Skip to main content

Advertisement

Log in

Chronic Demyelination and Axonal Degeneration in Multiple Sclerosis: Pathogenesis and Therapeutic Implications

  • Demyelinating Disorders (J. Bernard and M. Cameron, Section Editors)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Multiple sclerosis (MS) is the most common demyelinating disease of the central nervous system (CNS). Inflammatory attacks in MS lead to both demyelination and axonal damage. However, due to incomplete remyelination most MS lesions remain chronically demyelinated. In parallel, there is axonal degeneration in the CNS of MS patients, contributing to progressive disability. There are currently no approved therapies that adequately restore myelin or protect axons from degeneration. In this review, we will discuss the pathophysiology of axonal loss and chronic demyelination in MS and how understanding this pathophysiology is leading to the development of new MS therapeutics.

Recent Findings

Ongoing research into the function of oligodendrocytes and myelin has revealed the importance of their relationship with neuronal health. Demyelination in MS leads to a number of pathophysiologic changes contributing to axonal generation. Among these are mitochondrial dysfunction, persistent neuroinflammation, and the effects of reactive oxygen and nitrogen species. With this information, we review currently approved and investigational therapies designed to restore lost or damaged myelin and protect against neuronal degeneration.

Summary

The development of therapies to restore lost myelin and protect neurons is a promising avenue of investigation for the benefit of patients with MS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Wallin MT, Culpepper WJ, Nichols E, Bhutta ZA, Gebrehiwot TT, Hay SI, et al. Global, regional, and national burden of multiple sclerosis 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology. 2019;18(3):269–85. https://doi.org/10.1016/s1474-4422(18)30443-5.

    Article  Google Scholar 

  2. Wallin MT, Culpepper WJ, Campbell JD, Nelson LM, Langer-Gould A, Marrie RA, et al. The prevalence of MS in the United States: a population-based estimate using health claims data. Neurology. 2019;92(10):e1029–e40. https://doi.org/10.1212/WNL.0000000000007035.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Feigin VL, Abajobir AA, Abate KH, Abd-Allah F, Abdulle AM, Abera SF, et al. Global, regional, and national burden of neurological disorders during 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet Neurology. 2017;16(11):877–97. https://doi.org/10.1016/s1474-4422(17)30299-5.

    Article  Google Scholar 

  4. • Paz-Zulueta M, Parás-Bravo P, Cantarero-Prieto D, Blázquez-Fernández C, Oterino-Durán A. A literature review of cost-of-illness studies on the economic burden of multiple sclerosis. Multiple Sclerosis and Related Disorders. 2020;43:102162. https://doi.org/10.1016/j.msard.2020.102162This review details the evidence demonstrating the well-known large economic burden of multiple sclerosis, highlighting the continued need for improved therapies and outcomes.

    Article  PubMed  Google Scholar 

  5. Rommer PS, Milo R, Han MH, Satyanarayan S, Sellner J, Hauer L, et al. Immunological aspects of approved MS therapeutics. Front Immunol. 2019;10:1564. https://doi.org/10.3389/fimmu.2019.01564.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Montalban X, Hauser SL, Kappos L, Arnold DL, Bar-Or A, Comi G, et al. Ocrelizumab versus placebo in primary progressive multiple sclerosis. New England Journal of Medicine. 2017;376(3):209–20. https://doi.org/10.1056/nejmoa1606468.

    Article  CAS  Google Scholar 

  7. Patti F, Visconti A, Capacchione A, Roy S, Trojano M. Long-term effectiveness in patients previously treated with cladribine tablets: a real-world analysis of the Italian multiple sclerosis registry (CLARINET-MS). Therapeutic Advances in Neurological Disorders. 2020;13:175628642092268. https://doi.org/10.1177/1756286420922685.

    Article  CAS  Google Scholar 

  8. Kappos L, Bar-Or A, Cree BAC, Fox RJ, Giovannoni G, Gold R, et al. Siponimod versus placebo in secondary progressive multiple sclerosis (EXPAND): a double-blind, randomised, phase 3 study. The Lancet. 2018;391(10127):1263–73. https://doi.org/10.1016/s0140-6736(18)30475-6.

    Article  CAS  Google Scholar 

  9. Green AJ, Gelfand JM, Cree BA, Bevan C, Boscardin WJ, Mei F, et al. Clemastine fumarate as a remyelinating therapy for multiple sclerosis (ReBUILD): a randomised, controlled, double-blind, crossover trial. The Lancet. 2017;390(10111):2481–9. https://doi.org/10.1016/s0140-6736(17)32346-2.

    Article  CAS  Google Scholar 

  10. Hartline DK, Colman DR. Rapid conduction and the evolution of giant axons and myelinated fibers. Curr Biol. 2007;17(1):R29–35. https://doi.org/10.1016/j.cub.2006.11.042.

