Skip to main content

Genetics of Movement Disorders

  • Chapter
  • First Online:
Movement Disorders Curricula

Abstract

The contribution of genes to etiology is variable for different movement disorders. Some diseases are by definition genetic, such as Huntington’s disease (HD) – in all cases caused by expanded repeats in the Huntingtin (HTT) gene. Other disorders such as Parkinson’s disease may have monogenic causes but are largely the result of nongenetic factors. Dystonia and the atypical parkinsonisms have high genetic burdens in their etiologies, with reduced penetrance being a common feature. Essential tremor (ET) and restless legs syndrome (RLS) may be familial, although no monogenic causes have been elucidated; rather, risk-conferring alleles contribute to etiology. In this chapter, we review the genetic causes of these movement disorders. We focus on the monogenic causes of autosomal dominant (SNCA, LRRK2, VPS35) and recessive (PARKIN, PINK1, DJ-1) Parkinson’s disease, of isolated (TOR1A, THAP1, GNAL) and combined (GCH1, TH, ATP1A3, PRKRA, TAF1, SGCE) dystonia, and of the paroxysmal movement disorders (PRRT2, MR1, SLC2A1). We also briefly cover Huntingtin and the genes that have been linked to atypical parkinsonism, essential tremor, and restless legs syndrome. Importantly, we include new reports of genes that have been identified via next-generation sequencing, with the caveat that a number still require independent validation in more genetic and functional studies. Because the genetics of movement disorders are complex, genetic testing results determining the clinical diagnosis can only be recommended for genes that are unequivocally disease causing. However, gene panel testing is slowly transitioning into clinical utility, heralding the transition of movement disorder genetics from bench to bedside.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 149.00
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Williams DR, Litvan I. Parkinsonian syndromes. Continuum. 2013;19(5, Movement Disorders):1189–212.

    PubMed  PubMed Central  Google Scholar 

  2. Alcalay RN, Caccappolo E, Mejia-Santanaet H, et al. Frequency of known mutations in early-onset Parkinson disease: implication for genetic counseling. Arch Neurol. 2010;67(9):1116–22.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Marras C, Lang A, Lohmann K, et al. Fixing the broken system of genetic locus symbols: Parkinson disease and dystonia as examples. Neurology. 2012;78(13):1016–24.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Norris EH, Giasson BI, Lee VMY. α-Synuclein: normal function and role in neurodegenerative diseases. In: Schatten GP, editor. Current topics in developmental biology, vol 60, Stem cells in development and disease. Academic; 2004. p. 17–54. doi:10.1016/S0070-2153(04)60002-0.

  5. Spillantini MG, Schmidt ML, Lee VM. [alpha]-Synuclein in Lewy bodies. Nature. 1997;388(6645):839–40.

    Article  CAS  PubMed  Google Scholar 

  6. Klein C, Schlossmacher MG. Parkinson disease, 10 years after its genetic revolution: multiple clues to a complex disorder. Neurology. 2007;69(22):2093–104.

    Article  PubMed  Google Scholar 

  7. Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the α-synuclein gene identified in families with Parkinson’s disease. Science. 1997;276(5321):2045–7.

    Article  CAS  PubMed  Google Scholar 

  8. Kasten M, Klein C. The many faces of alpha-synuclein mutations. Mov Disord. 2013;28(6):697–701.

    Article  PubMed  Google Scholar 

  9. Nuytemans K, Theuns S, Cruts M, et al. Genetic etiology of Parkinson disease associated with mutations in the SNCA, PARK2, PINK1, PARK7, and LRRK2 genes: a mutation update. Hum Mutat. 2010;31(7):763–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Singleton AB, Farrer M, Johnson J, et al. α-Synuclein locus triplication causes Parkinson’s disease. Science. 2003;302(5646):841.

