Skip to main content

Advertisement

Log in

Metabolic Myoglobinuria

  • Nerve and Muscle (LH Weimer, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

One large group of hereditary myopathies characterized by recurrent myoglobinuria, almost invariably triggered by exercise, comprises metabolic disorders of two main fuels, glycogen and long-chain fatty acids, or mitochondrial diseases of the respiratory chain. Differential diagnosis is required to distinguish the three conditions, although all cause a crisis of muscle energy. Muscle biopsy may be useful when performed well after the episode of rhabdomyolysis. Molecular genetics is increasingly the diagnostic test of choice to discover the underlying genetic basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Hed R, Larsson H, Wahlgren F. Acute myoglobinuria: report of a case with fatal outcome. Acta Med Scand. 1955;152:959–63.

    Google Scholar 

  2. Mochel F, Knight MA, Tong W-H, et al. Splice mutation in the iron-sulfur cluster scaffold protein ISCU causes myopathy with exercise intolerance. Am J Hum Genet. 2008;82:652–60.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Kagen LJ. Myoglobin: biochemical, physiological, and clinical aspects. New York: Columbia University Press; 1973.

    Google Scholar 

  4. Bywaters EG. Ischemic muscle necrosis. JAMA. 1944;124.

  5. Kanno T, Sudo K, Maekawa M, Nishimura Y, Ukita M, Fukutaka K. Lactate dehydrogenase M-subunit deficiency: a new type of hereditary exertional myopathy. Clin Chim Acta. 1988;173:89–98.

    Article  CAS  PubMed  Google Scholar 

  6. Ogasahara S, Engel AG, Frens D, Mack D. Muscle coenzyme Q deficiency in familial mitochondrial encephalomyopathy. Proc Natl Acad Sci U S A. 1989;86:2379–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Sobreira C, Hirano M, Shanske S, et al. Mitochondrial encephalomyopathy with coenzyme Q10 deficiency. Neurology. 1997;48:1238–43.

    Article  CAS  PubMed  Google Scholar 

  8. Di Giovanni S, Mirabella M, Spinazzola A, et al. Coenzyme Q10 reverses pathological phenotype and reduces apoptosis in familial CoQ10 deficiency. Neurology. 2001;57:515–8.

    Article  PubMed  Google Scholar 

  9. Angelini C, Fanin M, Pegoraro E, Freda MP, Cadadini M, Martinello F. Clinical-molecular correlation in 104 mild X-linked muscular dystrophy patients: characterization of sub-clinical phenotypes. Neuromuscul Disord. 1994;4:349–58.

    Article  CAS  PubMed  Google Scholar 

  10. Garrood P, Eagle M, Jrdine PE, Straub V. Myoglobinuria in boys with Duchenne muscular dystrophy on corticosteroid therapy. Neuromuscul Disord. 2008;18:71–3.

    Article  CAS  PubMed  Google Scholar 

  11. Pena L, Kim K, Charow J. Episodic myoglobinuria in a primary gamma-sarcoglycanopathy. Neuromuscul Disord. 2010;20:337–9.

    Article  PubMed  Google Scholar 

  12. Cagliani R, Comi GP, Tancredi L, et al. Primary beta-sarcoglycanopathy manifesting as recurrent exercise-induced myoglobinuria. Neuromuscul Disord. 2001;11:389–94.

    Article  CAS  PubMed  Google Scholar 

  13. Lindberg C, Sixt C, Oldfors A. Episodes of exercise-induced dark urine and myalgia in LGMD 21. Acta Neurol Scand. 2012;125:285–7.

    Article  CAS  PubMed  Google Scholar 

  14. Aboumousa A, Hoogendijk JE, Charlton R, et al. Caveolinopathy—new mutations and additional symptoms. Neuromuscul Disord. 2008;18:572–8.

    Article  PubMed  Google Scholar 

  15. Lahoria R, Winder TL, Lui J, Al-Qwain MA, Milone M. ANO5 homozygous microdeletion causing myalgia and unprovoked rhabdomyolysis in an Arabic man. 2014;50:610–3.