    Article  CAS  PubMed  Google Scholar 

  11. Ford MC, Alexandrova O, Cossell L, Stange-Marten A, Sinclair J, Kopp-Scheinpflug C, et al. Tuning of Ranvier node and internode properties in myelinated axons to adjust action potential timing. Nat Commun. 2015;6:8073. https://doi.org/10.1038/ncomms9073.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Koles ZJ, Rasminsky M. A computer simulation of conduction in demyelinated nerve fibres. J Physiol. 1972;227(2):351–64.

    Article  CAS  Google Scholar 

  13. Felts PA, Baker TA, Smith KJ. Conduction in segmentally demyelinated mammalian central axons. J Neurosci. 1997;17(19):7267–77.

    Article  CAS  Google Scholar 

  14. Hamada MS, Kole MH. Myelin loss and axonal ion channel adaptations associated with gray matter neuronal hyperexcitability. J Neurosci. 2015;35(18):7272–86. https://doi.org/10.1523/JNEUROSCI.4747-14.2015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Trapp BD, Stys PK. Virtual hypoxia and chronic necrosis of demyelinated axons in multiple sclerosis. Lancet Neurology. 2009;8(3):280–91.

    Article  CAS  Google Scholar 

  16. Saab AS, Tzvetanova ID, Nave KA. The role of myelin and oligodendrocytes in axonal energy metabolism. Curr Opin Neurobiol. 2013;23(6):1065–72. https://doi.org/10.1016/j.conb.2013.09.008.

    Article  CAS  PubMed  Google Scholar 

  17. Harris JJ, Attwell D. The energetics of CNS white matter. J Neurosci. 2012;32(1):356–71. https://doi.org/10.1523/JNEUROSCI.3430-11.2012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Nave KA. Myelination and the trophic support of long axons. Nat Rev Neurosci. 2010;11(4):275–83. https://doi.org/10.1038/nrn2797.

    Article  CAS  PubMed  Google Scholar 

  19. Tallantyre EC, Bo L, Al-Rawashdeh O, Owens T, Polman CH, Lowe JS, et al. Clinico-pathological evidence that axonal loss underlies disability in progressive multiple sclerosis. Multiple Sclerosis Journal. 2010;16(4):406–11. https://doi.org/10.1177/1352458510364992.

    Article  PubMed  Google Scholar 

  20. Lee Y, Morrison BM, Li Y, Lengacher S, Farah MH, Hoffman PN, et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature. 2012;487(7408):443–8. https://doi.org/10.1038/nature11314.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Philips T, Mironova YA, Jouroukhin Y, Chew J, Vidensky S, Farah MH, et al. MCT1 Deletion in oligodendrocyte lineage cells causes late-onset hypomyelination and axonal degeneration. Cell Reports. 2021;34(2):108610. https://doi.org/10.1016/j.celrep.2020.108610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Micu I, Plemel JR, Lachance C, Proft J, Jansen AJ, Cummins K, et al. The molecular physiology of the axo-myelinic synapse. Exp Neurol. 2016;276:41–50. https://doi.org/10.1016/j.expneurol.2015.10.006.

    Article  CAS  PubMed  Google Scholar 

  23. Saab AS, Tzvetavona ID, Trevisiol A, Baltan S, Dibaj P, Kusch K, et al. Oligodendroglial NMDA receptors regulate glucose import and axonal energy metabolism. Neuron. 2016;91(1):119–32. https://doi.org/10.1016/j.neuron.2016.05.016.

    Article  CAS  PubMed  Google Scholar 

  24. Schirmer L, Mobius W, Zhao C, Cruz-Herranz A, Ben Haim L, Cordano C, et al. Oligodendrocyte-encoded Kir4.1 function is required for axonal integrity. Elife. 2018;7. 10.7554/eLife.36428.

  25. Witte ME, Schumacher A-M, Mahler CF, Bewersdorf JP, Lehmitz J, Scheiter A, et al. Calcium influx through plasma-membrane nanoruptures drives axon degeneration in a model of multiple sclerosis. Neuron. 2019;101(4):615–24.e5. https://doi.org/10.1016/j.neuron.2018.12.023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Wilkins A, Majed H, Layfield R, Compston A, Chandran S. Oligodendrocytes promote neuronal survival and axonal length by distinct intracellular mechanisms: a novel role for oligodendrocyte-derived glial cell line-derived neurotrophic factor. Journal of Neuroscience. 2003;23(12):4967–74.

    Article  CAS  Google Scholar 

  27. • Mukherjee C, Kling T, Russo B, Miebach K, Kess E, Schifferer M, et al. Oligodendrocytes provide antioxidant defense function for neurons by secreting ferritin heavy chain. Cell Metab. 2020;32(2):259–72 e10. https://doi.org/10.1016/j.cmet.2020.05.019This study details a function outside of myelination whereby oligodendrocytes serve to preserve axon integrity by preventing oxidative damage.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Fruhbeis C, Frohlich D, Kuo WP, Amphornrat J, Thilemann S, Saab AS, et al. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte–neuron communication. PLoS Biol. 2013;11(7):e1001604. https://doi.org/10.1371/journal.pbio.1001604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zawadzka M, Rivers LE, Fancy SP, Zhao C, Tripathi R, Jamen F, et al. CNS-resident glial progenitor/stem cells produce Schwann cells as well as oligodendrocytes during repair of CNS demyelination. Cell Stem Cell. 2010;6(6):578–90. https://doi.org/10.1016/j.stem.2010.04.002.