    Article  CAS  PubMed  Google Scholar 

  11. Healy DG, Falchi M, O’Sullivan SS, et al. Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. Lancet Neurol. 2008;7(7):583–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Saunders-Pullman R, Stanley K, Wang C, et al. Olfactory dysfunction in LRRK2 G2019S mutation carriers. Neurology. 2011;77(4):319–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zimprich A, Biskup S, Leitner P, et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron. 2004;44(4):601–7.

    Article  CAS  PubMed  Google Scholar 

  14. Kachergus J, Mata IF, Hulihan M, et al. Identification of a novel LRRK2 mutation linked to autosomal dominant parkinsonism: evidence of a common founder across European populations. Am J Hum Genet. 2005;76(4):672–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ozelius L, Senthil J, Saunders-Pullman R, et al. LRRK2 G2019S as a cause of Parkinson’s disease in Ashkenazi jews. N Engl J Med. 2006;354(4):424–5.

    Article  CAS  PubMed  Google Scholar 

  16. Tan EK, Shena H, Tan LCS, et al. The G2019S LRRK2 mutation is uncommon in an Asian cohort of Parkinson’s disease patients. Neurosci Lett. 2005;384(3):327–9.

    Article  CAS  PubMed  Google Scholar 

  17. Klein C, Westenberger A. Genetics of Parkinson’s disease. Cold Spring Harb Perspect Med. 2012;2(1):a008888.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hentati F, Trinh J, Thomson C, et al. Lrrk2 parkinsonism in Tunisia and Norway: a comparative analysis of disease penetrance. Neurology. 2014;83:568–9.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Funayama M, Li Y, Tomiyama H, et al. Leucine-rich repeat kinase 2 G2385R variant is a risk factor for Parkinson disease in Asian population. Neuroreport. 2007;18(3):273–5.

    Article  CAS  PubMed  Google Scholar 

  20. Vilariño-Güell C, Wider C, Ross OA, et al. VPS35 mutations in Parkinson disease. Am J Hum Genet. 2011;89(1):162–7.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Zimprich A, Benet-Pagès A, Struhal W. A mutation in VPS35, encoding a subunit of the retromer complex, causes late-onset Parkinson disease. Am J Hum Genet. 2011;89(1):168–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sharma M, Ioannidis JPA, Aasly JO, et al. A multi-centre clinico-genetic analysis of the VPS35 gene in Parkinson disease indicates reduced penetrance for disease-associated variants. J Med Genet. 2012;49(11):721–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bonifati V. Genetics of Parkinson’s disease – state of the art, 2013. Parkinsonism Relat Disord. 2014;20 Suppl 1:S23–8.

    Article  PubMed  Google Scholar 

  24. Priya A, Kalaidzidis IV, Kalaidzidis Y, Lambright D, Datta S. Molecular insights into rab7-mediated endosomal recruitment of core retromer: deciphering the role of vps26 and vps35. Traffic. 2015;16(1):68–84.

    Article  CAS  PubMed  Google Scholar 

  25. Vilariño-Güell C, Rajput A, Milnerwood AJ. DNAJC13 mutations in Parkinson disease. Hum Mol Genet. 2014;23(7):1794–801.

    Article  PubMed  CAS  Google Scholar 

  26. Funayama M, Ohe K, Amo T, et al. CHCHD2 mutations in autosomal dominant late-onset Parkinson’s disease: a genome-wide linkage and sequencing study. Lancet Neurol. 2015;14:274–82.

    Article  CAS  PubMed  Google Scholar 

  27. Lohmann E, Periquet M, Bonifati V, et al. How much phenotypic variation can be attributed to parkin genotype? Ann Neurol. 2003;54(2):176–85.

    Article  CAS  PubMed  Google Scholar 

  28. Grünewald A, Kasten M, Ziegler A, et al. Next-generation phenotyping using the Parkin example: time to catch up with genetics. JAMA Neurol. 2013;70(9):1186–91.

