Skip to main content

Advertisement

Log in

Genetics of Movement Disorders and the Practicing Clinician; Who and What to Test for?

  • Movement Disorders (S Fox, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

This review aims to provide the basic knowledge on the genetics of hypokinetic and hyperkinetic movement disorders to guide clinicians in the decision of “who and what to test for?”

Recent Findings

In recent years, the identification of various genetic causes of hypokinetic and hyperkinetic movement disorders has had a great impact on a better definition of different clinical syndromes. Indeed, the advent of next-generation sequencing (NGS) techniques has provided an impressive step forward in the easy identification of genetic forms. However, this increased availability of genetic testing has challenges, including the ethical issue of genetic testing in unaffected family members, “commercially” available home testing kits and the increasing number and relevance of “variants of unknown significance.”

Summary

The emergent role of genetic factors has important implications on clinical practice and counseling. As a consequence, it is fundamental that practicing neurologists have a proper knowledge of the genetic background of the diseases and perform an accurate selection of who has to be tested and for which gene mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Olgiati S, Quadri M, Bonifati V. Genetics of movement disorders in the next-generation sequencing era. Mov Disord. 2016;31(4):458–70.

    Article  PubMed  Google Scholar 

  2. Mulhern M, Bier L, Alcalay RN, Balwani M. Patients’ opinions on genetic counseling on the increased risk of Parkinson disease among Gaucher disease carriers. J Genet Couns 2018;27:675–80.

  3. Postuma RB, Berg D, Stern M, Poewe W, Olanow CW, Oertel W, et al. MDS clinical diagnostic criteria for Parkinson’s disease. Mov Disord. 2015;30(12):1591–601.

    Article  PubMed  Google Scholar 

  4. Titova N, Padmakumar C, Lewis SJG, Chaudhuri KR. Parkinson’s: a syndrome rather than a disease? J Neural Transm (Vienna). 2017;124:907–14.

    Article  CAS  Google Scholar 

  5. Bonifati V. Genetics of Parkinson’s disease—state of the art, 2013. Parkinsonism Relat Disord. 2014;20(Suppl 1):S23–8.

    Article  PubMed  Google Scholar 

  6. Puschmann A. New genes causing hereditary Parkinson’s disease or parkinsonism. Curr Neurol Neurosci Rep. 2017;17(9):66.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Morgan NV, Westaway SK, Morton JEV, Gregory A, Gissen P, Sonek S, et al. PLA2G6, encoding a phospholipase A(2), is mutated in neurodegenerative disorders with high brain iron (vol 38, pg 752, 2006). Nat Genet. 2006;38(8):957.

    Article  CAS  Google Scholar 

  8. Shojaee S, Sina F, Banihosseini SS, Kazemi MH, Kalhor R, Shahidi GA, et al. Genome-wide linkage analysis of a Parkinsonian-pyramidal syndrome pedigree by 500 KSNP arrays. Am J Hum Genet. 2008;82(6):1375–84.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Ramirez A, Heimbach A, Gruendemann J, Stiller B, Hampshire D, Cid LP, et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet. 2006;38(10):1184–91.

    Article  PubMed  CAS  Google Scholar 

  10. Edvardson S, Cinnamon Y, Ta-Shma A, Shaag A, Yim YI, Zenvirt S, et al. A deleterious mutation in DNAJC6 encoding the neuronal-specific clathrin-uncoating co-chaperone auxilin, is associated with juvenile parkinsonism. PLoS One. 2012;7(5):e36458.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  11. Quadri M, Fang MY, Picillo M, Olgiati S, Breedveld GJ, Graafland J, et al. Mutation in the SYNJ1 gene associated with autosomal recessive, early-onset parkinsonism. Hum Mutat. 2013;34(9):1208–15.

    Article  PubMed  CAS  Google Scholar 

  12. •• Khodadadi H, Azcona LJ, Aghamollaii V, Omrani MD, Garshasbi M, Taghavi S, et al. PTRHD1 (C2orf79) mutations lead to autosomal-recessive intellectual disability and parkinsonism. Mov Disord. 2017;32:287–91. Khodadadi et al. report PTRHD1 mutations from one Iranian family with autosomal recessive parkinsonism and intellectual dysability.

