Skip to main content

Advertisement

Log in

Neurocritical Care of Mechanical Circulatory Support Devices

  • Critical Care (S.A. Mayer, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Mechanical circulatory support (MCS) devices have demonstrated improved survival outcomes in otherwise refractory cardiopulmonary failure but are associated with significant neurologic morbidity and mortality. This review aims to characterize MCS-associated brain injury and discuss the neurocritical care of this population.

Recent Findings

We found no practice guidelines or specific management strategies for the neurocritical care of patients with MCS devices. Acute brain injury was commonly observed in short-term and durable MCS devices. There is emerging evidence that a standardized neurological monitoring and management algorithm for MCS device–associated brain injury is feasible and potentially improves neurological outcomes.

Summary

While MCS devices are associated with significant neurologic morbidity and mortality, there is scant evidence regarding optimal neuromonitoring and neurocritical care. With the increase in use of MCS devices for both short-term and durable applications, improved outcomes will depend on early identification and intervention of neurologic complications and further research into their pathophysiology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Virani SS, Alonso A, Benjamin EJ, et al. Heart disease and stroke statistics—2020 update: a report from the American Heart Association. Circulation. 2020. https://doi.org/10.1161/CIR.0000000000000757.

  2. Rose EA, Gelijns AC, Moskowitz AJ, et al. Long-term use of a left ventricular assist device for end-stage heart failure. N Engl J Med. 2001;345:1435–43.

    Article  CAS  PubMed  Google Scholar 

  3. Peek GJ, Mugford M, Tiruvoipati R, et al. Efficacy and economic assessment of conventional ventilatory support versus extracorporeal membrane oxygenation for severe adult respiratory failure (CESAR): a multicentre randomised controlled trial. Lancet. 2009;374:1351–63.

    Article  PubMed  Google Scholar 

  4. TandemHeart - left heart support. Available at: http://www.tandemlife.com/tandemheart-kit/. (Accessed: 29th August 2020)

  5. ABIOMED | Impella®. Available at: https://www.abiomed.com/impella. (Accessed: 29th August 2020)

  6. SynCardia temporary total artificial heart - SynCardiaSynCardia. Available at: https://syncardia.com/clinicians/home/. (Accessed: 28th August 2020)

  7. Acharya D, Loyaga-Rendon R, Morgan CJ, et al. INTERMACS analysis of stroke during support with continuous-flow left ventricular assist devices: risk factors and outcomes. JACC Hear. Fail. 2017;5:703–11.

    Google Scholar 

  8. Cho SM, Moazami N, Frontera JA. Stroke and intracranial hemorrhage in HeartMate II and HeartWare left ventricular assist devices: a systematic review. Neurocrit Care. 2017;27:17–25 This study summarizes the prevalence and risk factors for ischemic and hemorrhagic stroke in LVAD patients.

    Article  PubMed  Google Scholar 

  9. Cho S-M, Farrokh S, Whitman G, Bleck TP, Geocadin RG. Neurocritical care for extracorporeal membrane oxygenation patients. Crit Care Med. 2019. https://doi.org/10.1097/CCM.0000000000004060.

  10. Le Guennec L, Cholet C, Huang F, et al. Ischemic and hemorrhagic brain injury during venoarterial-extracorporeal membrane oxygenation. Ann Intensive Care. 2018;8:129.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Frontera JA, Starling R, Cho SM, et al. Risk factors, mortality, and timing of ischemic and hemorrhagic stroke with left ventricular assist devices. J Heart Lung Transplant. 2017;36:673–83.

    Article  PubMed  Google Scholar 

  12. Rogers JG, Pagani FD, Tatooles AJ, et al. Intrapericardial left ventricular assist device for advanced heart failure. N Engl J Med. 2017;376:451–60.

    Article  PubMed  Google Scholar 

  13. Mehra MR, Uriel N, Naka Y, et al. A fully magnetically levitated left ventricular assist device — final report. N Engl J Med. 2019;380:1618–27.

    Article  PubMed  Google Scholar 

  14. Cho SM, Hassett C, Rice CJ, et al. What causes LVAD-associated ischemic stroke? Surgery, pump thrombosis, antithrombotics, and infection. ASAIO J. 2019;65:775–80.

    Article  PubMed  Google Scholar 

  15. Cho SM, Moazami N, Katz S, et al. Stroke risk following infection in patients with continuous-flow left ventricular assist device. Neurocrit Care. 2019;31:72–80.

    Article  PubMed  Google Scholar 

  16. Trachtenberg BH, Cordero-Reyes AM, Aldeiri M, et al. Persistent blood stream infection in patients supported with a continuous-flow left ventricular assist device is associated with an increased risk of cerebrovascular accidents. J Card Fail. 2015;21:119–25.

    Article  PubMed  Google Scholar 

  17. Cho SM, Starling RC, Teuteberg J, et al. Understanding risk factors and predictors for stroke subtypes in the ENDURANCE trials. J Heart Lung Transplant. 2020;39:639–47.

    Article  PubMed  Google Scholar 

  18. Nasr DM, Rabinstein AA. Neurologic complications of extracorporeal membrane oxygenation. J Clin Neurol. 2015;11:383.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Sutter R, Tisljar K, Marsch S. Acute neurologic complications during extracorporeal membrane oxygenation: a systematic review. Crit Care Med. 2018;46:1506–13.

    Article  CAS  PubMed  Google Scholar 

  20. Shoskes A, Migdady I, Rice C, et al. Brain injury is more common in venoarterial extracorporeal membrane oxygenation than venovenous extracorporeal membrane oxygenation: a systematic review and meta-analysis. Crit Care Med. 2020. https://doi.org/10.1097/CCM.0000000000004618This recent meta-analysis compares the prevalence of acute brain injury between V-A ECMO and V-V ECMO.

  21. Millar JE, Fanning JP, McDonald CI, McAuley DF, Fraser JF. The inflammatory response to extracorporeal membrane oxygenation (ECMO): a review of the pathophysiology. Crit Care. 2016;20.

  22. Fortenberry JD, Bhardwaj V, Niemer P, et al. Neutrophil and cytokine activation with neonatal extracorporeal membrane oxygenation. J Pediatr. 1996;128:670–8.

    Article  CAS  PubMed  Google Scholar 

  23. Cho SM, Canner J, Chiarini G, et al. Modifiable risk factors and mortality from ischemic and hemorrhagic strokes in patients receiving venoarterial extracorporeal membrane oxygenation: results from the extracorporeal life support organization registry. Crit Care Med. 2020;48:E897–905 This study characterizes the risk factors associated with hemorrhagic and ischemic strokes in patients on V-A ECMO.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Rastan AJ, Dege A, Mohr M, et al. Early and late outcomes of 517 consecutive adult patients treated with extracorporeal membrane oxygenation for refractory postcardiotomy cardiogenic shock. J Thorac Cardiovasc Surg. 2010;139:302–11.

    Article  PubMed  Google Scholar 

  25. Choi JH, Luc JGY, Weber MP, et al. Heparin-induced thrombocytopenia during extracorporeal life support: incidence, management and outcomes. Ann Cardiothorac Surg. 2019;8:19–31.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Warkentin TE, Greinacher A, Koster A. Heparin-induced thrombocytopenia in patients with ventricular assist devices: are new prevention strategies required? Ann Thorac Surg. 2009;87:1633–40.

    Article  PubMed  Google Scholar 

  27. Runyan C, Arabia F, Czer L, et al. Left ventricular assist devices vs. the total artificial heart: which causes more cerebrovascular accidents. J Heart Lung Transplant. 2015;34:S213.