    Article  CAS  PubMed  Google Scholar 

  30. •• Bacmeister CM, Barr HJ, McClain CR, Thornton MA, Nettles D, Welle CG, et al. Motor learning promotes remyelination via new and surviving oligodendrocytes. Nat Neurosci. 2020;23(7):819-31. 10.1038/s41593-020-0637-3. This study demonstrates that motor learning can stimulate remyelination and that it occurs via both the differentiation of new oligodendrocytes and existing mature oligodendrocytes. .

  31. Duncan ID, Radcliff AB, Heidari M, Kidd G, August BK, Wierenga LA. The adult oligodendrocyte can participate in remyelination. Proc Natl Acad Sci U S A. 2018;115(50):E11807–E16. https://doi.org/10.1073/pnas.1808064115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. •• Yeung MSY, Djelloul M, Steiner E, Bernard S, Salehpour M, Possnert G, et al. Dynamics of oligodendrocyte generation in multiple sclerosis. Nature. 2019;566(7745):538–42. https://doi.org/10.1038/s41586-018-0842-3This study provides evidence that preexisting mature oligodendrocytes contribute to remyelination in the human MS brain.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Hughes EG, Kang SH, Fukaya M, Bergles DE. Oligodendrocyte progenitors balance growth with self-repulsion to achieve homeostasis in the adult brain. Nat Neurosci. 2013;16(6):668–76. https://doi.org/10.1038/nn.3390.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Frischer JM, Weigand SD, Guo Y, Kale N, Parisi JE, Pirko I, et al. Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Annals of neurology. 2015;78(5):710–21. https://doi.org/10.1002/ana.24497.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Goldschmidt T, Antel J, Konig FB, Bruck W, Kuhlmann T. Remyelination capacity of the MS brain decreases with disease chronicity. Neurology. 2009;72(22):1914–21. https://doi.org/10.1212/WNL.0b013e3181a8260a.

    Article  CAS  PubMed  Google Scholar 

  36. Patrikios P, Stadelmann C, Kutzelnigg A, Rauschka H, Schmidbauer M, Laursen H, et al. Remyelination is extensive in a subset of multiple sclerosis patients. Brain. 2006;129:3165–72. https://doi.org/10.1093/Brain/Awl217.

    Article  PubMed  Google Scholar 

  37. Chang A, Tourtellotte WW, Rudick R, Trapp BD. Premyelinating oligodendrocytes in chronic lesions of multiple sclerosis. N Engl J Med. 2002;346(3):165–73. https://doi.org/10.1056/NEJMoa010994.

    Article  PubMed  Google Scholar 

  38. Kuhlmann T, Miron V, Cuo Q, Wegner C, Antel J, Bruck W. Differentiation block of oligodendroglial progenitor cells as a cause for remyelination failure in chronic multiple sclerosis. Brain. 2008;131:1749–58. https://doi.org/10.1093/brain/awn096.

    Article  CAS  PubMed  Google Scholar 

  39. Franklin RJ, Ffrench-Constant C. Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci. 2008;9(11):839–55. https://doi.org/10.1038/nrn2480.

    Article  CAS  PubMed  Google Scholar 

  40. Neumann B, Segel M, Chalut KJ, Franklin RJ. Remyelination and ageing: reversing the ravages of time. Multiple sclerosis. 2019;25(14):1835–41. https://doi.org/10.1177/1352458519884006.

    Article  PubMed  Google Scholar 

  41. Charles P, Reynolds R, Seilhean D, Rougon G, Aigrot MS, Niezgoda A, et al. Re-expression of PSA-NCAM by demyelinated axons: an inhibitor of remyelination in multiple sclerosis? Brain. 2002;125(Pt 9):1972–9.

    Article  Google Scholar 

  42. Stoffels JM, de Jonge JC, Stancic M, Nomden A, van Strien ME, Ma D, et al. Fibronectin aggregation in multiple sclerosis lesions impairs remyelination. Brain. 2013;136(Pt 1):116–31. https://doi.org/10.1093/brain/aws313.

    Article  PubMed  Google Scholar 

  43. Back SA, Tuohy TM, Chen H, Wallingford N, Craig A, Struve J, et al. Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nat Med. 2005;11(9):966–72. https://doi.org/10.1038/nm1279.

    Article  CAS  PubMed  Google Scholar 

  44. John GR, Shankar SL, Shafit-Zagardo B, Massimi A, Lee SC, Raine CS, et al. Multiple sclerosis: re-expression of a developmental pathway that restricts oligodendrocyte maturation. Nat Med. 2002;8(10):1115–21. https://doi.org/10.1038/nm781.

