73:42–5.

    Article  PubMed  Google Scholar 

  105. Hou JC, et al. Automated video analysis of emotion and dystonia in epileptic seizures. Epilepsy Res. 2022;184:106953.

    Article  PubMed  Google Scholar 

  106. Garcao VM. et al. A novel approach to automatic seizure detection using computer vision and independent component analysis. Epilepsia. 2023;64(9):2472–83.

  107. Nafea MS, Ismail ZH. Supervised machine learning and deep learning techniques for epileptic seizure recognition using EEG signals—a systematic literature review. Bioengineering (Basel). 2022;9(12):781.

    Article  PubMed  Google Scholar 

  108. Li W, et al. Seizure detection based on wearable devices: a review of device, mechanism, and algorithm. Acta Neurol Scand. 2022;146(6):723–31.

    Article  PubMed  Google Scholar 

  109. Tang J, et al. Seizure detection using wearable sensors and machine learning: setting a benchmark. Epilepsia. 2021;62(8):1807–19.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Zambrana-Vinaroz D, et al. Wearable epileptic seizure prediction system based on machine learning techniques using ECG, PPG and EEG signals. Sensors (Basel). 2022;22(23):9372.

    Article  PubMed  Google Scholar 

  111. Al-Hajjar ALN, Al-Qurabat AKM. An overview of machine learning methods in enabling IoMT-based epileptic seizure detection. J Supercomput. 2023;79:16017–64.

  112. Naganur VD, et al. The utility of an automated and ambulatory device for detecting and differentiating epileptic and psychogenic non-epileptic seizures. Epilepsia Open. 2019;4(2):309–17.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Kusmakar S, et al. Novel features for capturing temporal variations of rhythmic limb movement to distinguish convulsive epileptic and psychogenic nonepileptic seizures. Epilepsia. 2019;60(1):165–74.

    Article  PubMed  Google Scholar 

  114. Kusmakar S, et al. Gaussian mixture model for the identification of psychogenic non-epileptic seizures using a wearable accelerometer sensor. Conf Proc IEEE Eng Med Biol Soc. 2016;2016:1006–9.

    Google Scholar 

  115. Faghihpirayesh R, et al. Automatic detection of EEG epileptiform abnormalities in traumatic brain injury using deep learning. Annu Int Conf IEEE Eng Med Biol Soc. 2021;2021:302–5.

    PubMed  PubMed Central  Google Scholar 

  116. Nhu D, et al. Deep learning for automated epileptiform discharge detection from scalp EEG: a systematic review. J Neural Eng. 2022;19(5):051002.

    Article  Google Scholar 

  117. Escobar-Ipuz FA, et al. Prediction of patients with idiopathic generalized epilepsy from healthy controls using machine learning from scalp EEG recordings. Brain Res. 2023;1798:148131.

    Article  CAS  PubMed  Google Scholar 

  118. Gramacki A, Gramacki J. A deep learning framework for epileptic seizure detection based on neonatal EEG signals. Sci Rep. 2022;12(1):13010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Varone G, et al. A machine learning approach involving functional connectivity features to classify rest-EEG psychogenic non-epileptic seizures from healthy controls. Sensors (Basel). 2021;22(1):129.

    Article  PubMed  Google Scholar 

  120. Xiong W, et al. Classification of epileptic and psychogenic non-epileptic seizures using electroencephalography and electrocardiography. IEEE Trans Neural Syst Rehabil Eng. 2023;31:2831–8.

    Article  PubMed  Google Scholar 

  121. Kerr WT, et al. Automated diagnosis of epilepsy using EEG power spectrum. Epilepsia. 2012;53(11):e189–92.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Lemoine E, et al. Machine-learning for the prediction of one-year seizure recurrence based on routine electroencephalography. Sci Rep. 2023;13(1):12650.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kaestner E, Stacey W. Putting the “big” in big data: learning to be just as (un)certain as a clinician at EEG. Neurology. 2023;100(17):799–800.

    Article  PubMed  Google Scholar 

  124. Kleen JK, Guterman EL. The new era of automated electroencephalogram interpretation. JAMA Neurol. 2023;80(8):777–8.

    Article  PubMed  Google Scholar 

  125. Jing J, et al. Interrater reliability of expert electroencephalographers identifying seizures and rhythmic and periodic patterns in EEGs. Neurology. 2023;100(17):e1737–49.

