Skip to main content

Advertisement

Log in

Neurological Complications of Cardiological Interventions

  • Neurology of Systemic Diseases (J Biller, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Neurological complications are common during cardiac procedures. The type of procedure influences the profile of neurological complications and their management. In this article, we review the different neurological complications encountered following cardiac procedures, and treatment strategies for managing those complications.

Recent Findings

Recent clinical trials have expanded the time window of eligibility for mechanical thrombectomy and intravenous thrombolysis. As a result, more options are now available for the treatment of periprocedural strokes.

Summary

Early recognition of neurological complications, particularly stroke, will allow more patients to be treated effectively. The expanded window for intravenous thrombolysis and mechanical thrombectomy using advanced neuroimaging for selection provides more opportunities for treatment of periprocedural stroke. There is a paucity of data on the management of cerebrovascular complications, such as ischemic and hemorrhagic strokes, in the setting of left ventricular assist device or mechanical valve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Gottesman RF, McKhann GM, Hogue CW. Neurological complications of cardiac surgery. Semin Neurol. 2008;28(5):703–15.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Shah R, Morsy MS, Weiman DS, Vetrovec GW. Meta-analysis comparing coronary artery bypass grafting to drug-eluting stents and to medical therapy alone for left main coronary artery disease. Am J Cardiol. 2017;120(1):63–8.

    Article  PubMed  Google Scholar 

  3. Devgun JK, Gul S, Mohananey D, Jones BM, Hussain MS, Jobanputra Y, et al. Cerebrovascular events after cardiovascular procedures: risk factors, recognition, and prevention strategies. J Am Coll Cardiol. 2018;71(17):1910–20.

    Article  PubMed  Google Scholar 

  4. Stone GW, Sabik JF, Serruys PW, Kappetein AP. Everolimus-eluting stents or bypass surgery for left main coronary disease. N Engl J Med. 2017;376(11):1089.

    PubMed  Google Scholar 

  5. • Serruys PW, Morice MC, Kappetein AP, Colombo A, Holmes DR, Mack MJ, et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med. 2009;360(10):961–72 SYNTAX trial was one of the major trials to compare the adverse events following coronary artery bypass grafting and percutaneous coronary intervention.

    Article  CAS  PubMed  Google Scholar 

  6. Kowalewski M, Pawliszak W, Malvindi PG, Bokszanski MP, Perlinski D, Raffa GM, et al. Off-pump coronary artery bypass grafting improves short-term outcomes in high-risk patients compared with on-pump coronary artery bypass grafting: meta-analysis. J Thorac Cardiovasc Surg. 2016;151(1):60–77 e1–58.

    Article  PubMed  Google Scholar 

  7. Kenaan M, Seth M, Aronow HD, Wohns D, Share D, Gurm HS, et al. The clinical outcomes of percutaneous coronary intervention performed without pre-procedural aspirin. J Am Coll Cardiol. 2013;62(22):2083–9.

    Article  PubMed  Google Scholar 

  8. Aradi D, Komocsi A, Vorobcsuk A, Serebruany VL. Impact of clopidogrel and potent P2Y 12 -inhibitors on mortality and stroke in patients with acute coronary syndrome or undergoing percutaneous coronary intervention: a systematic review and meta-analysis. Thromb Haemost. 2013;109(1):93–101.

    Article  CAS  PubMed  Google Scholar 

  9. Kahlert P, Knipp SC, Schlamann M, Thielmann M, Al-Rashid F, Weber M, et al. Silent and apparent cerebral ischemia after percutaneous transfemoral aortic valve implantation: a diffusion-weighted magnetic resonance imaging study. Circulation. 2010;121(7):870–8.

    Article  PubMed  Google Scholar 

  10. Eggebrecht H, Schmermund A, Voigtlander T, Kahlert P, Erbel R, Mehta RH. Risk of stroke after transcatheter aortic valve implantation (TAVI): a meta-analysis of 10,037 published patients. EuroIntervention. 2012;8(1):129–38.

    Article  PubMed  Google Scholar 

  11. Hahn RT, Pibarot P, Webb J, Rodes-Cabau J, Herrmann HC, Williams M, et al. Outcomes with post-dilation following transcatheter aortic valve replacement: the PARTNER I trial (placement of aortic transcatheter valve). JACC Cardiovasc Interv. 2014;7(7):781–9.