    Article  PubMed  CAS  Google Scholar 

  13. •• Lesage S, Drouet V, Majounie E, Deramecourt V, Jacoupy M, Nicolas A, et al. Loss of VPS13C function in autosomal-recessive parkinsonism causes mitochondrial dysfunction and increases PINK1/Parkin-dependent mitophagy. Am J Hum Genet. 2016;98:500–13. Lesage et al. identified for the first time mutations in VPS13C in patients with early-onset PD and provide functional evidence for the pathogenicity of the mutations.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Monfrini E, Di Fonzo A. Leucine-rich repeat kinase (LRRK2) genetics and Parkinson’s disease. Adv Neurobiol. 2017;14:3–30.

    Article  PubMed  Google Scholar 

  15. Sidransky E, Lopez G. The link between the GBA gene and parkinsonism. Lancet Neurol. 2012;11(11):986–98.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Petrucci S, Ginevrino M, Valente EM. Phenotypic spectrum of alpha-synuclein mutations: new insights from patients and cellular models. Parkinsonism Relat Disord. 2016;22(Suppl 1):S16–20.

    Article  PubMed  Google Scholar 

  17. Vilarino-Guell C, Wider C, Ross OA, Dachsel JC, Kachergus JM, Lincoln SJ, et al. VPS35 mutations in Parkinson disease. Am J Hum Genet. 2011;89(1):162–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Ferreira M, Massano J. An updated review of Parkinson’s disease genetics and clinicopathological correlations. Acta Neurol Scand. 2017;135(3):273–84.

    Article  PubMed  CAS  Google Scholar 

  19. Mandemakers W, Quadri M, Stamelou M, Bonifati V. TMEM230: how does it fit in the etiology and pathogenesis of Parkinson’s disease? Mov Disord. 2017;32(8):1159–62.

    Article  PubMed  CAS  Google Scholar 

  20. • Carecchio M, Picillo M, Valletta L, Elia AE, Haack TB, Cozzolino A, et al. Rare causes of early-onset dystonia-parkinsonism with cognitive impairment: a de novo PSEN-1 mutation. Neurogenetics. 2017;18(3):175–8. In this work, Carecchio et al. expanded the phenotype related to PSEN-1 mutations to early-onset dystonia-parkinsonism-dementia.

    Article  PubMed  CAS  Google Scholar 

  21. Baizabal-Carvallo JF, Jankovic J. Parkinsonism, movement disorders and genetics in frontotemporal dementia. Nat Rev Neurol. 2016;12(3):175–85.

    Article  PubMed  CAS  Google Scholar 

  22. Gilbert RM, Fahn S, Mitsumoto H, Rowland LP. Parkinsonism and motor neuron diseases: twenty-seven patients with diverse overlap syndromes. Mov Disord. 2010;25(12):1868–75.

    Article  PubMed  Google Scholar 

  23. Annesi G, Savettieri G, Pugliese P, D'Amelio M, Tarantino P, Ragonese P, et al. DJ-1 mutations and parkinsonism-dementia-amyotrophic lateral sclerosis complex. Ann Neurol. 2005;58(5):803–7.

    Article  PubMed  CAS  Google Scholar 

  24. Vergouw LJM, van Steenoven I, van de Berg WDJ, Teunissen CE, van Swieten JC, Bonifati V, et al. An update on the genetics of dementia with Lewy bodies. Parkinsonism Relat Disord. 2017;43:1–8.

    Article  PubMed  Google Scholar 

  25. Stamelou M, Quinn NP, Bhatia KP. “Atypical” atypical parkinsonism: new genetic conditions presenting with features of progressive supranuclear palsy, corticobasal degeneration, or multiple system atrophy-a diagnostic guide. Mov Disord. 2013;28(9):1184–99.

    Article  PubMed  CAS  Google Scholar 

  26. Orsucci D, Caldarazzo Ienco E, Mancuso M, Siciliano G. POLG1-related and other “mitochondrial Parkinsonisms”: an overview. J Mol Neurosci. 2011;44(1):17–24.

    Article  PubMed  CAS  Google Scholar 

  27. Rossi M, Perez-Lloret S, Doldan L, Cerquetti D, Balej J, Millar Vernetti P, et al. Autosomal dominant cerebellar ataxias: a systematic review of clinical features. Eur J Neurol. 2014;21(4):607–15.