    PubMed  PubMed Central  Google Scholar 

  126. Nascimento FA, et al. A quantitative approach to evaluating interictal epileptiform discharges based on interpretable quantitative criteria. Clin Neurophysiol. 2023;146:10–7.

    Article  PubMed  Google Scholar 

  127. Nascimento FA, et al. One EEG, one read—a manifesto towards reducing interrater variability among experts. Clin Neurophysiol. 2022;133:68–70.

    Article  PubMed  Google Scholar 

  128. Bernasconi A, Bernasconi N. The role of MRI in the treatment of drug-resistant focal epilepsy. Eur Neurol. 2022;85(5):333–41.

    Article  PubMed  Google Scholar 

  129. Bernasconi A, et al. Recommendations for the use of structural magnetic resonance imaging in the care of patients with epilepsy: a consensus report from the International League Against Epilepsy Neuroimaging Task Force. Epilepsia. 2019;60(6):1054–68.

    Article  PubMed  Google Scholar 

  130. Whelan CD, et al. Structural brain abnormalities in the common epilepsies assessed in a worldwide ENIGMA study. Brain. 2018;141(2):391–408.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Mettenburg JM, et al. Improved detection of subtle mesial temporal sclerosis: validation of a commercially available software for automated segmentation of hippocampal volume. AJNR Am J Neuroradiol. 2019;40(3):440–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Kakeda S, Korogi Y. The efficacy of a voxel-based morphometry on the analysis of imaging in schizophrenia, temporal lobe epilepsy, and Alzheimer’s disease/mild cognitive impairment: a review. Neuroradiology. 2010;52(8):711–21.

    Article  PubMed  Google Scholar 

  133. Murphy MA, et al. Multimodality image-guided surgery for the treatment of medically refractory epilepsy. J Neurosurg. 2004;100(3):452–62.

    Article  PubMed  Google Scholar 

  134. Reutens DC, et al. Reliability of visual inspection for detection of volumetric hippocampal asymmetry. Neuroradiology. 1996;38(3):221–5.

    Article  CAS  PubMed  Google Scholar 

  135. Lee KK, Salamon N. [18F] Fluorodeoxyglucose–positron-emission tomography and MR imaging coregistration for presurgical evaluation of medically refractory epilepsy. AJNR Am J Neuroradiol. 2009;30:1811–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Salamon N, et al. FDG-PET/MRI coregistration improves detection of cortical dysplasia in patients with epilepsy. Neurology. 2008;71(20):1594–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Chang AJ, et al. MRI-based deep learning can discriminate between temporal lobe epilepsy, Alzheimer’s disease, and healthy controls. Commun Med (Lond). 2023;3(1):33.

    Article  PubMed  Google Scholar 

  138. Lee DA, et al. Identifying juvenile myoclonic epilepsy via diffusion tensor imaging using machine learning analysis. J Clin Neurosci. 2021;91:327–33.

    Article  PubMed  Google Scholar 

  139. Stirling RE, et al. Seizure forecasting and cyclic control of seizures. Epilepsia. 2021;62(Suppl 1):S2–14.

    PubMed  Google Scholar 

  140. Karoly PJ, et al. Forecasting cycles of seizure likelihood. Epilepsia. 2020;61(4):776–86.

    Article  PubMed  Google Scholar 

  141. Fernandes M, et al. Identification of patients with epilepsy using automated electronic health records phenotyping. Epilepsia. 2023;64(6):1472–81.

    Article  PubMed  Google Scholar 

  142. Decker BM, et al. Development of a natural language processing algorithm to extract seizure types and frequencies from the electronic health record. Seizure. 2022;101:48–51.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Xie K, et al. Long-term epilepsy outcome dynamics revealed by natural language processing of clinic notes. Epilepsia. 2023;64(7):1900–9.

    Article  PubMed  Google Scholar 

  144. Breitenstein PS, et al. A machine-learning guided method for predicting add-on and switch in secondary data sources: a case study on anti-seizure medications in Danish registries. Front Pharmacol. 2022;13:954393.