  16. Dlamini N, Voermans NC, Lillis S, et al. Mutations in RYR1 are a common cause of exertional myalgia and rhabdomyolysis. Neuromuscul Disord. 2013;23:540–8. Dlamini and numerous European colleagues report an onslaught of patients with exercise-induced but often unprovoked episodes of myoglobinuria due to mutations in the ryanodine receptor 1 gene ( RYR1 ). These frequent patients distract attention from patients with metabolic myoglobinuria and, more often than not, from patients with malignant hyperthermia (MH).

  17. Bricker DK, Taylor EB, Schell JC, et al. A mitochondrial pyruvate carrier required for pyruvate uptake in yeast, Drosophila, and humans. Science. 2012;337:96–100.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. McArdle B. Myopathy due to a defect in muscle glycogen breakdown. Clin Sci. 1951;10:13–33.

    CAS  PubMed  Google Scholar 

  19. DiMauro S, Arnold S, Miranda AF, Rowland LP. McArdle disease: the mystery of reappearing phosphorylase activity in muscle culture. A fetal isoenzyme. Ann Neurol. 1978;3:60–6.

    Article  CAS  PubMed  Google Scholar 

  20. Roelofs RI, Engel WK, Chauvin PB. Histochemical phosphorylase activity in regenerating muscle fibers from myophosphorylase-deficient patients. Science. 1967;177:795–7.

    Article  Google Scholar 

  21. Mitsumoto H. McArdle disease: phosphorylase activity in regenerating muscle fibers. Neurology. 1979;29:258–62.

    Article  CAS  PubMed  Google Scholar 

  22. Preisler N, Orngreen MC, Echaniz-Laguna A, et al. Muscle phosphorylase kinase deficiency. A neutral metabolic variant or a disease? Neurology. 2012;78:265–8. Preisler et al. call attention to phosphorylase b kinase (PhK) deficiency, which cannot simulate McArdle disease by failing to produce flat ischemic forearm exercise or to show second wind, but increasing muscle glycogen and by causing in men exercise-related myalgia and occasional myoglobinuria.

    Article  CAS  PubMed  Google Scholar 

  23. Stojkovic T, Vissing J, Petit F, et al. Muscle glycogenosis due to phosphoglucomutase 1 deficiency. N Engl J Med. 2009;361:425–7.

    Article  CAS  PubMed  Google Scholar 

  24. Haller RG, Lewis SF. Glucose-induced exertional fatigue in muscle phosphofructokinase deficiency. N Engl J Med. 1991;324:364–9.

    Article  CAS  PubMed  Google Scholar 

  25. Haller RG, Vissing J. No spontaneous second wind in muscle phosphofructokinase deficiency. Neurology. 2004;62:82–6.

    Article  CAS  PubMed  Google Scholar 

  26. Argov Z, Bank WJ. Phosphorus magnetic resonance spectroscopy (31P MRS) in neuromuscular disorders. Ann Neurol. 1991;30:90–7.

    Article  CAS  PubMed  Google Scholar 

  27. Agamanolis DP, Askari AD, DiMauro S, et al. Muscle phosphofructokinase deficiency: two cases with unusual polysaccharide accumulation and immunologically active enzyme protein. Muscle Nerve. 1980;3:456–67.

    Article  CAS  PubMed  Google Scholar 

  28. Raben N, Danon MJ, Lu N, et al. Surprises of genetic engineering: a possible model of polyglucosan body disease. Neurology. 2001;56:1739–45.

    Article  CAS  PubMed  Google Scholar 

  29. Kreuder J, Borkhardt A, Repp R, et al. Inherited metabolic myopathy and hemolysis due to a mutation in aldolase A. N Engl J Med. 1996;334:1100–4.

    Article  CAS  PubMed  Google Scholar 

  30. Yao DC, Tolan DR, Murray MF, et al. Hemolytic anemia and severe rhabdomyolysis caused by compound heterozygous mutations of the gene for erythrocyte/muscle isozyme of aldolase. Blood. 2004;103:2401–3.

    Article  CAS  PubMed  Google Scholar 

  31. Spiegel R, Area Gomez E, Akman HO, Krishna S, Horovitz Y, DiMauro S. Myopathic form of phosphoglycerate kinase (PGK) deficiency: a new case and pathogenic considerations. Neuromuscul Disord. 2009;19:207–11.