    Article  Google Scholar 

  28. Maynes EJ, O’Malley TJ, Luc JGY, et al. Comparison of SynCardia total artificial heart and HeartWare HVAD biventricular support for management of biventricular heart failure: a systematic review and meta-analysis. Ann Cardiothorac Surg. 2020;9:69–80.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Hassett CE, Cho SM, Hasan S, et al. Ischemic stroke and intracranial hemorrhages during impella cardiac support. ASAIO J. 2020;66:e105–9.

    Article  PubMed  Google Scholar 

  30. Vargas KG, Jäger B, Kaufmann CC, et al. Impella in cardiogenic shock following acute myocardial infarction: a systematic review and meta-analysis. Wien Klin Wochenschr. 2020. https://doi.org/10.1007/s00508-020-01712-y.

  31. Schwartz. Treating refractory cardiogenic shock with the TandemHeart and Impella Devices: a single center experience. Cardiol. Res. 2012;3:54.

    Google Scholar 

  32. Thiele H, Zeymer U, Neumann FJ, et al. Intra-aortic balloon counterpulsation in acute myocardial infarction complicated by cardiogenic shock (IABP-SHOCK II): Final 12 month results of a randomised, open-label trial. Lancet. 2013;382:1638–45.

    Article  PubMed  Google Scholar 

  33. Ton VK, Xie R, Hernandez-Montfort JA, et al. Short- and long-term adverse events in patients on temporary circulatory support before durable ventricular assist device: an IMACS registry analysis. J Heart Lung Transplant. 2020;39:342–52.

    Article  PubMed  Google Scholar 

  34. Hart RG, Sherman DG. Stroke and the total artificial heart: neurologic considerations. Texas Hear Inst J. 1987;14:63–71.

    CAS  Google Scholar 

  35. Marquardt RJ, Cho SM, Thatikunta P, et al. Acute ischemic stroke therapy in infective endocarditis: case series and systematic review. J Stroke Cerebrovasc Dis. 2019;28:2207–12.

    Article  PubMed  Google Scholar 

  36. Flierl U, Tongers J, Berliner D, et al. Acquired von Willebrand syndrome in cardiogenic shock patients on mechanical circulatory microaxial pump support. PLoS One. 2017;12:e0183193.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Rice CJ, Cho SM, Zhang LQ, et al. The management of acute ischemic strokes and the prevalence of large vessel occlusion in left ventricular assist device. Cerebrovasc Dis. 2019;46:213–7.

    Article  Google Scholar 

  38. Al-Mufti F, Bauerschmidt A, Claassen J, et al. Neuroendovascular interventions for acute ischemic strokes in patients supported with left ventricular assist devices: a single-center case series and review of the literature. World Neurosurg. 2016;88:199–204.

    Article  PubMed  Google Scholar 

  39. Ryu B, Ishikawa T, Yamaguchi K, et al. Long-term outcomes following thrombectomy for acute ischemic stroke in patients with a left ventricular assist device: a case series and literature review. Acta Neurochir. 2018;160:1729–35.

    Article  PubMed  Google Scholar 

  40. Le Guennec L, Schmidt M, Clarençon F, et al. Mechanical thrombectomy in acute ischemic stroke patients under venoarterial extracorporeal membrane oxygenation. J Neurointerv Surg. 2020;12:486–8.

    Article  PubMed  Google Scholar 

  41. Powers WJ, Rabinstein AA, Ackerson T, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke a guideline for healthcare professionals from the American Heart Association/American Stroke A. Stroke. 2019;50:12.

    Article  Google Scholar 

  42. Cook JL, Colvin M, Francis GS, et al. Recommendations for the use of mechanical circulatory support: ambulatory and community patient care: a scientific statement from the American Heart Association. Circulation. 2017;135:e1145–58.

    Article  PubMed  Google Scholar 

  43. Hong KS, Kwon SU, Lee SH, et al. Rivaroxaban vs warfarin sodium in the ultra-early period after atrial fibrillation–related mild ischemic stroke: a randomized clinical trial. JAMA Neurol. 2017;74:1206–15.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Seiffge DJ, Traenka C, Polymeris A, et al. Early start of DOAC after ischemic stroke. Neurology. 2016;87:1856–62.