    Article  PubMed  PubMed Central  Google Scholar 

  145. Xie K, et al. Extracting seizure frequency from epilepsy clinic notes: a machine reading approach to natural language processing. J Am Med Inform Assoc. 2022;29(5):873–81.

    Article  PubMed  PubMed Central  Google Scholar 

  146. Karoly PJ, et al. When can we trust responders? Serious concerns when using 50% response rate to assess clinical trials. Epilepsia. 2019;60(9):e99–103.

    Article  PubMed  Google Scholar 

  147. Kerr WT. et al. Time to exceed pre-randomization monthly seizure count for perampanel in participants with primary generalized tonic-clonic seizures: a potential clinical end point. Epilepsia. 2022;63(11):2994–3004.

  148. Vossler DG, et al. Efficacy and safety of adjunctive lacosamide in the treatment of primary generalised tonic-clonic seizures: a double-blind, randomised, placebo-controlled trial. J Neurol Neurosurg Psychiatry. 2020;91(10):1067–75.

    Article  PubMed  Google Scholar 

  149. Romero J, Chiang S, Goldenholz DM. Can machine learning improve randomized clinical trial analysis? Seizure. 2021;91:499–502.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Oliveira A, Romero JM, Goldenholz DM. Comparing the efficacy, exposure, and cost of clinical trial analysis methods. Epilepsia. 2019;60(12):e128–32.

    Article  PubMed  Google Scholar 

  151. Singh K, Malhotra J. Deep learning based smart health monitoring for automated prediction of epileptic seizures using spectral analysis of scalp EEG. Phys Eng Sci Med. 2021;44(4):1161–73.

    Article  PubMed  Google Scholar 

  152. Jeppesen J, et al. Personalized seizure detection using logistic regression machine learning based on wearable ECG-monitoring device. Seizure. 2023;107:155–61.

    Article  PubMed  Google Scholar 

  153. Karoly PJ, et al. Multiday cycles of heart rate are associated with seizure likelihood: an observational cohort study. EBioMedicine. 2021;72: 103619.

    Article  PubMed  PubMed Central  Google Scholar 

  154. Kusmakar S, et al. Automated detection of convulsive seizures using a wearable accelerometer device. IEEE Trans Biomed Eng. 2019;66(2):421–32.

    Article  PubMed  Google Scholar 

  155. Japaridze G. et al. Automated detection of absence seizures using a wearable electroencephalographic device: a phase 3 validation study and feasibility of automated behavioral testing. Epilepsia. 2022. https://doi.org/10.1111/epi.17200.

  156. Karoly PJ, et al. Circadian and circaseptan rhythms in human epilepsy: a retrospective cohort study. Lancet Neurol. 2018;17(11):977–85.

    Article  PubMed  Google Scholar 

  157. Goldenholz DM, Westover MB. Flexible realistic simulation of seizure occurrence recapitulating statistical properties of seizure diaries. Epilepsia. 2023;64(2):396–405.

  158. Karoly PJ, et al. Cycles of self-reported seizure likelihood correspond to yield of diagnostic epilepsy monitoring. Epilepsia. 2021;62(2):416–25.

    Article  PubMed  Google Scholar 

  159. Karoly PJ, et al. Cycles in epilepsy. Nat Rev Neurol. 2021;17(5):267–84.

    Article  PubMed  Google Scholar 

  160. Grzeskowiak CL, Dumanis SB. Seizure forecasting: patient and caregiver perspectives. Front Neurol. 2021;12:717428.

    Article  PubMed  PubMed Central  Google Scholar 

  161. Demuth S, Dinkelacker V. Toward personalized machine learning approaches in care of patients with epilepsy. Epilepsia. 2021;62(12):3143–5.

    Article  PubMed  Google Scholar 

  162. Nasseri M, et al. Ambulatory seizure forecasting with a wrist-worn device using long-short term memory deep learning. Sci Rep. 2021;11(1):21935.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Gleichgerrcht E, et al. Seizure forecasting using machine learning models trained by seizure diaries. Physiol Meas. 2022;43(12):124003.