    Article  PubMed  CAS  Google Scholar 

  28. Berry-Kravis E, Abrams L, Coffey SM, Hall DA, Greco C, Gane LW, et al. Fragile X-associated tremor/ataxia syndrome: clinical features, genetics, and testing guidelines. Mov Disord. 2007;22(14):2018–30. quiz 140

    Article  Google Scholar 

  29. •• Wilson GR, Sim JC, McLean C, Giannandrea M, Galea CA, Riseley JR, et al. Mutations in RAB39B cause X-linked intellectual disability and early-onset Parkinson disease with alpha-synuclein pathology. Am J Hum Genet. 2014;95(6):729–35. In this paper, Wilson et al. describe the identification of RAB39B mutations, previously known to cause X-linked mental retardation, in a large family and several cases with X-linked Parkinsonism with intellectual disability expanding the clinical and pathological phenotype and linking this gene mutations to the specrtum of synucleinopathies.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. •• Khodadadi H, Azcona LJ, Aghamollaii V, Omrani MD, Garshasbi M, Taghavi S, et al. PTRHD1 (C2orf79) mutations lead to autosomal-recessive intellectual disability and parkinsonism. Mov Disord. 2017;32(2):287–91. This work describes the identification of PTRHD1 mutations as the cause for autosomal-recessive parkinsonism with severe intellectual disability.

    Article  PubMed  CAS  Google Scholar 

  31. Taglia I, Mignarri A, Olgiati S, Menci E, Petrocelli PL, Breedveld GJ, et al. Primary familial brain calcification: genetic analysis and clinical spectrum. Mov Disord. 2014;29(13):1691–5.

    Article  PubMed  CAS  Google Scholar 

  32. Kara E, Hardy J, Houlden H. The pallidopyramidal syndromes: nosology, aetiology and pathogenesis. Curr Opin Neurol. 2013;26(4):381–94.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Verhoeven WM, Egger JI, Koolen DA, Yntema H, Olgiati S, Breedveld GJ, et al. Beta-propeller protein-associated neurodegeneration (BPAN), a rare form of NBIA: novel mutations and neuropsychiatric phenotype in three adult patients. Parkinsonism Relat Disord. 2014;20(3):332–6.

    Article  PubMed  Google Scholar 

  34. • Ciammola A, Carrera P, Di Fonzo A, Sassone J, Villa R, Poletti B, et al. X-linked Parkinsonism with Intellectual Disability caused by novel mutations and somatic mosaicism in RAB39B gene. Parkinsonism Relat Disord. 2017;44:142–6. This paper highlights the complexity of neuroradiological features likely associated to RAB39B mutations presenting both basal ganglia calcifications and neurodegeneration with brain iron accumulations.

    Article  PubMed  Google Scholar 

  35. de Lau LM, Breteler MM. Epidemiology of Parkinson’s disease. Lancet Neurol. 2006;5(6):525–35.

    Article  PubMed  Google Scholar 

  36. Bressman SB, Sabatti C, Raymond D, de Leon D, Klein C, Kramer PL, et al. The DYT1 phenotype and guidelines for diagnostic testing. Neurology. 2000;54(9):1746–52.

    Article  PubMed  CAS  Google Scholar 

  37. Zimprich A, Grabowski M, Asmus F, Naumann M, Berg D, Bertram M, et al. Mutations in the gene encoding epsilon-sarcoglycan cause myoclonus-dystonia syndrome. Nat Genet. 2001;29(1):66–9.

    Article  PubMed  CAS  Google Scholar 

  38. •• Mencacci NE, Rubio-Agusti I, Zdebik A, Asmus F, Ludtmann MH, Ryten M, et al. A missense mutation in KCTD17 causes autosomal dominant myoclonus-dystonia. Am J Hum Genet. 2015;96(6):938–47. This paper highlights the genetic heterogeinity of myoclonus dystonia, describing the identification of mutations in a novel gene, KCTD17.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Wiethoff S, Houlden H. Neurodegeneration with brain iron accumulation. Handb Clin Neurol. 2017;145:157–66.