    Article  CAS  PubMed  Google Scholar 

  45. Foote AK, Blakemore WF. Inflammation stimulates remyelination in areas of chronic demyelination. Brain. 2005;128(Pt 3):528–39. https://doi.org/10.1093/brain/awh417.

    Article  CAS  PubMed  Google Scholar 

  46. Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, et al. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci. 2013;16(9):1211–8. https://doi.org/10.1038/nn.3469.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Wolswijk G. Oligodendrocyte precursor cells in the demyelinated multiple sclerosis spinal cord. Brain. 2002;125(Pt 2):338–49.

    Article  Google Scholar 

  48. Kornek B, Storch MK, Weissert R, Wallstroem E, Stefferl A, Olsson T, et al. Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol. 2000;157(1):267–76. https://doi.org/10.1016/S0002-9440(10)64537-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Trapp BD, Peterson J, Ransohoff RM, Rudick R, Mörk S, Bö L. Axonal transection in the lesions of multiple sclerosis. New England Journal of Medicine. 1998;338(5):278–85. https://doi.org/10.1056/nejm199801293380502.

    Article  CAS  Google Scholar 

  50. Lovas G, Szilagyi N, Majtenyi K, Palkovits M, Komoly S. Axonal changes in chronic demyelinated cervical spinal cord plaques. Brain. 2000;123(Pt 2):308–17. https://doi.org/10.1093/brain/123.2.308.

    Article  PubMed  Google Scholar 

  51. Bjartmar C, Kidd G, Mork S, Rudick R, Trapp BD. Neurological disability correlates with spinal cord axonal loss and reduced N-acetyl aspartate in chronic multiple sclerosis patients. Ann Neurol. 2000;48(6):893–901.

    Article  CAS  Google Scholar 

  52. Griffiths I, Klugmann M, Anderson T, Yool D, Thomson C, Schwab MH, et al. Axonal swellings and degeneration in mice lacking the major proteolipid of myelin. Science. 1998;280(5369):1610–3.

    Article  CAS  Google Scholar 

  53. Edgar JM, McLaughlin M, Werner HB, McCulloch MC, Barrie JA, Brown A, et al. Early ultrastructural defects of axons and axon-glia junctions in mice lacking expression of Cnp1. Glia. 2009;57(16):1815–24. https://doi.org/10.1002/glia.20893.

    Article  PubMed  Google Scholar 

  54. Lappe-Siefke C, Goebbels S, Gravel M, Nicksch E, Lee J, Braun PE, et al. Disruption of Cnp1 uncouples oligodendroglial functions in axonal support and myelination. Nature Genetics. 2003;33(3):366–74. https://doi.org/10.1038/ng1095.

    Article  CAS  PubMed  Google Scholar 

  55. Oluich L-J, Stratton JAS, Lulu Xing Y, Ng SW, Cate HS, Sah P, et al. Targeted ablation of oligodendrocytes induces axonal pathology independent of overt demyelination. Journal of Neuroscience. 2012;32(24):8317–30. https://doi.org/10.1523/jneurosci.1053-12.2012.

    Article  CAS  PubMed  Google Scholar 

  56. Mei F, Lehmann-Horn K, Shen YA, Rankin KA, Stebbins KJ, Lorrain DS, et al. Accelerated remyelination during inflammatory demyelination prevents axonal loss and improves functional recovery. Elife. 2016;5. https://doi.org/10.7554/eLife.18246.

  57. Bodini B, Veronese M, Garcia-Lorenzo D, Battaglini M, Poirion E, Chardain A, et al. Dynamic imaging of individual remyelination profiles in multiple sclerosis. Ann Neurol. 2016. https://doi.org/10.1002/ana.24620.

  58. Bramow S, Frischer JM, Lassmann H, Koch-Henriksen N, Lucchinetti CF, Sorensen PS, et al. Demyelination versus remyelination in progressive multiple sclerosis. Brain. 2010;133(10):2983–98. https://doi.org/10.1093/brain/awq250.

    Article  PubMed  Google Scholar 

  59. Waxman SG. Axonal conduction and injury in multiple sclerosis: the role of sodium channels. Nature Reviews Neuroscience. 2006;7(12):932–41. https://doi.org/10.1038/nrn2023.

    Article  CAS  PubMed  Google Scholar 

  60. Haider L, Fischer MT, Frischer JM, Bauer J, Hoftberger R, Botond G, et al. Oxidative damage in multiple sclerosis lesions. Brain. 2011;134(7):1914–24. https://doi.org/10.1093/brain/awr128.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Mahad DJ, Ziabreva I, Campbell G, Lax N, White K, Hanson PS, et al. Mitochondrial changes within axons in multiple sclerosis. Brain. 2009;132(5):1161–74. https://doi.org/10.1093/brain/awp046.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Dutta R, Mcdonough J, Yin X, Peterson J, Chang A, Torres T, et al. Mitochondrial dysfunction as a cause of axonal degeneration in multiple sclerosis patients. Annals of Neurology. 2006;59(3):478–89. https://doi.org/10.1002/ana.20736.