    Article  PubMed  Google Scholar 

  29. Doherty KM, Silveira-Moriyama L, Parkkinen L, et al. Parkin disease: a clinicopathologic entity? JAMA Neurol. 2013;70(5):571–9.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Zanon A, Rakovic A, Blankenburg H, et al. Profiling of Parkin-binding partners using tandem affinity purification. PLoS One. 2013;8(11):e78648.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Hasson SA, Kane LA, Yamano K, et al. High-content genome-wide RNAi screens identify regulators of parkin upstream of mitophagy. Nature. 2013;504(7479):291–5.

    Article  CAS  PubMed  Google Scholar 

  32. Valente EM, Abou-Sleiman PM, Caputo V, et al. Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science. 2004;304(5674):1158–60.

    Article  CAS  PubMed  Google Scholar 

  33. Gelmetti V, Ferraris A, Brusa L, et al. Late onset sporadic Parkinson’s disease caused by PINK1 mutations: clinical and functional study. Mov Disord. 2008;23(6):881–5.

    Article  PubMed  Google Scholar 

  34. Klein C, Schlossmacher MG. The genetics of Parkinson disease: implications for neurological care. Nat Clin Prac Neurol. 2006;2(3):136–46.

    Article  CAS  Google Scholar 

  35. Kasten M, Weichert C, Lohmann K, Klein C. Clinical and demographic characteristics of PINK1 mutation carriers – a meta-analysis. Mov Disord. 2010;25(7):952–4.

    Article  PubMed  Google Scholar 

  36. Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol. 2011;12(1):9–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Rakovic A, Grünewald A, Kottwitz J, et al. Mutations in PINK1 and Parkin impair ubiquitination of mitofusins in human fibroblasts. PLoS One. 2011;6(3):e16746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Grünewald A, Voges L, Rakovic A, et al. Mutant Parkin impairs mitochondrial function and morphology in human fibroblasts. PLoS One. 2010;5(9):e12962.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Bonifati V, Rizzu P, van Baren MJ, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science. 2003;299(5604):256–9.

    Article  CAS  PubMed  Google Scholar 

  40. Canet-Avilés RM, Wilson M, Miller D, et al. The Parkinson’s disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci U S A. 2004;101(24):9103–8.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Lill CM, Roehr JT, McQueen MB, et al. Comprehensive research synopsis and systematic meta-analyses in Parkinson’s disease genetics: the PDGene database. PLoS Genet. 2012;8(3):e1002548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lesage S, Anheim M, Condroyer C, et al. Large-scale screening of the Gaucher’s disease-related glucocerebrosidase gene in Europeans with Parkinson’s disease. Human Mol Genet. 2011;20(1):202–10.

    Article  CAS  Google Scholar 

  43. Sidransky E, Nalls MA, Aasly JO, et al. Multicenter analysis of glucocerebrosidase mutations in Parkinson’s disease. N Engl J Med. 2009;361(17):1651–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Alcalay RN, Dinur T, Quinn T, et al. Comparison of parkinson risk in Ashkenazi jewish patients with Gaucher disease and GBA heterozygotes. JAMA Neurol. 2014;71(6):752–7.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Stamelou M, Quinn NP, Bhatia K. “Atypical” atypical parkinsonism: new genetic conditions presenting with features of progressive supranuclear palsy, corticobasal degeneration, or multiple system atrophy – diagnostic guide. Mov Disord. 2013;28(9):1184–99.

    Article  CAS  PubMed  Google Scholar 

  46. Oppenheim H. Űber eine eigenartige Krampfkrankheit des kindlichen und jugendlichen Alters (Dysbasia lordotica progressiva, Dystonia musculorum deformans). Neurol Cent. 1911;30:1090–107.

    Google Scholar 

  47. Klein C, Fahn S. Translation of Oppenheim’s 1911 paper on dystonia. Mov Disord. 2013;28:851–62.

    Article  PubMed  Google Scholar 

  48. Albanese A, Bhatia K, Bressman SB, et al. Phenomenology and classification of dystonia: a consensus update. Mov Disord. 2013;28:863–73.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Klein C. Genetics in dystonia. Park Relat Disord. 2014;20(Suppl1):S137–42.