    Article  PubMed  Google Scholar 

  32. Sotiriou E, Greene P, Krishna S, Hirano M, DiMauro S. Myopathy and Parkinsonism in phosphoglycerate kinase deficiency. Muscle Nerve. 2010;41:707–10.

    CAS  PubMed  Google Scholar 

  33. DiMauro S, Spiegel R. Progress and problems in muscle glycogenoses. Acta Myol. 2011;30:96–102.

    PubMed Central  CAS  PubMed  Google Scholar 

  34. Kanno T, Sudo K, Takeuchi I, et al. Hereditary deficiency of lactate dehydrogenase M-subunit. Clin Chim Acta. 1980;108:267–76.

    Article  CAS  PubMed  Google Scholar 

  35. Maekawa M, Sudo K, Kanno T, Li S. Molecular characterization of genetic mutation in human lactate dehydrogenase-A (M) deficiency. Biochem Biophys Res Commun. 1990;168:677–82.

    Article  CAS  PubMed  Google Scholar 

  36. Maekawa M, Sudo K, Kanno T, et al. A novel mutation of lactate dehydrogenase A (M) gene in the fifth family with the enzyme deficiency. Hum Mol Genet. 1994;3:825–6.

    Article  CAS  PubMed  Google Scholar 

  37. Maekawa M, Sudo K, Li S, Kanno T. Analysis of genetic mutation in human lactate dehydrogenase-A (M) deficiency using DNA conformation polymorphism in combination with polyacrilamide gradient gel and silver staining. Biochem Biophys Res Commun. 1991;180:1083–90.

    Article  CAS  PubMed  Google Scholar 

  38. Tsujino S, Shanske S, Brownell A, Haller RG, DiMauro S. Molecular genetic studies of muscle lactate dehydrogenase deficiency in white patients. Ann Neurol. 1994;36:661–5.

    Article  CAS  PubMed  Google Scholar 

  39. Kollberg G, Tulinius M, Gilljam T, et al. Cardiomyopathy and exercise intolerance in muscle glycogen storage disease 0. N Engl J Med. 2007;357:1507–14.

    Article  CAS  PubMed  Google Scholar 

  40. Cameron JM, Levandovskiy V, MacKay N, et al. Identification of a novel mutation in GSY1 (muscle-specific glycogen synthase) resulting in sudden cardiac death, that is diagnosable from skin fibroblasts. Mol Genet Metab. 2009;98:378–82.

    Article  CAS  PubMed  Google Scholar 

  41. Sukigara S, Liang W-C, Komaki H, et al. Muscle glycogen storage disease 0 presenting recurrent syncope with weakness and myalgia. Neuromuscul Disord. 2012;22:162–5. Sukigara and coworkers illustrate a typical presentation of glycogen synthetase (GS1) deficiency, and lack of glycogen simulates a block of glycogenolysis with excessive glycogen (e.g., McArdle disease). Lack of a central muscle fuel impairs ATP production, increases mitochondrial abundance, and—paradoxically—gives a negative phosphorylase histochemical reaction.

    Article  PubMed  Google Scholar 

  42. DiMauro S, DiMauro-Melis PM. Muscle carnitine palmityltransferase deficiency and myoglobinuria. Science. 1973;182:929–31.

    Article  CAS  PubMed  Google Scholar 

  43. Bank WJ, DiMauro S, Bonilla E, Capuzzi DM, Rowland LP. A disorder of muscle lipid metabolism and myoglobinuria. Absence of carnitine palmityltransferase. N Engl J Med. 1975;292:443–9.

    Article  CAS  PubMed  Google Scholar 

  44. Britton CH, Schultz RA, Zhang B, Esser V, Foster DW, McGarry JD. Human liver mitochondrial carnitine palmitoyltransferase I: characterization of its cDNA and chromosomal localization and partial analysis of the gene. Proc Natl Acad Sci U S A. 1995;92:1984–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  45. Gellera C, Verderio E, Floridia G, et al. Assignment of the human carnitine palmitoyltransferase II gene (CPT1) to chromosome 1p32. Genomics. 1994;24:195–7.