    Article  Google Scholar 

  164. Goldenholz DM, et al. Development and validation of forecasting next reported seizure using e-diaries. Ann Neurol. 2020;88(3):588–95.

    Article  PubMed  PubMed Central  Google Scholar 

  165. Saboo KV. et al. Individualized seizure cluster prediction using machine learning and chronic ambulatory intracranial EEG. IEEE Trans Nanobioscience. 2023;22(4):818–27.

  166. Zhao X, et al. Machine learning and statistic analysis to predict drug treatment outcome in pediatric epilepsy patients with tuberous sclerosis complex. Epilepsy Res. 2022;188:107040.

    Article  CAS  PubMed  Google Scholar 

  167. Wu J, et al. Machine learning model to predict the efficacy of antiseizure medications in patients with familial genetic generalized epilepsy. Epilepsy Res. 2022;181:106888.

    Article  CAS  PubMed  Google Scholar 

  168. Wang X, et al. Graph-theory based degree centrality combined with machine learning algorithms can predict response to treatment with antiepileptic medications in children with epilepsy. J Clin Neurosci. 2021;91:276–82.

    Article  CAS  PubMed  Google Scholar 

  169. Lee DA, et al. Can we predict anti-seizure medication response in focal epilepsy using machine learning? Clin Neurol Neurosurg. 2021;211:107037.

    Article  PubMed  Google Scholar 

  170. Croce P, et al. Machine learning for predicting levetiracetam treatment response in temporal lobe epilepsy. Clin Neurophysiol. 2021;132(12):3035–42.

    Article  PubMed  Google Scholar 

  171. Hakeem H, et al. Development and validation of a deep learning model for predicting treatment response in patients with newly diagnosed epilepsy. JAMA Neurol. 2022;79(10):986–96.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Wang B, et al. EEG-driven prediction model of oxcarbazepine treatment outcomes in patients with newly-diagnosed focal epilepsy. Front Med (Lausanne). 2021;8:781937.

    Article  PubMed  Google Scholar 

  173. de Jong J, et al. Towards realizing the vision of precision medicine: AI based prediction of clinical drug response. Brain. 2021;144(6):1738–50.

    Article  PubMed  PubMed Central  Google Scholar 

  174. Bensken WP, et al. Disparities in adherence and emergency department utilization among people with epilepsy: a machine learning approach. Seizure. 2023;110:169–76.

    Article  PubMed  Google Scholar 

  175. Lin F, et al. Predicting cognitive impairment in outpatients with epilepsy using machine learning techniques. Sci Rep. 2021;11(1):20002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Delgado-Garcia G. et al. Machine learning using multimodal clinical, electroencephalographic, and magnetic resonance imaging data can predict incident depression in adults with epilepsy: a pilot study. Epilepsia. 2023;64(10):2781–91.

  177. Nemesure MD, et al. Predictive modeling of suicidal ideation in patients with epilepsy. Epilepsia. 2022;63(9):2269–78.

    Article  PubMed  PubMed Central  Google Scholar 

  178. Gu B, Adeli H. Toward automated prediction of sudden unexpected death in epilepsy. Rev Neurosci. 2022;33(8):877–87.

    Article  PubMed  Google Scholar 

  179. Berg AT. Understanding the delay before epilepsy surgery: who develops intractable focal epilepsy and when? CNS Spectr. 2004;9(2):136–44.

    Article  PubMed  Google Scholar 

  180. Cheval M, et al. Early identification of seizure freedom with medical treatment in patients with mesial temporal lobe epilepsy and hippocampal sclerosis. J Neurol. 2023;270(5):2715–23.

    Article  CAS  PubMed  Google Scholar 

  181. Tan S, et al. Identifying epilepsy surgery candidates with natural language processing: a systematic review. J Clin Neurosci. 2023;114:104–9.

    Article  PubMed  Google Scholar 

  182. Kanbar LJ, et al. Implementation of machine learning pipelines for clinical practice: development and validation study. JMIR Med Inform. 2022;10(12):e37833.