    Article  Google Scholar 

  50. Klein C, Marras C, Münchau A. Dystonia overview. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews. Seattle: University of Washington; 2014.

    Google Scholar 

  51. Bressman SB, Sabatti C, Raymond D, et al. The DYT1 phenotype and guidelines for diagnostic testing. Neurology. 2000;54:1746–52.

    Article  CAS  PubMed  Google Scholar 

  52. Ozelius LJ, Hewett JW, Page CE, et al. The early-onset torsion dystonia gene (DYT1) encodes an ATP-binding protein. Nat Genet. 1997;17:40–8.

    Article  CAS  PubMed  Google Scholar 

  53. Fuchs T, Gavarini S, Saunders-Pullman R, et al. Mutations in the THAP1 gene are responsible for DYT6 primary torsion dystonia. Nat Genet. 2009;41:286–8.

    Article  CAS  PubMed  Google Scholar 

  54. Blanchard A, Ea V, Roubertie A, et al. DYT6 dystonia: review of the literature and creation of the UMD Locus-Specific Database (LSDB) for mutations in the THAP1 gene. Hum Mutat. 2011;32:1213–24.

    Article  CAS  PubMed  Google Scholar 

  55. Vemula SR, Puschmann A, Xiao J. Role of Galpha(olf) in familial and sporadic adult-onset primary dystonia. Hum Mol Genet. 2013;22:2510–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kumar KR, Lohmann K, Masuho I, et al. Phenotypic spectrum of mutations in GNAL: a novel cause of cranio-cervical dystonia. JAMA Neurol. 2013;71(4):490–4.

    Article  Google Scholar 

  57. Xiao J, Uitti RJ, Zhao Y, et al. Mutations in CIZ1 cause adult onset primary cervical dystonia. Ann Neurol. 2012;71:458–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Charlesworth G, Plagnol V, Holmstrom KM, et al. Mutations in Ano3 cause dominant craniocervical dystonia: ion channel implicated in pathogenesis. Am J Hum Genet. 2012;91:1041–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Charlesworth G, Angelova PR, Bartolomé-Robledo F, et al. Mutations in HPCA cause autosomal-recessive primary isolated dystonia. Am J Hum Genet. 2015;96(4):657–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Zech M, Lam DD, Francescatto L. Recessive mutations in the α3 (VI) collagen gene COL6A3 cause early-onset isolated dystonia. Am J Hum Genet. 2015;96(6):883–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lohmann K, Wilcox R, Winkler S, et al. Whispering dysphonia (DYT4 dystonia) is caused by a mutation in the TUBB4 gene. Ann Neurol. 2013;73(4):537–45.

    Article  CAS  PubMed  Google Scholar 

  62. Hersheson J, Mencacci NE, Davis M, et al. Mutations in the autoregulatory domain of ß-tubulin 4a cause hereditary dystonia. Ann Neurol. 2013;73(4):546–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Simons C, Wolf NI, McNeil N. A de novo mutation in the β-tubulin gene TUBB4A results in the leukoencephalopathy hypomyelination with atrophy of the basal ganglia and cerebellum. Am J Hum Genet. 2013;92(5):767–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Segawa M, Hosaka A, Miyagawa F, et al. Hereditary progressive dystonia with marked diurnal fluctuation. Adv Neurol. 1976;14:215–33.

    CAS  PubMed  Google Scholar 

  65. Mencacci NE, Isaias IU, Reich MM, et al. Parkinson’s disease in GTP cyclohydrolase 1 mutation carriers. Brain. 2014;137(Pt 9):2480–92.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Tadic V, Kasten M, Bruggemann N, et al. Dopa-responsive dystonia revisited: diagnostic delay, residual signs, and nonmotor signs. Arch Neurol. 2012;69(12):1558–62.