    Article  CAS  PubMed  Google Scholar 

  46. Tonin P, Lewis P, Servidei S, DiMauro S. Metabolic causes of myoglobinuria. Ann Neurol. 1990;27:181–5.

    Article  CAS  PubMed  Google Scholar 

  47. DiDonato S, Taroni F. Disorders of lipid metabolism. In: Engel AG, Franzini-Armstrong C, editors. Myology. New York: McGraw-Hill; 2004. p. 1587–621.

    Google Scholar 

  48. Kaufmann P, El-Schahawi M, DiMauro S. Carnitine palmitoyltransferase II deficiency: diagnosis by molecular analysis of blood. Mol Cell Biochem. 1997;174:237–9.

    Article  CAS  PubMed  Google Scholar 

  49. Montermini L, Wang H, Verderio E, Taroni F, DiDonato S, Finocchiaro G. Identification of 5′ regulatory regions of the human carnitine palmitoyltransferase II gene. Biochim Biophys Acta. 1994;1219:237–40.

    Article  CAS  PubMed  Google Scholar 

  50. Roe CR, Yang B-Z, Brunengraber H, Roe DS, Wallace M, Garritson BK. Carnitine palmitoyltransferase II deficiency: successful anaplerotic diet therapy. Neurology. 2008;71:260–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Bonnefont J-P, Bastin J, Behin A, Djouadi F. Bezafibrate for an inborn mitochondrial beta-oxidation defect. N Engl J Med. 2009;360:838840.

    Article  Google Scholar 

  52. Ohashi Y, Hasegawa Y, Murayama K, et al. A new diagnostic test for VLCAD deficiency using immunohistochemistry. Neurology. 2004;62:2209–13.

    Article  CAS  PubMed  Google Scholar 

  53. Laforet P, Acquaviva-Bourdain C, Rigal O, et al. Diagnostic assessment and long-term follow-up of 13 patients with very long-chain acyl-coenzyme A dehydrogenase (VLCAD) deficiency. Neuromuscul Disord. 2009;19:324–9.

    Article  PubMed  Google Scholar 

  54. Laforet P, Vianey-Saban C. Disorders of muscle lipid metabolism: diagnostic and therapeutic challenges. Neuromuscul Disord. 2010;20:693–700.

    Article  PubMed  Google Scholar 

  55. DiMauro S. Mitochondrial myopathies. Curr Opin Rheumatol. 2006;18:636–41.

    Article  CAS  PubMed  Google Scholar 

  56. Andreu AL, Hanna MG, Reichmann H, et al. Exercise intolerance due to mutations in the cytochrome b gene of mitochondrial DNA. N Engl J Med. 1999;341:1037–44.

    Article  CAS  PubMed  Google Scholar 

  57. Emmanuele V, Sotiriou E, Gutierrez Rios P, et al. A novel mutation in the mitochondrial DNA cytochrome b gene (MTCYB) in a patient with MELAS syndrome. J Child Neurol. 2013;28:236–42. Emmanuele et al. showed a case of MELAS (mitochondrial encephalomyopathy lactic acidosis and stroke-like episodes) syndrome in a girl with a rare MTCYB mutation, which is more often associated with sporadic myopathy, exercise intolerance, and often myoglobinuria.

    Article  PubMed Central  PubMed  Google Scholar 

  58. Keightley JA, Hoffbuhr KC, Burton MD, et al. A microdeletion in cytochrome c oxidase (COX) subunit III associated with COX deficiency and recurrent myoglobinuria. Nat Genet. 1996;12:410–5.

    Article  CAS  PubMed  Google Scholar 

  59. Karadimas CL, Greenstein P, Sue CM, et al. Recurrent myoglobinuria due to a nonsense mutation in the COX I gene of mtDNA. Neurology. 2000;55:644–9.

    Article  CAS  PubMed  Google Scholar 

  60. Kollberg G, Moslemi A-R, Lindberg C, Holme E, Oldfors A. Mitochondrial myopathy and rhabdomyolysis associated with a novel nonsense mutation in the gene encoding cytochrome c oxidase subunit I. J Neuropathol Exp Neurol. 2005;64:123–8.