    Article  CAS  PubMed  Google Scholar 

  45. Kreuziger LB, Massicotte MP. Mechanical circulatory support: balancing bleeding and clotting in high-risk patients. Hematology. 2015;2015:61–8.

    Article  Google Scholar 

  46. Fletcher Sandersjöö A, Bartek J, Thelin EP, et al. Predictors of intracranial hemorrhage in adult patients on extracorporeal membrane oxygenation: an observational cohort study. J Intensive Care. 2017;5:1–10.

    Article  Google Scholar 

  47. Shahreyar M, Bob-Manuel T, Khouzam RN, et al. Trends, predictors and outcomes of ischemic stroke and intracranial hemorrhage in patients with a left ventricular assist device. Ann Transl Med. 2018;6:5–5.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Elder T, Raghavan A, Smith A, et al. Outcomes after intracranial hemorrhage in patients with left ventricular assist devices: a systematic review of literature. World Neurosurg. 2019;132:265–72.

    Article  PubMed  Google Scholar 

  49. Heilmann C, Geisen U, Beyersdorf F, et al. Acquired von Willebrand syndrome in patients with extracorporeal life support (ECLS). Intensive Care Med. 2012;38:62–8.

    Article  PubMed  Google Scholar 

  50. Kalbhenn J, Wittau N, Schmutz A, Zieger B, Schmidt R. Identification of acquired coagulation disorders and effects of target-controlled coagulation factor substitution on the incidence and severity of spontaneous intracranial bleeding during veno-venous ECMO therapy. Perfus (United Kingdom). 2015;30:675–82.

    CAS  Google Scholar 

  51. Ramey WL, Basken RL, Walter CM, et al. Intracranial hemorrhage in patients with durable mechanical circulatory support devices: institutional review and proposed treatment algorithm. World Neurosurg. 2017;108:826–35.

    Article  PubMed  Google Scholar 

  52. Heilmann C, Geisen U, Beyersdorf F, et al. Acquired von Willebrand syndrome in patients with ventricular assist device or total artificial heart. Thromb Haemost. 2010;103:962–7.

    Article  CAS  PubMed  Google Scholar 

  53. Goldfarb M, Czer LS, Lam LD, et al. High molecular weight von Willebrand factor multimer loss and bleeding in patients with short-term mechanical circulatory support devices: a case series. J Extra-Corporeal Technol. 2018;50:77–82 (American Society of Extra-Corporeal Technology.

    Google Scholar 

  54. Bhimaraj A, Uribe C, Suarez EE. Physiological impact of continuous flow on end-organ function: clinical implications in the current era of left ventricular assist devices. Method DeBakey Cardiovasc J. 2015;11:12–7.

    Article  Google Scholar 

  55. Eckman PM, John R. Bleeding and thrombosis in patients with continuous-flow ventricular assist devices. Circulation. 2012;125:3038–47.

    Article  PubMed  Google Scholar 

  56. Cho SM, Lee T, Starling RC, Thompson NR, Uchino K. The impact of infection and elevated INR in LVAD-associated intracranial hemorrhage: a case-crossover study. ASAIO J. 2019;65:545–50.

    Article  PubMed  Google Scholar 

  57. Aggarwal A, Gupta A, Kumar S, et al. Are blood stream infections associated with an increased risk of hemorrhagic stroke in patients with a left ventricular assist device? ASAIO J. 2012;58:509–13.

    Article  CAS  PubMed  Google Scholar 

  58. Wilson TJ, Stetler WR, Al-Holou WN, Sullivan SE, Fletcher JJ. Management of intracranial hemorrhage in patients with left ventricular assist devices: clinical article. J Neurosurg. 2013;118:1063–8.