    Article  PubMed  Google Scholar 

  67. de Carvalho Aguiar P, Sweadner KJ, Penniston JT, et al. Mutations in the Na+/K+ -ATPase alpha3 gene ATP1A3 are associated with rapid-onset dystonia parkinsonism. Neuron. 2004;43:169–75.

    Article  PubMed  Google Scholar 

  68. Heinzen EL, Swoboda KJ, Hitomi Y, et al. De novo mutations in ATP1A3 cause alternating hemiplegia of childhood. Nat Genet. 2012;44:1030–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Demos MK, van Karnebeek CD, Ross CJ. A novel recurrent mutation in ATP1A3 causes CAPOS syndrome. Orphanet J Rare Dis. 2014;9:15.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Camargos S, Scholz S, Simón-Sánchez J, et al. DYT16, a novel young-onset dystonia-parkinsonism disorder: identification of a segregating mutation in the stress-response protein PRKRA. Lancet Neurol. 2008;7(3):207–15.

    Article  CAS  PubMed  Google Scholar 

  71. Zech M, Castrop F, Schormair B. DYT16 revisited: exome sequencing identifies PRKRA mutations in a European dystonia family. Mov Disord. 2014;29(12):1504–10.

    Article  CAS  PubMed  Google Scholar 

  72. Seibler P, Djarmati A, Langpap B, et al. A heterozygous frameshift mutation in PRKRA (DYT16) associated with generalised dystonia in a German patient. Lancet Neurol. 2008;7(5):380–1.

    Article  PubMed  Google Scholar 

  73. Lee LV, Rivera C, Teleg RA, et al. The unique phenomenology of sex-linked dystonia parkinsonism (XDP, DYT3, “Lubag”). Int J Neurosci. 2011;121 Suppl 1:3–11.

    Article  PubMed  Google Scholar 

  74. Domingo A, Westenberger A, Lee LV, et al. New insights on the genetics of X-linked dystonia-parkinsonism (XDP/DYT3). Eur J Hum Genet. 2015;23(10):1334–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Makino S, Kaji R, Ando S, et al. Reduced neuron-specific expression of the TAF1 gene is associated with X-linked dystonia-parkinsonism. Am J Hum Genet. 2007;80:393–406.

    Google Scholar 

  76. Domingo A, Amar D, Grütz K, et al. Evidence of TAF1 dysfunction in peripheral models of X-linked dystonia-parkinsonism. Cell Mol Life Sci. 2016. [Epub ahead of print].

    Google Scholar 

  77. Zimprich A, Grabowski M, Asmus F, et al. Mutations in the gene encoding epsilon-sarcoglycan cause myoclonus-dystonia syndrome. Nat Genet. 2001;29:66–9.

    Article  CAS  PubMed  Google Scholar 

  78. Müller B, Hedrich K, Kock N, et al. Evidence that paternal expression of the epsilon-sarcoglycan gene accounts for reduced penetrance in myoclonus-dystonia. Am J Hum Genet. 2002;71:1303–11.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Groen JL, Andrade A, Ritz K, et al. CACNA1B mutation is linked to unique myoclonus-dystonia syndrome. Hum Mol Genet. 2015;24(4):987–93.

    Article  CAS  PubMed  Google Scholar 

  80. Mencacci NE, Rubio-Agusti I, Zdebik A, et al. A missense mutation in KCTD17 causes autosomal dominant myoclonus-dystonia. Am J Hum Genet. 2015;96(6):938–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Risch NJ, Bressman SB, Senthil G, Ozelius LJ. Intragenic cis and trans modification of genetic susceptibility in DYT1 torsion dystonia. Am J Hum Genet. 2007;80(6):1188–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Kamm C, Fischer H, Garavaglia B, et al. Susceptibility to DYT1 dystonia in European patients is modified by the D216H polymorphism. Neurology. 2008;70(23):2261–2.

    Article  CAS  PubMed  Google Scholar 

  83. Mok KY, Schneider SA, Trabzuni D, et al. Genomewide association study in cervical dystonia demonstrates possible association with sodium leak channel. Mov Disord. 2014;29(2):245–51.