    Article  PubMed  Google Scholar 

  12. Athappan G, Gajulapalli RD, Sengodan P, Bhardwaj A, Ellis SG, Svensson L, et al. Influence of transcatheter aortic valve replacement strategy and valve design on stroke after transcatheter aortic valve replacement: a meta-analysis and systematic review of literature. J Am Coll Cardiol. 2014;63(20):2101–10.

    Article  PubMed  Google Scholar 

  13. Jones BM, Tuzcu EM, Krishnaswamy A, Kapadia SR. Neurologic events after transcatheter aortic valve replacement. Interv Cardiol Clin. 2015;4(1):83–93.

    PubMed  Google Scholar 

  14. Nombela-Franco L, Webb JG, de Jaegere PP, Toggweiler S, Nuis RJ, Dager AE, et al. Timing, predictive factors, and prognostic value of cerebrovascular events in a large cohort of patients undergoing transcatheter aortic valve implantation. Circulation. 2012;126(25):3041–53.

    Article  PubMed  Google Scholar 

  15. Bagur R, Solo K, Alghofaili S, Nombela-Franco L, Kwok CS, Hayman S, et al. Cerebral embolic protection devices during transcatheter aortic valve implantation: systematic review and meta-analysis. Stroke. 2017;48(5):1306–15.

    Article  PubMed  Google Scholar 

  16. Nishimura RA, Otto CM, Bonow RO, Carabello BA, Erwin JP 3rd, Guyton RA, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: executive summary: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Am Coll Cardiol. 2014;63(22):2438–88.

    Article  PubMed  Google Scholar 

  17. Aryal MR, Karmacharya P, Pandit A, Hakim F, Pathak R, Mainali NR, et al. Dual versus single antiplatelet therapy in patients undergoinHeart Lung Circg transcatheter aortic valve replacement: a systematic review and meta-analysis. 2015;24(2):185–92.

  18. Messe SR, Acker MA, Kasner SE, Fanning M, Giovannetti T, Ratcliffe SJ, et al. Stroke after aortic valve surgery: results from a prospective cohort. Circulation. 2014;129(22):2253–61.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Hauville C, Ben-Dor I, Lindsay J, Pichard AD, Waksman R. Clinical and silent stroke following aortic valve surgery and transcatheter aortic valve implantation. Cardiovasc Revasc Med. 2012;13(2):133–40.

    Article  PubMed  Google Scholar 

  20. Baber U, van der Zee S, Fuster V. Anticoagulation for mechanical heart valves in patients with and without atrial fibrillation. Curr Cardiol Rep. 2010;12(2):133–9.

    Article  PubMed  Google Scholar 

  21. Arnold AZ, Mick MJ, Mazurek RP, Loop FD, Trohman RG. Role of prophylactic anticoagulation for direct current cardioversion in patients with atrial fibrillation or atrial flutter. J Am Coll Cardiol. 1992;19(4):851–5.

    Article  CAS  PubMed  Google Scholar 

  22. Hellman T, Kiviniemi T, Vasankari T, Nuotio I, Biancari F, Bah A, et al. Prediction of ineffective elective cardioversion of atrial fibrillation: a retrospective multi-center patient cohort study. BMC Cardiovasc Disord. 2017;17(1):33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Jaakkola S, Kiviniemi TO, Airaksinen KEJ. Cardioversion for atrial fibrillation—how to prevent thromboembolic complications? Ann Med. 2018:1–7.

  24. Cote G, Denault A. Transesophageal echocardiography-related complications. Can J Anaesth. 2008;55(9):622–47.

    Article  PubMed  Google Scholar 

  25. Kislitsina ON, Anderson AS, Rich JD, Vorovich EE, Pham DT, Cox JL, et al. Strokes associated with left ventricular assist devices. J Card Surg. 2018;33(9):578–83.

    Article  PubMed  Google Scholar 

  26. Cho SM, Moazami N, Frontera JA. Stroke and intracranial hemorrhage in HeartMate II and HeartWare left ventricular assist devices: a systematic review. Neurocrit Care. 2017;27(1):17–25.