    Article  CAS  PubMed  Google Scholar 

  63. Witte ME, Nijland PG, Drexhage JA, Gerritsen W, Geerts D, van Het Hof B, et al. Reduced expression of PGC-1alpha partly underlies mitochondrial changes and correlates with neuronal loss in multiple sclerosis cortex. Acta Neuropathol. 2013;125(2):231–43. https://doi.org/10.1007/s00401-012-1052-y.

    Article  CAS  PubMed  Google Scholar 

  64. Campbell GR, Worrall JT, Mahad DJ. The central role of mitochondria in axonal degeneration in multiple sclerosis. Multiple Sclerosis Journal. 2014;20(14):1806–13. https://doi.org/10.1177/1352458514544537.

    Article  CAS  PubMed  Google Scholar 

  65. Correale J, Marrodan M, Ysrraelit M. Mechanisms of neurodegeneration and axonal dysfunction in progressive multiple sclerosis. Biomedicines. 2019;7(1):14. https://doi.org/10.3390/biomedicines7010014.

    Article  CAS  PubMed Central  Google Scholar 

  66. • Licht-Mayer S, Campbell GR, Canizares M, Mehta AR, Gane AB, McGill K, et al. Enhanced axonal response of mitochondria to demyelination offers neuroprotection: implications for multiple sclerosis. Acta Neuropathol. 2020;140(2):143–67. https://doi.org/10.1007/s00401-020-02179-xThis study supports the hypothesis that metabolic dysregulation contributes to axonal degeneration following demyelination, as well as proof of principle that correction can preserve axons.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kuhlmann T, Ludwin S, Prat A, Antel J, Brück W, Lassmann H. An updated histological classification system for multiple sclerosis lesions. Acta Neuropathologica. 2017;133(1):13–24. https://doi.org/10.1007/s00401-016-1653-y.

    Article  CAS  PubMed  Google Scholar 

  68. Zrzavy T, Hametner S, Wimmer I, Butovsky O, Weiner HL, Lassmann H. Loss of ‘homeostatic’ microglia and patterns of their activation in active multiple sclerosis. Brain. 2017;140(7):1900–13. https://doi.org/10.1093/brain/awx113.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Lassmann H, Van Horssen J, Mahad D. Progressive multiple sclerosis: pathology and pathogenesis. Nature Reviews Neurology. 2012;8(11):647–56. https://doi.org/10.1038/nrneurol.2012.168.

    Article  CAS  PubMed  Google Scholar 

  70. Guerrero BL, Sicotte NL. Microglia in multiple sclerosis: friend or foe? Frontiers in Immunology. 2020;11. https://doi.org/10.3389/fimmu.2020.00374.

  71. • Berghoff SA, Spieth L, Sun T, Hosang L, Schlaphoff L, Depp C, et al. Microglia facilitate repair of demyelinated lesions via post-squalene sterol synthesis, Nat Neurosci. 2021;24(1):47–60. https://doi.org/10.1038/s41593-020-00757-6This study provides evidence and a possible mechanism whereby microglia facilitate myelin repair.

  72. Lloyd AF, Davies CL, Holloway RK, Labrak Y, Ireland G, Carradori D, et al. Central nervous system regeneration is driven by microglia necroptosis and repopulation. Nature Neuroscience. 2019;22(7):1046–52. https://doi.org/10.1038/s41593-019-0418-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lassmann H. Multiple sclerosis: Lessons from molecular neuropathology. Experimental Neurology. 2014;262:2–7. https://doi.org/10.1016/j.expneurol.2013.12.003.

    Article  CAS  PubMed  Google Scholar 

  74. Kutzelnigg A, Lucchinetti CF, Stadelmann C, Brück W, Rauschka H, Bergmann M, et al. Cortical demyelination and diffuse white matter injury in multiple sclerosis. Brain. 2005;128(11):2705–12. https://doi.org/10.1093/brain/awh641.

    Article  PubMed  Google Scholar 

  75. De Groot CJ, Bergers E, Kamphorst W, Ravid R, Polman CH, Barkhof F, et al. Post-mortem MRI-guided sampling of multiple sclerosis brain lesions: increased yield of active demyelinating and (p)reactive lesions. Brain. 2001;124(Pt 8):1635–45. https://doi.org/10.1093/brain/124.8.1635.

    Article  PubMed  Google Scholar 

  76. Singh S, Metz I, Amor S, Van Der Valk P, Stadelmann C, Brück W. Microglial nodules in early multiple sclerosis white matter are associated with degenerating axons. Acta Neuropathologica. 2013;125(4):595–608. https://doi.org/10.1007/s00401-013-1082-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Campbell GR, Ziabreva I, Reeve AK, Krishnan KJ, Reynolds R, Howell O, et al. Mitochondrial DNA deletions and neurodegeneration in multiple sclerosis. Annals of Neurology. 2011;69(3):481–92. https://doi.org/10.1002/ana.22109.

    Article  CAS  PubMed  Google Scholar 

  78. Correale J. The role of microglial activation in disease progression. Multiple Sclerosis Journal. 2014;20(10):1288–95. https://doi.org/10.1177/1352458514533230.