    Article  CAS  PubMed  Google Scholar 

  84. Lohmann K, Schmidt A, Schillert A, et al. Genome-wide association study in musician’s dystonia: a risk variant at the arylsulfatase G locus? Mov Disord. 2014;29(7):921–7.

    Article  CAS  PubMed  Google Scholar 

  85. Gómez-Garre P, Huertas-Fernández I, Cáceres-Redondo MT, et al. Lack of validation of variants associated with cervical dystonia risk: a GWAS replication study. Mov Disord. 2014;29(14):1825–8.

    Article  PubMed  CAS  Google Scholar 

  86. Schmidt A, Kumar KR, Redyk K, et al. Two faces of the same coin: benign familial infantile seizures and paroxysmal kinesigenic dyskinesia caused by PRRT2 mutations. Arch Neurol. 2013;69(5):668–70.

    Article  Google Scholar 

  87. Chen WJ, Lin Y, Xiong ZQ, et al. Exome sequencing identifies truncating mutations in PRRT2 that cause paroxysmal kinesigenic dyskinesia. Nat Genet. 2011;43:1252–5.

    Article  CAS  PubMed  Google Scholar 

  88. Lee HY, Xu Y, Huang Y, et al. The gene for paroxysmal non-kinesigenic dyskinesia encodes an enzyme in a stress response pathway. Hum Mol Genet. 2004;13:3161–70.

    Article  CAS  PubMed  Google Scholar 

  89. Weber YG, Storch A, Wuttke TV, et al. GLUT1 mutations are a cause of paroxysmal exertion-induced dyskinesias and induce hemolytic anemia by a cation leak. J Clin Invest. 2008;118:2157–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Weber YG, Kamm C, Suls A, et al. Paroxysmal choreoathetosis/spasticity (DYT9) is caused by a GLUT1 defect. Neurology. 2011;77:959–64.

    Article  CAS  PubMed  Google Scholar 

  91. MacDonald, Bates, Buckler, et al. A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell. 1993;72(6):971–83.

    Article  Google Scholar 

  92. Warby S, Graham RK, Hayden MR. Huntington’s disease. In: Pagon RA, Adam MP, Ardinger HH, et al., editors. GeneReviews. Seattle: University of Washington; 2014.

    Google Scholar 

  93. Semaka A, Creighton S, Warby S, Hayden MR. Predictive testing for Huntington disease: interpretation and significance of intermediate alleles. Clin Genet. 2006;70(4):283–94.

    Article  CAS  PubMed  Google Scholar 

  94. Killoran A, Biglan KM, Jankovic J, et al. Characterization of the Huntington intermediate CAG repeat expansion phenotype in PHAROS. Neurology. 2013;80:2022.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ha AD, Fung V. Huntington’s disease. Curr Opin Neurol. 2012;25(4):491–8.

    Article  PubMed  Google Scholar 

  96. Ross CA, Tabrizi SJ. Huntington’s disease: from molecular pathogenesis to clinical treatment. Lancet Neurol. 2011;10:83–98.

    Article  CAS  PubMed  Google Scholar 

  97. Zeuner K, Deuschl G. An update on tremors. Curr Opin Neurol. 2012;25(4):475–82.

    Article  PubMed  Google Scholar 

  98. Gulcher JR, Jónsson P, Kong A, et al. Mapping of a familial essential tremor gene, FET1, to chromosome 3q13. Nat Genet. 1997;17(1):84–7. PubMed PMID: 9288103.

    Google Scholar 

  99. Jeanneteau F, Funalot B, Jankovic J, et al. A functional variant of the dopamine D3 receptor is associated with risk and age-at-onset of essential tremor. Proc Natl Acad Sci U S A. 2006;103(28):10753–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kuhlenbäumer G, Hopfner F, Deuschl G. Genetics of essential tremor: meta-analysis and review. Neurology. 2014;82(11):1000–7.