    Article  PubMed  Google Scholar 

  27. Blitz A. Pump thrombosis—a riddle wrapped in a mystery inside an enigma. Ann Cardiothorac Surg. 2014;3(5):450–71.

    PubMed  PubMed Central  Google Scholar 

  28. •• Thomalla G, Simonsen CZ, Boutitie F, Andersen G, Berthezene Y, Cheng B, et al. MRI-guided thrombolysis for stroke with unknown time of onset. N Engl J Med. 2018;379(7):611–22 WAKE-UP trial investigated the use of IV-tPA guided by a mismatch between diffusion weighted imaging and FLAIR in the region of ischemia and showed a significantly better functional outcome compared to placebo.

    Article  PubMed  Google Scholar 

  29. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. 2018 guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2018;49(3):e46–e110.

    Article  PubMed  Google Scholar 

  30. •• Nogueira RG, Jadhav AP, Haussen DC, Bonafe A, Budzik RF, Bhuva P, et al. Thrombectomy 6 to 24 hours after stroke with a mismatch between deficit and infarct. N Engl J Med. 2018;378(1):11–21 DAWN trial showed a significant benefit for using of mechanical thrombectomy for patients who met specific criteria up to 24 hours.

    Article  PubMed  Google Scholar 

  31. •• Albers GW, Marks MP, Kemp S, Christensen S, Tsai JP, Ortega-Gutierrez S, et al. Thrombectomy for stroke at 6 to 16 hours with selection by perfusion imaging. N Engl J Med. 2018;378(8):708–18 DEFUSE trial showed a significant benefit for using of mechanical thrombectomy for patients who met specific criteria up to 16 hours.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Holzmann MJ, Ahlback E, Jeppsson A, Sartipy U. Renal dysfunction and long-term risk of ischemic and hemorrhagic stroke following coronary artery bypass grafting. Int J Cardiol. 2013;168(2):1137–42.

    Article  PubMed  Google Scholar 

  33. Stewart RA. Clinical trials in heart valve disease. Curr Opin Cardiol. 2009;24(4):279–87.

    Article  PubMed  Google Scholar 

  34. Suarez J, Patel CB, Felker GM, Becker R, Hernandez AF, Rogers JG. Mechanisms of bleeding and approach to patients with axial-flow left ventricular assist devices. Circ Heart Fail. 2011;4(6):779–84.

    Article  PubMed  Google Scholar 

  35. Slaughter MS, Rogers JG, Milano CA, Russell SD, Conte JV, Feldman D, et al. Advanced heart failure treated with continuous-flow left ventricular assist device. N Engl J Med. 2009;361(23):2241–51.

    Article  CAS  PubMed  Google Scholar 

  36. Hemphill JC 3rd, Greenberg SM, Anderson CS, Becker K, Bendok BR, Cushman M, et al. Guidelines for the management of spontaneous intracerebral hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2015;46(7):2032–60.

    Article  PubMed  Google Scholar 

  37. Kuramatsu JB, Gerner ST, Schellinger PD, Glahn J, Endres M, Sobesky J, et al. Anticoagulant reversal, blood pressure levels, and anticoagulant resumption in patients with anticoagulation-related intracerebral hemorrhage. JAMA. 2015;313(8):824–36.

    Article  CAS  PubMed  Google Scholar 

  38. Majeed A, Kim YK, Roberts RS, Holmstrom M, Schulman S. Optimal timing of resumption of warfarin after intracranial hemorrhage. Stroke. 2010;41(12):2860–6.

    Article  CAS  PubMed  Google Scholar 

  39. Kuramatsu JB, Sembill JA, Gerner ST, Sprugel MI, Hagen M, Roeder SS, et al. Management of therapeutic anticoagulation in patients with intracerebral haemorrhage and mechanical heart valves. Eur Heart J. 2018;39(19):1709–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Halvorsen S, Storey RF, Rocca B, Sibbing D, Ten Berg J, Grove EL, et al. Management of antithrombotic therapy after bleeding in patients with coronary artery disease and/or atrial fibrillation: expert consensus paper of the European Society of Cardiology Working Group on thrombosis. Eur Heart J. 2017;38(19):1455–62.

    CAS  PubMed  Google Scholar 

  41. Tahir RA, Rotman LE, Davis MC, Dupepe EB, Kole MK, Rahman M, et al. Intracranial hemorrhage in patients with a left ventricular assist device. World Neurosurg. 2018;113:e714–e21.

    Article  PubMed  Google Scholar 

  42. Wong JK, Chen PC, Falvey J, Melvin AL, Lidder AK, Lowenstein LM, et al. Anticoagulation reversal strategies for left ventricular assist device patients presenting with acute intracranial hemorrhage. ASAIO J. 2016;62(5):552–7.

    Article  CAS  PubMed  Google Scholar 

  43. Wilson TJ, Stetler WR Jr, Al-Holou WN, Sullivan SE, Fletcher JJ. Management of intracranial hemorrhage in patients with left ventricular assist devices. J Neurosurg. 2013;118(5):1063–8.

    Article  PubMed  Google Scholar 

  44. Moulakakis KG, Alexiou VG, Karaolanis G, Sfyroeras GS, Theocharopoulos GN, Lazaris AM, et al. Spinal cord ischemia following elective endovascular repair of Infrarenal aortic aneurysms: a systematic review. Ann Vasc Surg. 2018;52:280–91.

    Article  PubMed  Google Scholar 

  45. Miyamoto K, Ueno A, Wada T, Kimoto S. A new and simple method of preventing spinal cord damage following temporary occlusion of the thoracic aorta by draining the cerebrospinal fluid. J Cardiovasc Surg. 1960;1:188–97.

    CAS  Google Scholar 

  46. Cunningham JN Jr, Laschinger JC, Merkin HA, Nathan IM, Colvin S, Ransohoff J, et al. Measurement of spinal cord ischemia during operations upon the thoracic aorta: initial clinical experience. Ann Surg. 1982;196(3):285–96.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Newman MF, Kirchner JL, Phillips-Bute B, Gaver V, Grocott H, Jones RH, et al. Longitudinal assessment of neurocognitive function after coronary-artery bypass surgery. N Engl J Med. 2001;344(6):395–402.

    Article  CAS  PubMed  Google Scholar 

  48. Selnes OA, Gottesman RF, Grega MA, Baumgartner WA, Zeger SL, McKhann GM. Cognitive and neurologic outcomes after coronary-artery bypass surgery. N Engl J Med. 2012;366(3):250–7.

    Article  CAS  PubMed  Google Scholar 

  49. Stroobant N, van Nooten G, De Bacquer D, Van Belleghem Y, Vingerhoets G. Neuropsychological functioning 3-5 years after coronary artery bypass grafting: does the pump make a difference? Eur J Cardiothorac Surg. 2008;34(2):396–401.

    Article  PubMed  Google Scholar 

  50. Kennedy ED, Choy KC, Alston RP, Chen S, Farhan-Alanie MM, Anderson J, et al. Cognitive outcome after on- and off-pump coronary artery bypass grafting surgery: a systematic review and meta-analysis. J Cardiothorac Vasc Anesth. 2013;27(2):253–65.

    Article  PubMed  Google Scholar 

  51. Goto T, Baba T, Honma K, Shibata Y, Arai Y, Uozumi H, et al. Magnetic resonance imaging findings and postoperative neurologic dysfunction in elderly patients undergoing coronary artery bypass grafting. Ann Thorac Surg. 2001;72(1):137–42.

    Article  CAS  PubMed  Google Scholar 

  52. Boodhwani M, Rubens F, Wozny D, Rodriguez R, Nathan HJ. Effects of sustained mild hypothermia on neurocognitive function after coronary artery bypass surgery: a randomized, double-blind study. J Thorac Cardiovasc Surg. 2007;134(6):1443–50 discussion 51-2.

    Article  PubMed  Google Scholar 

  53. Nathan HJ, Rodriguez R, Wozny D, Dupuis JY, Rubens FD, Bryson GL, et al. Neuroprotective effect of mild hypothermia in patients undergoing coronary artery surgery with cardiopulmonary bypass: five-year follow-up of a randomized trial. J Thorac Cardiovasc Surg. 2007;133(5):1206–11.