    Article  CAS  PubMed  Google Scholar 

  79. Gimenez MAT, Sim JE, Russell JH. TNFR1-dependent VCAM-1 expression by astrocytes exposes the CNS to destructive inflammation. Journal of Neuroimmunology. 2004;151(1-2):116–25. https://doi.org/10.1016/j.jneuroim.2004.02.012.

    Article  CAS  PubMed  Google Scholar 

  80. Sobel RA, Mitchell ME, Fondren G. Intercellular adhesion molecule-1 (ICAM-1) in cellular immune reactions in the human central nervous system. Am J Pathol. 1990;136(6):1309–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Dong Y, Benveniste EN. Immune function of astrocytes. Glia. 2001;36(2):180–90. https://doi.org/10.1002/glia.1107.

    Article  CAS  PubMed  Google Scholar 

  82. Dewitt DA, Perry G, Cohen M, Doller C, Silver J. Astrocytes regulate microglial phagocytosis of senile plaque cores of Alzheimer's disease. Experimental Neurology. 1998;149(2):329–40. https://doi.org/10.1006/exnr.1997.6738.

    Article  CAS  PubMed  Google Scholar 

  83. Mayo L, Trauger SA, Blain M, Nadeau M, Patel B, Alvarez JI, et al. Regulation of astrocyte activation by glycolipids drives chronic CNS inflammation. Nature Medicine. 2014;20(10):1147–56. https://doi.org/10.1038/nm.3681.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Bal-Price A, Brown GC. Inflammatory neurodegeneration mediated by nitric oxxide from activated glia-inhibiting neuronal respiration, causing glutamate release and excitotoxicity. The Journal of Neuroscience. 2001;21(17):6480–91. https://doi.org/10.1523/jneurosci.21-17-06480.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Hamby ME, Hewett JA, Hewett SJ. TGF-β1 potentiates astrocytic nitric oxide production by expanding the population of astrocytes that express NOS-2. Glia. 2006;54(6):566–77. https://doi.org/10.1002/glia.20411.

    Article  PubMed  Google Scholar 

  86. Stojanovic IR, Kostic M, Ljubisavljevic S. The role of glutamate and its receptors in multiple sclerosis. J Neural Transm (Vienna). 2014;121(8):945–55. https://doi.org/10.1007/s00702-014-1188-0.

    Article  CAS  PubMed  Google Scholar 

  87. Rossi S, Motta C, Studer V, Barbieri F, Buttari F, Bergami A, et al. Tumor necrosis factor is elevated in progressive multiple sclerosis and causes excitotoxic neurodegeneration. Multiple Sclerosis Journal. 2014;20(3):304–12. https://doi.org/10.1177/1352458513498128.

    Article  CAS  PubMed  Google Scholar 

  88. Sherman LS, Struve JN, Rangwala R, Wallingford NM, Tuohy TMF, Kuntz C. Hyaluronate-based extracellular matrix: keeping glia in their place. Glia. 2002;38(2):93–102. https://doi.org/10.1002/glia.10053.

    Article  PubMed  Google Scholar 

  89. Hammond R. Timothy, Gadea A, Dupree J, Kerninon C, Nait-Oumesmar B, Aguirre A, et al. Astrocyte-derived endothelin-1 inhibits remyelination through notch activation. Neuron. 2014;81(3):588–602. https://doi.org/10.1016/j.neuron.2013.11.015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Back SA, Tuohy TMF, Chen H, Wallingford N, Craig A, Struve J, et al. Hyaluronan accumulates in demyelinated lesions and inhibits oligodendrocyte progenitor maturation. Nature Medicine. 2005;11(9):966–72. https://doi.org/10.1038/nm1279.

    Article  CAS  PubMed  Google Scholar 

  91. Gutowski N. Cuzner. Tenascin-R and C in multiple sclerosis lesions: relevance to extracellular matrix remodelling. Neuropathology and Applied Neurobiology. 1999;25(3):207–14. https://doi.org/10.1046/j.1365-2990.1999.00176.x.

    Article  CAS  PubMed  Google Scholar 

  92. Stoffels JMJ, De Jonge JC, Stancic M, Nomden A, Van Strien ME, Ma D, et al. Fibronectin aggregation in multiple sclerosis lesions impairs remyelination. Brain. 2013;136(1):116–31. https://doi.org/10.1093/brain/aws313.

    Article  PubMed  Google Scholar 

  93. Feliu A, Mestre L, Carrillo-Salinas FJ, Yong VW, Mecha M, Guaza C. 2-arachidonoylglycerol reduces chondroitin sulphate proteoglycan production by astrocytes and enhances oligodendrocyte differentiation under inhibitory conditions. Glia. 2020;68(6):1255–73. https://doi.org/10.1002/glia.23775.