    Article  PubMed  Google Scholar 

  101. Higgins JJ, Lombardi RQ, Pucilowska J, Jankovic J, Tan EK, Rooney JP. A variant in the HS1-BP3 gene is associated with familial essential tremor. Neurology. 2005;64(3):417–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Merner ND, Girard SL, Catoire H, et al. Exome sequencing identifies FUS mutations as a cause of essential tremor. Am J Hum Genet. 2012;91(2):313–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hopfner F, Stevanin G, Müller SH, et al. The impact of rare variants in FUS in essential tremor. Mov Disord. 2015;30(5):721–4.

    Article  PubMed  Google Scholar 

  104. Gulsuner H, Gulsuner S, Mercan FN, et al. Mitochondrial serine protease HTRA2 p.G399S in a kindred with essential tremor and Parkinson disease. Proc Natl Acad Sci U S A. 2014. pii: 201419581. [Epub ahead of print].

    Google Scholar 

  105. Strauss KM, Martins LM, Plun-Favreau H, et al. Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson’s disease. Hum Mol Genet. 2005;14(15):2099–111.

    Article  CAS  PubMed  Google Scholar 

  106. Krüger R, Sharma M, Reiss O, et al. A large-scale genetic association study to evaluate the contribution of Omi/HtrA2 (PARK13) to Parkinson’s disease. Neurobiol Aging. 2011;32(3):548.e9–548.e18.

    Article  CAS  Google Scholar 

  107. Stefansson H, Steinberg S, Petursson H, et al. Variant in the sequence of the LINGO1 gene confers risk of essential tremor. Nat Genet. 2009;41:277–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Thier S, Lorenz D, Nothnagel M, et al. Polymorphisms in the glial glutamate transporter SLC1A2 are associated with essential tremor. Neurology. 2012;79(3):243–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Trenkwalder C, Paulus W. Restless legs syndrome: pathophysiology, clinical presentation and management. Nat Rev Neurol. 2010;6(6):337–46.

    Article  PubMed  Google Scholar 

  110. Kumar KR, Lohmann K, Klein C. Genetics of Parkinson disease and other movement disorders. Curr Opin Neurol. 2012;25(4):466–74.

    Article  CAS  PubMed  Google Scholar 

  111. Winkelmann J, Schormair B, Lichtner P, et al. Genome-wide association study of restless legs syndrome identifies common variants in three genomic regions. Nat Genet. 2007;39(8):1000–6.

    Article  CAS  PubMed  Google Scholar 

  112. Schulte E, Kousi M, Tan PL, et al. Targeted resequencing and systematic in vivo functional testing identifies rare variants in MEIS1 as significant contributors to restless legs syndrome. Am J Hum Genet. 2014;95:85–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Domingo A, Erro R, Lohmann K. Novel Dystonia Genes: Clues on disease mechanisms and the complexities of high-throughput sequencing. Mov Disord. 2016;31(4):471–7.

    Google Scholar 

  114. Harbo HF, Finsterer J, Baets J, et al. EFNS guidelines on the molecular diagnosis of neurogenetic disorders: general issues, Huntington’s disease, Parkinson’s disease and dystonias. Eur J Neurol. 2009;16(7):777–85.

    Article  CAS  PubMed  Google Scholar 

  115. Lohmann K, Klein C. Next generation sequencing and the future of genetic diagnosis. Neurotherapeutics. 2014;11(4):699–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

CK is supported by a career development award from the Hermann and Lilly Schilling Foundation, and AD is the recipient of a scholarship from the German Academic Exchange Service (DAAD).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Klein MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Wien

About this chapter

Cite this chapter

Domingo, A., Klein, C. (2017). Genetics of Movement Disorders. In: Falup-Pecurariu, C., Ferreira, J., Martinez-Martin, P., Chaudhuri, K. (eds) Movement Disorders Curricula. Springer, Vienna. https://doi.org/10.1007/978-3-7091-1628-9_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-1628-9_9

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-1627-2

  • Online ISBN: 978-3-7091-1628-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics