Skip to main content

Metabolic Myopathies

  • Chapter
  • First Online:
Neuromuscular Disorders in Clinical Practice

Abstract

In this chapter, we will consider only those inborn errors of glycogen and fatty acid metabolism that cause exclusively or predominantly neuromuscular disorders. Because this is meant to be a practical book, we have subdivided these disorders into two groups according to their typical clinical presentation. Thus, we first consider diseases characterized by dynamic symptoms and then review disorders characterized by static symptoms. Although the mitochondrial myopathies are reviewed in a separate chapter (see Chap. 64), we discuss here some defects of the mitochondrial respiratory chain that are dominated by exercise intolerance, and, sometimes, myoglobinuria. To understand the dynamic versus the static clinical presentation of these disorders, a brief review of muscle metabolism at rest and during exercise is helpful.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bertorini T, Yeh Y-Y, Trevisan CP, et al. Carnitine palmitoyltransferase deficiency: myoglobinuria and respiratory failure. Neurology. 1980;30:263–71.

    Article  CAS  PubMed  Google Scholar 

  2. Andreu AL, Hanna MG, Reichmann H, et al. Exercise intolerance due to mutations in the cytochrome b gene of mitochondrial DNA. N Engl J Med. 1999;341:1037–44.

    Article  CAS  PubMed  Google Scholar 

  3. Preisler N, Orngreen MC, Echaniz-Laguna A, et al. Muscle ­phosphorylase kinase deficiency. A neutral metabolic variant or a disease? Neurology. 2012;78:265–8.

    Article  CAS  PubMed  Google Scholar 

  4. Burwinkel B, Maichele AJ, Aagenaes O, et al. Autosomal glycogenosis of liver and muscle due to phosphorylase kinase deficiency is caused by mutations in the phosphorylase kinase beta subunit (PHKB). Hum Mol Genet. 1997;6:1109–15.

    Article  CAS  PubMed  Google Scholar 

  5. Akman HO, Sampayo JN, Ross FA, et al. Fatal infantile cardiac glycogenosis with phosphorylase kinase deficiency and a mutation in the gamma2-subunit of AMP-activated protein kinase. Pediatr Res. 2007;62:499–504.

    Article  CAS  PubMed  Google Scholar 

  6. McArdle B. Myopathy due to a defect in muscle glycogen breakdown. Clin Sci. 1951;10:13–33.

    CAS  Google Scholar 

  7. Lebo RV, Gorin F, Fletterick RJ, et al. High-resolution chromosome sorting and DNA spot-blot analysis assign McArdle’s syndrome to chromosome 11. Science. 1984;225:57–9.

    Article  CAS  PubMed  Google Scholar 

  8. Schmidt B, Servidei S, Gabbai AA, et al. McArdle’s disease in two generations: autosomal recessive transmission with manifesting heterozygote. Neurology. 1987;37:1558–61.

    Article  CAS  PubMed  Google Scholar 

  9. Papadimitriou A, Manta P, Divari R, et al. McArdle’s disease: two clinical expressions in the same pedigree. J Neurol. 1990;237:267–70.

    Article  CAS  PubMed  Google Scholar 

  10. Manfredi G, Silvestri G, Servidei S, et al. Manifesting heterozygosis in McArdle’s disease: clinical, morphological, and biochemical studies in a family. J Neurol Sci. 1993;115:91–4.

    Article  CAS  PubMed  Google Scholar 

  11. Tsujino S, Shanske S, DiMauro S. Molecular genetic heterogeneity of myophosphorylase deficiency (McArdle’s disease). N Engl J Med. 1993;329:241–5.

    Article  CAS  PubMed  Google Scholar 

  12. Bartram C, Edwards R, Clague J, Beynon RJ. McArdle’s disease: a nonsense mutation in exon 1 of the muscle glycogen phosphorylase gene explains some but not all cases. Hum Mol Genet. 1993;2:1291–3.

    Article  CAS  PubMed  Google Scholar 

  13. Lucia A, Nogales-Gadea G, Perez M, et al. McArdle disease: what do neurologists need to know? Nat Clin Pract Neurol. 2008;4:568–77.

    Article  PubMed  Google Scholar 

  14. El-Schahawi M, Tsujino S, Shanske S, DiMauro S. Diagnosis of McArdle’s disease by molecular genetic analysis of blood. Neurology. 1996;47:579–80.

    Article  CAS  PubMed  Google Scholar 

  15. Sugie H, Sugie Y, Ito M, et al. Genetic analysis of Japanese patients with myophosphorylase deficiency (McArdle’s disease): single-codon deletion in exon 17 is the predominant mutation. Clin Chim Acta. 1995;236:81–6.

    Article  CAS  PubMed  Google Scholar 

  16. El-Schahawi M, Bruno C, Tsujino S, et al. Sudden infant death syndrome (SIDS) in a family with myophosphorylase deficiency. Neuromuscul Disord. 1997;7:81–3.