    Article  PubMed  Google Scholar 

  94. Lau LW, Keough MB, Haylock-Jacobs S, Cua R, Döring A, Sloka S, et al. Chondroitin sulfate proteoglycans in demyelinated lesions impair remyelination. Annals of Neurology. 2012;72(3):419–32. https://doi.org/10.1002/ana.23599.

    Article  CAS  PubMed  Google Scholar 

  95. Aloisi F, Pujol-Borrell R. Lymphoid neogenesis in chronic inflammatory diseases. Nature Reviews Immunology. 2006;6(3):205–17. https://doi.org/10.1038/nri1786.

    Article  CAS  PubMed  Google Scholar 

  96. Corsiero E, Nerviani A, Bombardieri M, Pitzalis C. Ectopic lymphoid structures: powerhouse of autoimmunity. Front Immunol. 2016;7:430. https://doi.org/10.3389/fimmu.2016.00430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Magliozzi R, Howell O, Vora A, Serafini B, Nicholas R, Puopolo M, et al. Meningeal B-cell follicles in secondary progressive multiple sclerosis associate with early onset of disease and severe cortical pathology. Brain. 2006;130(4):1089–104. https://doi.org/10.1093/brain/awm038.

    Article  Google Scholar 

  98. Magliozzi R, Howell OW, Reeves C, Roncaroli F, Nicholas R, Serafini B, et al. A Gradient of neuronal loss and meningeal inflammation in multiple sclerosis. Annals of Neurology. 2010;68(4):477–93. https://doi.org/10.1002/ana.22230.

    Article  CAS  PubMed  Google Scholar 

  99. Makshakov G, Magonov E, Totolyan N, Nazarov V, Lapin S, Mazing A, et al. Leptomeningeal contrast enhancement is associated with disability progression and grey matter atrophy in multiple sclerosis. Neurology Research International. 2017;2017:1–7. https://doi.org/10.1155/2017/8652463.

    Article  Google Scholar 

  100. Zivadinov R, Ramasamy DP, Vaneckova M, Gandhi S, Chandra A, Hagemeier J, et al. Leptomeningeal contrast enhancement is associated with progression of cortical atrophy in MS: A retrospective, pilot, observational longitudinal study. Multiple Sclerosis Journal. 2017;23(10):1336–45. https://doi.org/10.1177/1352458516678083.

    Article  PubMed  Google Scholar 

  101. Montalban X, Leist TP, Cohen BA, Moses H, Campbell J, Hicking C, et al. Cladribine tablets added to IFN-β in active relapsing MS. Neurology - Neuroimmunology Neuroinflammation. 2018;5(5):e477. https://doi.org/10.1212/nxi.0000000000000477.

    Article  PubMed  Google Scholar 

  102. Abell A. FDA approves two new oral drugs for relapsing forms of MS. Pharmacy Today. 2019;25(6):20–1. https://doi.org/10.1016/j.ptdy.2019.05.012.

    Article  Google Scholar 

  103. FDA Online Label Repository. labels.fda.gov Accessed October 21 2020.

  104. Gelfand JM, Cree BAC, Hauser SL. Ocrelizumab and other CD20+ B-cell-depleting therapies in multiple sclerosis. Neurotherapeutics. 2017;14(4):835–41. https://doi.org/10.1007/s13311-017-0557-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Behrangi N, Fischbach F, Kipp M. Mechanism of siponimod: anti-inflammatory and neuroprotective mode of action. Cells. 2019;8(1). https://doi.org/10.3390/cells8010024.

  106. Pebay A, Toutant M, Premont J, Calvo CF, Venance L, Cordier J, et al. Sphingosine-1-phosphate induces proliferation of astrocytes: regulation by intracellular signalling cascades. Eur J Neurosci. 2001;13(12):2067–76.

    Article  Google Scholar 

  107. Jackson SJ, Giovannoni G, Baker D. Fingolimod modulates microglial activation to augment markers of remyelination. J Neuroinflammation. 2011;8:76. https://doi.org/10.1186/1742-2094-8-76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. O'Sullivan C, Schubart A, Mir AK, Dev KK. The dual S1PR1/S1PR5 drug BAF312 (Siponimod) attenuates demyelination in organotypic slice cultures. J Neuroinflammation. 2016;13:31. https://doi.org/10.1186/s12974-016-0494-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tiwari-Woodruff S, Yamate-Morgan H, Sekyi M, Lauderdale K, Hasselmann J, Schubart A. The sphingosine 1-phosphate (S1P) receptor modulator, siponimod decreases oligodendrocyte cell death and axon demyelination in a mouse model of multiple sclerosis (P5.325). Neurology. 2016;86(16 Supplement):P5.325.

    Google Scholar 

  110. Comi G, Cook S, Giovannoni G, Rieckmann P, Sørensen PS, Vermersch P, et al. Effect of cladribine tablets on lymphocyte reduction and repopulation dynamics in patients with relapsing multiple sclerosis. Multiple Sclerosis and Related Disorders. 2019;29:168–74. https://doi.org/10.1016/j.msard.2019.01.038.