    Article  PubMed  Google Scholar 

  40. Ayrignac X, Nicolas G, Carra-Dalliere C, Hannequin D, Labauge P. Brain calcifications in adult-onset genetic leukoencephalopathies: a review. JAMA Neurol. 2017;74(8):1000–8.

    PubMed  Google Scholar 

  41. Quadri M, Federico A, Zhao T, Breedveld GJ, Battisti C, Delnooz C, et al. Mutations in SLC30A10 cause parkinsonism and dystonia with hypermanganesemia, polycythemia, and chronic liver disease. Am J Hum Genet. 2012;90(3):467–77.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Tuschl K, Clayton PT, Gospe SM Jr, Gulab S, Ibrahim S, Singhi P, et al. Syndrome of hepatic cirrhosis, dystonia, polycythemia, and hypermanganesemia caused by mutations in SLC30A10, a manganese transporter in man. Am J Hum Genet. 2012;90(3):457–66.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. • Tuschl K, Meyer E, Valdivia LE, Zhao N, Dadswell C, Abdul-Sada A, et al. Mutations in SLC39A14 disrupt manganese homeostasis and cause childhood-onset parkinsonism-dystonia. Nat Commun. 2016;7:11601. In this work, Tuschl. et al identified mutations in the second gene involved in manganese metabolisms leading to juvanile-onset dystonia-parkinsonism.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  44. Pfeiffer RF. Wilson’s disease. Continuum (Minneap Minn). 2016;22(4 Movement Disorders):1246–61.

    Google Scholar 

  45. Erro R, Hersheson J, Ganos C, Mencacci NE, Stamelou M, Batla A, et al. H-ABC syndrome and DYT4: variable expressivity or pleiotropy of TUBB4 mutations? Mov Disord. 2015;30(6):828–33.

    Article  PubMed  CAS  Google Scholar 

  46. Hamilton EM, Polder E, Vanderver A, Naidu S, Schiffmann R, Fisher K, et al. Hypomyelination with atrophy of the basal ganglia and cerebellum: further delineation of the phenotype and genotype-phenotype correlation. Brain. 2014;137:1921–30.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Mencacci NE, Erro R, Wiethoff S, Hersheson J, Ryten M, Balint B, et al. ADCY5 mutations are another cause of benign hereditary chorea. Neurology. 2015;85(1):80–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Mencacci NE, Kamsteeg EJ, Nakashima K, R’Bibo L, Lynch DS, Balint B, et al. De novo mutations in PDE10A cause childhood-onset chorea with bilateral striatal lesions. Am J Hum Genet. 2016;98:763–71.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Mencacci NE, Carecchio M. Recent advances in genetics of chorea. Curr Opin Neurol. 2016;29:486–95.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Malek N, Newman EJ. Hereditary chorea—what else to consider when the Huntington’s disease genetics test is negative? Acta Neurol Scand. 2017;135(1):25–33.

    Article  PubMed  CAS  Google Scholar 

  51. Moore RC, Xiang F, Monaghan J, Han D, Zhang Z, Edstrom L, et al. Huntington disease phenocopy is a familial prion disease. Am J Hum Genet. 2001;69(6):1385–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  52. •• Krause A, Mitchell C, Essop F, Tager S, Temlett J, Stevanin G, et al. Junctophilin 3 (JPH3) expansion mutations causing Huntington disease like 2 (HDL2) are common in South African patients with African ancestry and a Huntington disease phenotype. Am J Med Genet B Neuropsychiatr Genet. 2015;168(7):573–85. This paper highlights that JPH3 pathological expansion can explain up to 15% of cases with a syndrome inistiguishable from Huntington disease among black South Africans.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Becher MW, Rubinsztein DC, Leggo J, Wagster MV, Stine OC, Ranen NG, et al. Dentatorubral and pallidoluysian atrophy (DRPLA). Clinical and neuropathological findings in genetically confirmed North American and European pedigrees. Mov Disord. 1997;12(4):519–30.

    Article  PubMed  CAS  Google Scholar 

  54. Hensman Moss DJ, Poulter M, Beck J, Hehir J, Polke JM, Campbell T, et al. C9orf72 expansions are the most common genetic cause of Huntington disease phenocopies. Neurology. 2014;82(4):292–9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Martino D, Stamelou M, Bhatia KP. The differential diagnosis of Huntington’s disease-like syndromes: ‘red flags’ for the clinician. J Neurol Neurosurg Psychiatry. 2013;84(6):650–6.