    Article  PubMed  PubMed Central  Google Scholar 

  183. Passaro EA. Neuroimaging in adults and children with epilepsy. Continuum (Minneap Minn). 2023;29(1):104–55.

    PubMed  Google Scholar 

  184. Garcia-Ramo KB, Sanchez-Catasus CA, Winston GP. Deep learning in neuroimaging of epilepsy. Clin Neurol Neurosurg. 2023;232:107879.

    Article  PubMed  Google Scholar 

  185. Yuan J, et al. Machine learning applications on neuroimaging for diagnosis and prognosis of epilepsy: a review. J Neurosci Methods. 2022;368:109441.

    Article  CAS  PubMed  Google Scholar 

  186. Cendes F, McDonald CR. Artificial intelligence applications in the imaging of epilepsy and its comorbidities: present and future. Epilepsy Curr. 2022;22(2):91–6.

    Article  PubMed  PubMed Central  Google Scholar 

  187. Caldairou B, et al. MRI-based machine learning prediction framework to lateralize hippocampal sclerosis in patients with temporal lobe epilepsy. Neurology. 2021;97(16):e1583–93.

    Article  PubMed  PubMed Central  Google Scholar 

  188. Gleichgerrcht E, et al. Radiological identification of temporal lobe epilepsy using artificial intelligence: a feasibility study. Brain Commun. 2022;4(2):fcab284.

    Article  PubMed  Google Scholar 

  189. Sakashita K, et al. Deep learning for the diagnosis of mesial temporal lobe epilepsy. PLoS ONE. 2023;18(2):e0282082.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Beheshti I, et al. Accurate lateralization and classification of MRI-negative 18F-FDG-PET-positive temporal lobe epilepsy using double inversion recovery and machine-learning. Comput Biol Med. 2021;137:104805.

    Article  CAS  PubMed  Google Scholar 

  191. Lee HM, et al. Decomposing MRI phenotypic heterogeneity in epilepsy: a step towards personalized classification. Brain. 2022;145(3):897–908.

    Article  PubMed  Google Scholar 

  192. Kaestner E, et al. Convolutional neural network algorithm to determine lateralization of seizure onset in patients with epilepsy: a proof-of-principle study. Neurology. 2023;101(3):e324–35.

    Article  PubMed  Google Scholar 

  193. Gleichgerrcht E, et al. Artificial intelligence for classification of temporal lobe epilepsy with ROI-level MRI data: a worldwide ENIGMA-Epilepsy study. Neuroimage Clin. 2021;31:102765.

    Article  PubMed  PubMed Central  Google Scholar 

  194. Shih YC, et al. Machine learning quantitative analysis of FDG PET images of medial temporal lobe epilepsy patients. Clin Nucl Med. 2022;47(4):287–93.

    Article  PubMed  PubMed Central  Google Scholar 

  195. Flaus A. et al. Deep-learning predicted PET can be subtracted from the true clinical fluorodeoxyglucose PET co-registered to MRI to identify the epileptogenic zone in focal epilepsy. Epilepsia Open. 2023. https://doi.org/10.1002/epi4.12820.

  196. Luckett PH, et al. Deep learning resting state functional magnetic resonance imaging lateralization of temporal lobe epilepsy. Epilepsia. 2022;63(6):1542–52.

    Article  PubMed  PubMed Central  Google Scholar 

  197. Walger L, et al. Artificial intelligence for the detection of focal cortical dysplasia: challenges in translating algorithms into clinical practice. Epilepsia. 2023;64(5):1093–112.

    Article  PubMed  Google Scholar 

  198. Urbach H, et al. “Within a minute” detection of focal cortical dysplasia. Neuroradiology. 2022;64(4):715–26.

    Article  PubMed  Google Scholar 

  199. Gill RS, et al. Multicenter validation of a deep learning detection algorithm for focal cortical dysplasia. Neurology. 2021;97(16):e1571–82.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Eriksson MH, et al. Predicting seizure outcome after epilepsy surgery: do we need more complex models, larger samples, or better data? Epilepsia. 2023;64(8):2014–26.

    Article  PubMed  Google Scholar 

  201. Yossofzai O, et al. Development and validation of machine learning models for prediction of seizure outcome after pediatric epilepsy surgery. Epilepsia. 2022;63(8):1956–69.