    Article  PubMed  Google Scholar 

  111. Giovannoni G. Cladribine to treat relapsing forms of multiple sclerosis. Neurotherapeutics. 2017;14(4):874–87. https://doi.org/10.1007/s13311-017-0573-4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Mi S, Hu B, Hahm K, Luo Y, Kam Hui ES, Yuan Q, et al. LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis. Nature Medicine. 2007;13(10):1228–33. https://doi.org/10.1038/nm1664.

    Article  CAS  PubMed  Google Scholar 

  113. Cadavid D, Balcer L, Galetta S, Aktas O, Ziemssen T, Vanopdenbosch L, et al. Safety and efficacy of opicinumab in acute optic neuritis (RENEW): a randomised, placebo-controlled, phase 2 trial. The Lancet Neurology. 2017;16(3):189–99. https://doi.org/10.1016/s1474-4422(16)30377-5.

    Article  CAS  PubMed  Google Scholar 

  114. Cadavid D, Mellion M, Hupperts R, Edwards KR, Calabresi PA, Drulović J, et al. Safety and efficacy of opicinumab in patients with relapsing multiple sclerosis (SYNERGY): a randomised, placebo-controlled, phase 2 trial. The Lancet Neurology. 2019;18(9):845–56. https://doi.org/10.1016/s1474-4422(19)30137-1.

    Article  CAS  PubMed  Google Scholar 

  115. Chen Y, Zhen W, Guo T, Zhao Y, Liu A, Rubio JP, et al. Histamine Receptor 3 negatively regulates oligodendrocyte differentiation and remyelination. PLOS ONE. 2017;12(12):e0189380. https://doi.org/10.1371/journal.pone.0189380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Schwartzbach CJ, Grove RA, Brown R, Tompson D, Then Bergh F, Arnold DL. Lesion remyelinating activity of GSK239512 versus placebo in patients with relapsing-remitting multiple sclerosis: a randomised, single-blind, phase II study. Journal of Neurology. 2017;264(2):304–15. https://doi.org/10.1007/s00415-016-8341-7.

    Article  CAS  PubMed  Google Scholar 

  117. Mei F, Fancy SPJ, Shen Y-AA, Niu J, Zhao C, Presley B, et al. Micropillar arrays as a high-throughput screening platform for therapeutics in multiple sclerosis. Nature Medicine. 2014;20(8):954–60. https://doi.org/10.1038/nm.3618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. • Hartley MD, Banerji T, Tagge IJ, Kirkemo LL, Chaudhary P, Calkins E, et al. Myelin repair stimulated by CNS-selective thyroid hormone action. Journal of Clinical Investigation. 2019;4(8):1097. https://doi.org/10.1172/jci.insight.126329This study details the ability of new thyromimetic drugs to stimulate myelin repair, which may be a new avenue for drug development.

    Article  Google Scholar 

  119. Faissner S, Plemel JR, Gold R, Yong VW. Progressive multiple sclerosis: from pathophysiology to therapeutic strategies. Nature Reviews Drug Discovery. 2019;18(12):905–22. https://doi.org/10.1038/s41573-019-0035-2.

    Article  CAS  PubMed  Google Scholar 

  120. Spain R, Powers K, Murchison C, Heriza E, Winges K, Yadav V, et al. Lipoic acid in secondary progressive MS. Neurology - Neuroimmunology Neuroinflammation. 2017;4(5):e374. https://doi.org/10.1212/nxi.0000000000000374.

    Article  PubMed  Google Scholar 

  121. Fiedler SE, Spain RI, Kim E, Salinthone S. Lipoic acid modulates inflammatory responses of monocytes and monocyte-derived macrophages from healthy and relapsing-remitting multiple sclerosis patients. Immunology & Cell Biology. 2020. https://doi.org/10.1111/imcb.12392.

  122. Yang C, Hao Z, Zhang L, Zeng L, Wen J. Sodium channel blockers for neuroprotection in multiple sclerosis. Cochrane Database Syst Rev. 2015;10:CD010422. https://doi.org/10.1002/14651858.CD010422.pub2.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ben Emery for reviewing the manuscript and providing insightful feedback contributing to the final version. The figure was created with BioRender.com.

Author information

Authors and Affiliations

Authors

Contributions

T.S. and D.B. devised the manuscript. T. S, G.D., and D.B wrote/revised the manuscript.

Corresponding author

Correspondence to Tyrell J Simkins.

Ethics declarations

Human and Animal Rights

This article does not present in full the data from studies using animals/humans. However It does cite studies performed by some of the authors (Duncan and Bourdette).

Competing Interests

T.S. reports no conflict of interest. G.D. reports no conflict of interest. D.B. is a co-founder of Autobahn Therapeutics.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Demyelinating Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simkins, T.J., Duncan, G.J. & Bourdette, D. Chronic Demyelination and Axonal Degeneration in Multiple Sclerosis: Pathogenesis and Therapeutic Implications. Curr Neurol Neurosci Rep 21, 26 (2021). https://doi.org/10.1007/s11910-021-01110-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11910-021-01110-5

Keywords

Navigation