    Article  PubMed  Google Scholar 

  56. Erro R, Bhatia KP, Espay AJ, Striano P. The epileptic and nonepileptic spectrum of paroxysmal dyskinesias: channelopathies, synaptopathies, and transportopathies. Mov Disord. 2017;32(3):310–8.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Gardiner AR, Jaffer F, Dale RC, Labrum R, Erro R, Meyer E, et al. The clinical and genetic heterogeneity of paroxysmal dyskinesias. Brain. 2015;138:3567–80.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Erro R, Sheerin UM, Bhatia KP. Paroxysmal dyskinesias revisited: a review of 500 genetically proven cases and a new classification. Mov Disord. 2014;29:1108–16.

    Article  PubMed  Google Scholar 

  59. •• Olgiati S, Skorvanek M, Quadri M, Minneboo M, Graafland J, Breedveld GJ, et al. Paroxysmal exercise-induced dystonia within the phenotypic spectrum of ECHS1 deficiency. Mov Disord. 2016;31(7):1041–8. Olgiati et al. expands the phenotype associated with ECHS1 mutations, known to cause a severe Leigh-like syndrome, reporting on a milder form with isolated paroxysmal exercise-induced dystonia.

    Article  PubMed  CAS  Google Scholar 

  60. Patel KP, O'Brien TW, Subramony SH, Shuster J, Stacpoole PW. The spectrum of pyruvate dehydrogenase complex deficiency: clinical, biochemical and genetic features in 371 patients (vol 105, pg 34, 2012). Mol Genet Metab. 2012;106(3):384–94.

    Article  CAS  Google Scholar 

  61. Head RA, Brown RM, Zolkipli Z, Shahdadpuri R, King MD, Clayton PT, et al. Clinical and genetic spectrum of pyruvate dehydrogenase deficiency: dihydrolipoamide acetyltransferase (E2) deficiency. Ann Neurol. 2005;58(2):234–41.

    Article  PubMed  CAS  Google Scholar 

  62. Erro R, Stamelou M, Ganos C, Batla A, Bhatia K. The clinical syndrome of paroxysmal exercise-induced dystonia: diagnostic outcomes and an algorithm. Mov Disord. 2014;29:S497–S8.

    Article  Google Scholar 

  63. Dale RC, Melchers A, Fung VSC, Grattan-Smith P, Houlden H, Earl J. Familial paroxysmal exercise-induced dystonia: atypical presentation of autosomal dominant GTP-cyclohydrolase 1 deficiency. Dev Med Child Neurol. 2010;52(6):583–6.

    Article  PubMed  Google Scholar 

  64. Koros C, Simitsi A, Stefanis L. Genetics of Parkinson’s disease: Genotype-Phenotype Correlations. Int Rev Neurobiol. 2017;132:197–231.

  65. van Egmond ME, Lugtenberg CHA, Brouwer OF, Contarino MF, Fung VSC, Heiner-Fokkema MR, et al. A post hoc study on gene panel analysis for the diagnosis of dystonia. Mov Disord. 2017;32(4):569–75.

    Article  PubMed  CAS  Google Scholar 

  66. Domingo A, Erro R, Lohmann K. Novel dystonia genes: clues on disease mechanisms and the complexities of high-throughput sequencing. Mov Disord. 2016;31:471–7.

    Article  PubMed  CAS  Google Scholar 

  67. Espay AJ, Brundin P, Lang AE. Precision medicine for disease modification in Parkinson disease. Nat Rev Neurol. 2017;13(2):119–26.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Susan Ainscough for having edited the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Erro.

Ethics declarations

Conflict of Interest

Alessio Di Fonzo, Edoardo Monfrini, and Roberto Erro each declare no potential conflicts of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Movement Disorders

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di Fonzo, A., Monfrini, E. & Erro, R. Genetics of Movement Disorders and the Practicing Clinician; Who and What to Test for?. Curr Neurol Neurosci Rep 18, 37 (2018). https://doi.org/10.1007/s11910-018-0847-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-018-0847-1

Keywords

Navigation