    Article  CAS  PubMed  Google Scholar 

  17. Tsujino S, Shanske S, Carroll JE, et al. Double trouble: combined myophosphorylase and AMP deaminase deficiency in a child homozygous for nonsense mutations at both loci. Neuromuscul Disord. 1995;5:263–6.

    Article  CAS  PubMed  Google Scholar 

  18. Rubio JC, Martin MA, Bautista J, et al. Association of genetically proven deficiencies of myophosphorylase and AMP deaminase: a second case of “double trouble”. Neuromuscul Disord. 1997;7:387–9.

    Article  CAS  PubMed  Google Scholar 

  19. Haller RG, Bertocci LA. Exercise evaluation of metabolic myopathies. In: Engel AG, Franzini-Armstrong C, editors. Myology, vol. 1. 2nd ed. New York: McGraw-Hill; 1994. p. 807–21.

    Google Scholar 

  20. Haller RG, Lewis SF, Cook JD, Blomqvist CG. Myophosphorylase deficiency impairs muscle oxidative metabolism. Ann Neurol. 1985;17:196–9.

    Article  CAS  PubMed  Google Scholar 

  21. Haller RG, Clausen T, Vissing J. Reduced levels of skeletal muscle Na+K+−ATPase in McArdle disease. Neurology. 1998;50:37–40.

    Article  CAS  PubMed  Google Scholar 

  22. DiMauro S, Bresolin N. Phosphorylase deficiency. In: Engel AG, Banker BQ, editors. Myology, vol. 2. New York: McGraw-Hill; 1986. p. 1585–601.

    Google Scholar 

  23. Tonin P, Lewis P, Servidei S, DiMauro S. Metabolic causes of myoglobinuria. Ann Neurol. 1990;27:181–5.

    Article  CAS  PubMed  Google Scholar 

  24. Quinlivan R, Buckley J, James M, et al. McArdle disease: a clinical review. J Neurol Neurosurg Psychiatry. 2010;81:1182–8.

    Article  CAS  PubMed  Google Scholar 

  25. DiMauro S, Hartlage P. Fatal infantile form of muscle phosphorylase deficiency. Neurology. 1978;28:1124–9.

    Article  CAS  PubMed  Google Scholar 

  26. Milstein JM, Herron TM, Haas JE. Fatal infantile muscle phosphorylase deficiency. J Child Neurol. 1989;4:186–8.

    Article  CAS  PubMed  Google Scholar 

  27. Haller RG, Wyrick P, Taivassalo T, Vissing J. Aerobic conditioning: an effective therapy in McArdle’s disease. Ann Neurol. 2006;59:922–8.

    Article  PubMed  Google Scholar 

  28. Phoenix J, Hopkins P, Bartram C, et al. Effect of vitamin B6 supplementation in McArdle’s disease: a strategic case study. Neuromuscul Disord. 1998;8:210–2.

    Article  CAS  PubMed  Google Scholar 

  29. Izumi R, Suzuki N, Kato K, et al. A case of McArdle disease: efficacy of vitamin B6 on fatigability and impaired glycogenolysis. Intern Med. 2010;49:1623–5.

    Article  PubMed  Google Scholar 

  30. Sato S, Ohi T, Nishino I, Sugie H. Confirmation of the efficacy of vitamin B6 supplementation for McArdle disease by follow-up muscle biopsy. Muscle Nerve. 2012;45:436–40.

    Article  PubMed  Google Scholar 

  31. Andersen ST, Haller RG, Vissing J. Effect of oral sucrose shortly before exercise on work capacity in McArdle disease. Arch Neurol. 2008;65:786–9.

    Article  PubMed  Google Scholar 

  32. Busch V, Gempel K, Hack A, et al. Treatment of glycogenosis type V with ketogenic diet. Ann Neurol. 2005;58:341 [Letter].

    Article  PubMed  Google Scholar 

  33. Nogales-Gadea G, Pinos T, Lucia A, et al. Knock-in mice for the R50X mutation in the PYGM gene present with McArdle disease. Brain. 2012;135:2048–57.

    Google Scholar 

  34. Stojkovic T, Vissing J, Petit F, et al. Muscle glycogenosis due to phosphoglucomutase 1 deficiency. N Engl J Med. 2009;361:425–7.

    Article  CAS  PubMed  Google Scholar 

  35. Tarui S, Okuno G, Ikua Y, et al. Phosphofructokinase deficiency in skeletal muscle. A new type of glycogenosis. Biochem Biophys Res Comm. 1965;19:517–23.

    Article  CAS  PubMed  Google Scholar 

  36. Layzer RB, Rowland LP, Ranney HM. Muscle phosphofructokinase deficiency. Arch Neurol. 1967;17:512–23.

    Article  CAS  PubMed  Google Scholar 

  37. DiMauro S, Hays AP, Tsujino S. Nonlysosomal glycogenoses. In: Engel AG, Franzini-Armstrong C, editors. Myology, vol. II. New York: McGraw-Hill; 2004. p. 1535–58.