    Article  PubMed  Google Scholar 

  202. Mirchi N, et al. Decoding intracranial EEG with machine learning: a systematic review. Front Hum Neurosci. 2022;16:913777.

    Article  PubMed  PubMed Central  Google Scholar 

  203. Quon RJ, et al. AiED: artificial intelligence for the detection of intracranial interictal epileptiform discharges. Clin Neurophysiol. 2022;133:1–8.

    Article  PubMed  Google Scholar 

  204. Tamilia E, et al. Current and emerging potential of magnetoencephalography in the detection and localization of high-frequency oscillations in epilepsy. Front Neurol. 2017;8:14.

    Article  PubMed  PubMed Central  Google Scholar 

  205. Nagasawa T, et al. Spontaneous and visually driven high-frequency oscillations in the occipital cortex: intracranial recording in epileptic patients. Hum Brain Mapp. 2012;33(3):569–83.

    Article  PubMed  Google Scholar 

  206. Fujiwara H. et al. Resection of ictal high-frequency oscillations leads to favorable surgical outcome in pediatric epilepsy. Epilepsia. 2012;53(9):1607–17.

  207. Iwatani Y. et al. Ictal high-frequency oscillations on scalp EEG recordings in symptomatic West syndrome. Epilepsy Res. 2012;102(1-2):60–70.

  208. Zhang Y, et al. Characterizing physiological high-frequency oscillations using deep learning. J Neural Eng. 2022;19(6):066027.

    Article  Google Scholar 

  209. Monsoor T, et al. Optimizing detection and deep learning-based classification of pathological high-frequency oscillations in epilepsy. Clin Neurophysiol. 2023;154:129–40.

    Article  PubMed  Google Scholar 

  210. Chari A. et al. Lesion detection in epilepsy surgery: Lessons from a prospective evaluation of a machine learning algorithm. Dev Med Child Neurol. 2023. https://doi.org/10.1111/dmcn.15727.

  211. Johnson GW, et al. Localizing seizure onset zones in surgical epilepsy with neurostimulation deep learning. J Neurosurg. 2023;138(4):1002–7.

    PubMed  Google Scholar 

  212. Sollee J, et al. Artificial intelligence for medical image analysis in epilepsy. Epilepsy Res. 2022;182:106861.

    Article  PubMed  Google Scholar 

  213. Smolyansky ED, et al. Machine learning models for decision support in epilepsy management: a critical review. Epilepsy Behav. 2021;123:108273.

    Article  PubMed  Google Scholar 

  214. Rigney G, Lennon M, Holderrieth P. The use of computational models in the management and prognosis of refractory epilepsy: a critical evaluation. Seizure. 2021;91:132–40.

    Article  PubMed  Google Scholar 

Download references

Funding

Dr. Kerr’s research time was supported by the United States National Institutes of Neurological Disorders and Stroke (grant numbers NIH R25 NS089450, NIH U24NS107158); the Susan S. Spencer Clinical Research Training Scholarship funded by the American Academy of Neurology, American Epilepsy Society, Epilepsy Foundation, American Brain Foundation; and the Epilepsy Study Consortium Mini grant.

Author information

Authors and Affiliations

Authors

Contributions

W.K. wrote the first draft. W.K. and K.M. collaboratively modified the manuscript to reach the final version. All authors approved of the final version.

Corresponding author

Correspondence to Wesley T. Kerr.

Ethics declarations

Conflict of Interest

Dr. Kerr writes review articles for Medlink Neurology; has paid consulting agreements with SK Life Science, Janssen, Biohaven Pharmaceutical, and Radius Health; and has unpaid research agreements with UCB, GSK, Johnson & Johnson, Eisai, and Jazz Pharmaceuticals. These companies had no part in the production of this manuscript. Ms. McFarlane has no relevant disclosures.

Human and Animal Rights and Informed Consent

This article does not contain data from any new studies with human or animal subjects performed by the any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kerr, W.T., McFarlane, K.N. Machine Learning and Artificial Intelligence Applications to Epilepsy: a Review for the Practicing Epileptologist. Curr Neurol Neurosci Rep 23, 869–879 (2023). https://doi.org/10.1007/s11910-023-01318-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-023-01318-7

Keywords

Navigation