    Article  PubMed  Google Scholar 

  59. Lorusso R, Gelsomino S, Parise O, et al. Neurologic injury in adults supported with veno-venous extracorporeal membrane oxygenation for respiratory failure: findings from the extracorporeal life support organization database. Crit Care Med. 2017;45:1389–97.

    Article  PubMed  Google Scholar 

  60. Lorusso R, Barili F, Di Mauro M, et al. In-hospital neurologic complications in adult patients undergoing venoarterial extracorporeal membrane oxygenation: results from the extracorporeal life support organization registry. Crit Care Med. 2016;44:e964–72.

    Article  CAS  PubMed  Google Scholar 

  61. Zotzmann V, Rilinger J, Lang CN, et al. Early full-body computed tomography in patients after extracorporeal cardiopulmonary resuscitation (eCPR). Resuscitation. 2020;146:149–54 This study illustrates the importance of neuroimaging early in the ECMO course in order to identify potentially initially asymptomatic brain injury.

    Article  PubMed  Google Scholar 

  62. Arachchillage DRJ, Passariello M, Laffan M, et al. Intracranial hemorrhage and early mortality in patients receiving extracorporeal membrane oxygenation for severe respiratory failure. Semin. Thromb. Hemost. 2018;44:276–86.

    Article  Google Scholar 

  63. Lockie CJA, Gillon SA, Barrett NA, et al. Severe respiratory failure, extracorporeal membrane oxygenation, and intracranial hemorrhage. Crit Care Med. 2017;45:1642–9.

    Article  PubMed  Google Scholar 

  64. Le Guennec L. Bertrand, A., Laurent, C., et al. Diffuse cerebral microbleeds after extracorporeal membrane oxygenation support. Am J Respir Crit Care Med. 2015;191:594–6.

    Article  PubMed  Google Scholar 

  65. Mazzeffi M, Kon Z, Menaker J, et al. Large dual-lumen extracorporeal membrane oxygenation cannulas are associated with more intracranial hemorrhage. ASAIO J. 2019;65:674–7.

    Article  PubMed  Google Scholar 

  66. Torregrossa G, Morshuis M, Varghese R, et al. Results with syncardia total artificial heart beyond 1 year. ASAIO J. 2014;60:626–34.

    Article  PubMed  Google Scholar 

  67. Cho SM, Moazami N, Katz S, Starling R, Frontera JA. Reversal and resumption of antithrombotic therapy in LVAD-associated intracranial hemorrhage. Ann Thorac Surg. 2019;108:52–8 This study reports on LVAD-associated ICH and demonstrates the safety of both anticoagulation reversal and eventual anticoagulation resumption in this population.

    Article  PubMed  Google Scholar 

  68. Wong JK, Chen PC, Falvey J, et al. Anticoagulation reversal strategies for left ventricular assist device patients presenting with acute intracranial hemorrhage. ASAIO J. 2016;62:552–7 (Lippincott Williams and Wilkins.

    Article  CAS  PubMed  Google Scholar 

  69. Ryu KM, Chang SW. Heparin-free extracorporeal membrane oxygenation in a patient with severe pulmonary contusions and bronchial disruption. Clin Exp Emerg Med. 2018;5:204–7.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Muellenbach RM, Kredel M, Kunze E, et al. Prolonged heparin-free extracorporeal membrane oxygenation in multiple injured acute respiratory distress syndrome patients with traumatic brain injury. J Trauma Acute Care Surg. 2012;72:1444–7.

    Article  PubMed  Google Scholar 

  71. Lamarche Y, Chow B, Bédard A, et al. Thromboembolic events in patients on extracorporeal membrane oxygenation without anticoagulation. Innov Technol Tech Cardiothorac Vasc Surg. 2010;5:424–9.

    Article  Google Scholar 

  72. Olson, S. R., Murphree, C. R., Zonies, D., et al. Thrombosis and bleeding in extracorporeal membrane oxygenation (ECMO) without anticoagulation. ASAIO J. Publish Ah, (2020).