    Article  PubMed  Google Scholar 

  54. Lai KS, Herrmann N, Saleem M, Lanctot KL. Cognitive outcomes following transcatheter aortic valve implantation: a systematic review. Cardiovasc Psychiatry Neurol. 2015;2015:209569.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Liimatainen J, Perakyla J, Jarvela K, Sisto T, Yli-Hankala A, Hartikainen KM. Improved cognitive flexibility after aortic valve replacement surgery. Interact Cardiovasc Thorac Surg. 2016;23(4):630–6.

    Article  PubMed  Google Scholar 

  56. Kocabay G, Karabay CY, Kalayci A, Akgun T, Guler A, Oduncu V, et al. Contrast-induced neurotoxicity after coronary angiography. Herz. 2014;39(4):522–7.

    Article  CAS  PubMed  Google Scholar 

  57. Leong S, Fanning NF. Persistent neurological deficit from iodinated contrast encephalopathy following intracranial aneurysm coiling. A case report and review of the literature. Interv Neuroradiol. 2012;18(1):33–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Guimaraens L, Vivas E, Fonnegra A, Sola T, Soler L, Balaguer E, et al. Transient encephalopathy from angiographic contrast: a rare complication in neurointerventional procedures. Cardiovasc Intervent Radiol. 2010;33(2):383–8.

    Article  PubMed  Google Scholar 

  59. Tong X, Hu P, Hong T, Li M, Zhang P, Li G, et al. Transient cortical blindness associated with endovascular procedures for intracranial aneurysms. World Neurosurg. 2018;119:123–31.

    Article  PubMed  Google Scholar 

  60. Zwicker JC, Sila CA. MRI findings in a case of transient cortical blindness after cardiac catheterization. Catheter Cardiovasc Interv. 2002;57(1):47–9.

    Article  PubMed  Google Scholar 

  61. Lantos G. Cortical blindness due to osmotic disruption of the blood-brain barrier by angiographic contrast material: CT and MRI studies. Neurology. 1989;39(4):567–71.

    Article  CAS  PubMed  Google Scholar 

  62. Sila C. Neurologic complications of cardiac tests and procedures. Handb Clin Neurol. 2014;119:41–7.

    Article  PubMed  Google Scholar 

  63. Wallach SG. Cannulation injury of the radial artery: diagnosis and treatment algorithm. Am J Crit Care. 2004;13(4):315–9.

    PubMed  Google Scholar 

  64. Martin SD, Sharrock NE, Mineo R, Sobel M, Weiland AJ. Acute exacerbation of carpal tunnel syndrome after radial artery cannulation. J Hand Surg [Am]. 1993;18(3):455–8.

    Article  CAS  Google Scholar 

  65. El-Ghanem M, Malik AA, Azzam A, Yacoub HA, Qureshi AI, Souayah N. Occurrence of femoral nerve injury among patients undergoing Transfemoral percutaneous catheterization procedures in the United States. J Vasc Interv Neurol. 2017;9(4):54–8.

    PubMed  PubMed Central  Google Scholar 

  66. Kent KC, Moscucci M, Gallagher SG, DiMattia ST, Skillman JJ. Neuropathy after cardiac catheterization: incidence, clinical patterns, and long-term outcome. J Vasc Surg. 1994;19(6):1008–13 discussion 13-4.

    Article  CAS  PubMed  Google Scholar 

  67. Kent KC, Moscucci M, Mansour KA, DiMattia S, Gallagher S, Kuntz R, et al. Retroperitoneal hematoma after cardiac catheterization: prevalence, risk factors, and optimal management. J Vasc Surg. 1994;20(6):905–10 discussion 10-3.

    Article  CAS  PubMed  Google Scholar 

  68. Dimarakis I, Protopapas AD. Vocal cord palsy as a complication of adult cardiac surgery: surgical correlations and analysis. Eur J Cardiothorac Surg. 2004;26(4):773–5.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Shaban.

Ethics declarations

Conflict of Interest

Amir Shaban and Enrique Leira each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Neurology of Systemic Diseases

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaban, A., Leira, E.C. Neurological Complications of Cardiological Interventions. Curr Neurol Neurosci Rep 19, 6 (2019). https://doi.org/10.1007/s11910-019-0923-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-019-0923-1

Keywords

Navigation