    CAS  PubMed  Google Scholar 

  61. McFarland R, Taylor RW, Chinnery PF, Howell N, Turnbull DM. A novel sporadic mutation in cytochrome c oxidase subunit II as a cause of rhabdomyolysis. Neuromuscul Disord. 2004;14:162–6.

    Article  PubMed  Google Scholar 

  62. Haller RG, Henriksson KG, Jorfeldt L, et al. Deficiency of skeletal muscle succinate dehydrogenase and aconitase. J Clin Invest. 1991;88:1197–206.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  63. Hall RE, Henriksson KG, Lewis SF, Haller RG, Kennaway NG. Mitochondrial myopathy with succinate dehydrogenase and aconitase deficiency. Abnormalities of several iron-sulfur proteins. J Clin Invest. 1993;92:2660–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  64. Kollberg G, Melberg A, Holme E, Oldfors A. Transient restoration of succinate dehydrogenase activity after rhabdomyolysis in iron-sulfur cluster deficiency myopathy. Neuromuscul Disord. 2010;21:115–20.

    Article  PubMed  Google Scholar 

  65. DiGiovanni S, Mirabella M, Papacci M, Odoardi F, Silvestri G, Servidei S. Apoptosis and ROS detoxification enzymes correlate with cytochrome c oxidase deficiency in mitochondrial encephalomyopathies. Mol Cell Neurosci. 2001;17:696–705.

    Article  CAS  Google Scholar 

  66. Lalani S, Vladutiu GD, Plunkett K, Lotze TE, Adesina AM, Scaglia F. Isolated mitochondrial myopathy associated with muscle coenzyme Q10 deficiency. Arch Neurol. 2005;62:317–20.

    Article  PubMed  Google Scholar 

  67. Aure K, Benoist JF, Ogier de Baulny H, Romero NB, Rigal O, Lombes A. Progression despite replacement of a myopathic form of coenzyme Q10 defect. Neurology. 2004;63:727–9.

    Article  CAS  PubMed  Google Scholar 

  68. Horvath R, Scneiderat P, Schoser BGH, et al. Coenzyme Q10 deficiency and isolated myopathy. Neurology. 2006;66:253–5.

    Article  CAS  PubMed  Google Scholar 

  69. Gempel K, Topaloglu H, Talim B, et al. The myopathic form of coenzyme Q10 deficiency is caused by mutations in the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene. Brain. 2007;130:2037–44.

    Article  PubMed Central  PubMed  Google Scholar 

  70. Liang W-C, Ohkuma A, Hayashi YK, et al. ETFDH mutations, CoQ10 levels, and respiratory chain activities in patients with riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency. Neuromuscul Disord. 2009;19:212–6.

    Article  PubMed  Google Scholar 

  71. Ohkuma A, Noguchi S, Sugie H, et al. Clinical and genetic analysis of lipid storage myopathies. Muscle Nerve. 2009;39:333–42.

    Article  PubMed  Google Scholar 

  72. Tein I, DiMauro S, DeVivo DC. Recurrent childhood myoglobinuria. Adv Pediatr. 1990;37:77–117.

    CAS  PubMed  Google Scholar 

  73. Zeharia A, Shaag A, Houtkooper RH, et al. Mutations in LPIN cause recurrent childhood myoglobinuria in childhood. Am J Hum Genet. 2008;83:489–94.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  74. Rowland LP, Araki S, Carmel P. Contracture in McArdle’s disease. Arch Neurol. 1965;13:541–4.

    Article  CAS  PubMed  Google Scholar 

  75. Haller RG, Vissing J. Functional evaluation of metabolic myopathies. In: Engel AG, Franzini-Armstrong C, editors. Myology. New York: McGraw-Hill; 2004. p. 665–79.

    Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Emanuele Barca, Valentina Emmanuele, and Salvatore DiMauro declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore (Billi) DiMauro.

Additional information

This article is part of the Topical Collection on Nerve and Muscle

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barca, E., Emmanuele, V. & DiMauro, S.(. Metabolic Myoglobinuria. Curr Neurol Neurosci Rep 15, 69 (2015). https://doi.org/10.1007/s11910-015-0590-9

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-015-0590-9

Keywords

Navigation