  73. Hemphill JC, Greenberg SM, Anderson CS, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015;46:2032–60.

    Article  PubMed  Google Scholar 

  74. Connolly ES, Rabinstein AA, Carhuapoma JR, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the american heart association/american stroke association. Stroke. 2012;43:1711–37.

    Article  PubMed  Google Scholar 

  75. Factora FNF, Bustamante S, Spiotta A, Avitsian R. Intracranial hemorrhage surgery on patients on mechanical circulatory support: a case series. J Neurosurg Anesthesiol. 2011;23:30–4.

    Article  PubMed  Google Scholar 

  76. Krenzlin H, Rosenthal C, Wolf S, et al. Surgical treatment of intraparenchymal hemorrhage during mechanical circulatory support for heart-failure - a single-centre experience. Acta Neurochir. 2014;156:1729–34.

    Article  PubMed  Google Scholar 

  77. Kannapadi NV, White B, Choi CW, Chen LL & Cho S-M Clinically silent brain injury and perioperative neurological events in patients with left ventricular assist device: a brain autopsy study. ASAIO J. Available, (2020).

  78. Migdady, I., Rice, C., Deshpande, A., et al. Brain injury and neurologic outcome in patients undergoing extracorporeal cardiopulmonary resuscitation. Crit. Care Med. 1 (2020). doi:https://doi.org/10.1097/ccm.0000000000004377

  79. Cho, S.-M., Geocadin, R. G., Caturegli, G., et al. Understanding characteristics of acute brain injury in adult extracorporeal membrane oxygenation. Crit. Care Med. 1 (2020). doi:https://doi.org/10.1097/ccm.0000000000004289

  80. Ingyinn M, Lee J, Short BL, Viswanathan M. Venoarterial extracorporeal membrane oxygenation impairs basal nitric oxide production in cerebral arteries of newborn lambs. Pediatr Crit Care Med. 2000;1:161–5.

    Article  CAS  PubMed  Google Scholar 

  81. Xie A, Lo P, Yan TD, Forrest P. Neurologic complications of extracorporeal membrane oxygenation: a review. J Cardiothorac Vasc Anesth. 2017;31:1836–46.

    Article  CAS  PubMed  Google Scholar 

  82. Rupprecht L, Lunz D, Philipp A, Lubnow M, Schmid C. Pitfalls in percutaneous ECMO cannulation. Hear lung Vessel. 2015;7:320–6.

    CAS  Google Scholar 

  83. Hwang GJ, Sheen SH, Kim HS, et al. Extracorporeal membrane oxygenation for acute life-threatening neurogenic pulmonary edema following rupture of an intracranial aneurysm. J Korean Med Sci. 2013;28:962–4.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Unterberg M, Nowak H, Gottschalk A. Kasuistik: ECMO-Einsatz bei hyperkapnischer Hirndruckkrise. Anasthesiol Intensivmed Notfallmed Schmerzther. 2017;52:376–81.

    Article  PubMed  Google Scholar 

  85. Mohamed A, Alharbi N, Salahuddin N, Hussain I, Solaiman O. Optic nerve sheath diameter by bedside ultrasound is a reliable screening test for cerebral edema in the comatose ICU patient. Crit Care. 2015;19:P457.

    Article  PubMed Central  Google Scholar 

  86. Oulehri W, Oulehri W, Cristinar M, et al. Decompressive hemicraniectomy for acute ischemic stroke in a patient implanted with a left ventricular assist device: a case report. BMC Cardiovasc Disord. 2020;20.

  87. Hofmeijer J, Kappelle LJ, Algra A, et al. Surgical decompression for space-occupying cerebral infarction (the Hemicraniectomy After Middle Cerebral Artery infarction with Life-threatening Edema Trial [HAMLET]): a multicentre, open, randomised trial. Lancet Neurol. 2009;8:326–33.

    Article  PubMed  Google Scholar 

  88. Jüttler E, Schwab S, Schmiedek P, et al. Decompressive surgery for the treatment of malignant infarction of the middle cerebral artery (DESTINY): a randomized, controlled trial. Stroke. 2007;38:2518–25.

    Article  PubMed  Google Scholar 

  89. Vahedi K, Vicaut E, Mateo J, et al. Sequential-design, multicenter, randomized, controlled trial of early decompressive craniectomy in malignant middle cerebral artery infarction (DECIMAL Trial). Stroke. 2007;38:2506–17.

    Article  PubMed  Google Scholar 

  90. Cho S-M, Ziai W, Mayasi Y, et al. Noninvasive neurological monitoring in extracorporeal membrane oxygenation. ASAIO J. 2019. https://doi.org/10.1097/mat.0000000000001013This study highlights the use of noninvasive neurologic monitoring as a way to earlier detect neurologic complications of ECMO.

  91. Cho, S.-M., Choi, C. W., Whitman, G., et al. Neurophysiological findings and brain injury pattern in patients on ECMO. Clin. EEG Neurosci. 1550059419892757 (2019). doi:https://doi.org/10.1177/1550059419892757

  92. Shekar K, Fraser JF, Smith MT, Roberts JA. Pharmacokinetic changes in patients receiving extracorporeal membrane oxygenation. J Crit Care. 2012;27:741.e9–741.e18.

    Article  CAS  Google Scholar 

  93. Shekar K, Roberts JA, Mcdonald CI, et al. Protein-bound drugs are prone to sequestration in the extracorporeal membrane oxygenation circuit: results from an ex vivo study. Crit Care. 2015;19.

  94. Tellor, B., Shin, N., Graetz, T. J. & Avidan, M. S. Ketamine infusion for patients receiving extracorporeal membrane oxygenation support: a case series. F1000Research 4, (2015).

  95. Dzierba AL, Brodie D, Bacchetta M, et al. Ketamine use in sedation management in patients receiving extracorporeal membrane oxygenation. Intensive Care Med. 2016;42:1822–3.

    Article  PubMed  Google Scholar 

  96. Nei SD, Wittwer ED, Kashani KB, Frazee EN. Levetiracetam pharmacokinetics in a patient receiving continuous venovenous hemofiltration and venoarterial extracorporeal membrane oxygenation. Pharmacotherapy. 2015;35:e127–30.

    Article  PubMed  Google Scholar 

  97. Muralidharan R, Mateen FJ, Shinohara RT, Schears GJ, Wijdicks EFM. The challenges with brain death determination in adult patients on extracorporeal membrane oxygenation. Neurocrit Care. 2011;14:423–6.

    Article  PubMed  PubMed Central  Google Scholar 

  98. Cho SM, Ziai W, Geocadin R, Choi CW, Whitman G. Arterial-sided oxygenator clot and transcranial doppler ultrasound emboli in venoarterial extracorporeal membrane oxygenation. Ann Thorac Surg. 2019;107:326–7 This study emphasizes the potential use of transcranial monitoring for early detection of embolic brain injury in ECMO patients.

    Article  PubMed  Google Scholar 

  99. Fan TH, Hassett CE, Migdady I, et al. How are we monitoring brain injuries in patients with left ventricular assist device? A systematic review of literature. ASAIO J. Publish Ah, (2020).

  100. Sansevere, A., DiBacco, M., Akhondi-Asl, A., et al. EEG features of brain injury during extracorporeal membrane oxygenation in children. Neurology 95, https://doi.org/10.1212/WNL.0000000000010188 (2020).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Min Cho.

Ethics declarations

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflict of Interest

No conflicts of interest were reported by any of the author.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Critical Care

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shoskes, A., Whitman, G. & Cho, SM. Neurocritical Care of Mechanical Circulatory Support Devices. Curr Neurol Neurosci Rep 21, 20 (2021). https://doi.org/10.1007/s11910-021-01107-0

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11910-021-01107-0

Keywords

Navigation