    Google Scholar 

  38. Nakajima H, Kono N, Yamasaki T, et al. Genetic defect in muscle phosphofructokinase deficiency. Abnormal splicing of the muscle phosphofructokinase gene due to a point mutation at the 5′-splice site. J Biol Chem. 1990;265:9392–5.

    CAS  PubMed  Google Scholar 

  39. Raben N, Sherman J, Miller F, et al. A 5′ splice junction mutation leading to exon deletion in an Ashkenazi Jewish family with phosphofructokinase deficiency (Tarui disease). J Biol Chem. 1993;268:4963–7.

    CAS  PubMed  Google Scholar 

  40. Sherman JB, Raben N, Nicastri C, et al. Common mutations in the phosphofructokinase-M gene in Ashkenazi Jewish patients with glycogenosis VII – and their population frequency. Am J Hum Genet. 1994;55:305–13.

    CAS  PubMed  Google Scholar 

  41. Bonilla E, Schotland DL. Histochemical diagnosis of muscle phosphofructokinase deficiency. Arch Neurol. 1970;22:8–12.

    Article  CAS  PubMed  Google Scholar 

  42. Dunaway GA, Kasten TP, Sebo T, Trapp R. Analysis of the phosphofructokinase subunits and isoenzymes in human tissues. Biochem J. 1988;251:677–83.

    CAS  PubMed  Google Scholar 

  43. Agamanolis DP, Askari AD, DiMauro S, et al. Muscle phosphofructokinase deficiency: two cases with unusual polysaccharide accumulation and immunologically active enzyme protein. Muscle Nerve. 1980;3:456–67.

    Article  CAS  PubMed  Google Scholar 

  44. Raben N, Danon MJ, Lu N, et al. Surprises of genetic engineering: a possible model of polyglucosan body disease. Neurology. 2001;56:1739–45.

    Article  CAS  PubMed  Google Scholar 

  45. Mineo I, Kono N, Hara N, et al. Myogenic hyperuricemia. A common pathophysiologic feature of glycogenosis types III, V, and VII. N Engl J Med. 1987;317:75–80.

    Article  CAS  PubMed  Google Scholar 

  46. Haller RG, Lewis SF. Glucose-induced exertional fatigue in muscle phosphofructokinase deficiency. New Engl J Med. 1991;324:364–9.

    Article  CAS  PubMed  Google Scholar 

  47. Vissing J, Vissing SF, MacLean DA. Sympathetic activation in exercise is not dependent on muscle acidosis. Direct evidence from studies in metabolic myopathies. J Clin Invest. 1998;101:1654–60.

    Article  CAS  PubMed  Google Scholar 

  48. Lewis SF, Vora S, Haller RG. Abnormal oxidative metabolism and O2 transport in muscle phosphofructokinase deficiency. J Appl Physiol. 1991;70:391–8.

    CAS  PubMed  Google Scholar 

  49. Haller RG, Vissing J. No spontaneous second wind in muscle phosphofructokinase deficiency. Neurology. 2004;62:82–6.

    Article  CAS  PubMed  Google Scholar 

  50. Serratrice G, Monges A, Roux H, et al. Forme myopathique du deficit en phosphofructokinase. Rev Neurol. 1969;34:271–7.

    Google Scholar 

  51. Hays AP, Hallett M, Delfs J, et al. Muscle phosphofructokinase deficiency: abnormal polysaccharide in a case of late-onset myopathy. Neurology. 1981;31:1077–86.

    Article  CAS  PubMed  Google Scholar 

  52. Danon MJ, Servidei S, DiMauro S, Vora S. Late-onset muscle phosphofructokinase deficiency. Neurology. 1988;38:955–60.

    Google Scholar 

  53. Argov Z, Barash V, Soffer D, et al. Late-onset muscular weakness in phosphofructokinase deficiency due to exon5/intron5 junction point mutation: a unique disorder or the natural course of this glycolytic disorder? Neurology. 1994;44:1097–100.

    Article  CAS  PubMed  Google Scholar 

  54. Malfatti E, Birouk N, Romero NB, et al. Juvenile-onset permanent weakness in muscle phosphofructokinase deficiency. Neuromuscul Disord. 2012;316:173–7.

    Google Scholar 

  55. Argov Z, Bank WJ. Phosphorus magnetic resonance spectroscopy (31P MRS) in neuromuscular disorders. Ann Neurol. 1991;30:90–7.

    Article  CAS  PubMed  Google Scholar 

  56. Spiegel R, Area Gomez E, Akman HO, et al. Myopathic form of phosphoglycerate kinase (PGK) deficiency: a new case and pathogenic considerations. Neuromuscul Disord. 2009;19:207–11.

    Article  PubMed  Google Scholar 

  57. Haller RG, Wyrick P, Cavender D, et al. Aerobic conditioning: an effective therapy in McArdle’s disease. Neurology. 1998;50:A369.

    Article  Google Scholar 

  58. Swoboda KJ, Specht L, Jones HR, et al. Infantile phosphofructokinase deficiency with arthrogryposis: clinical benefit of a ketogenic diet. J Pediatr. 1997;131:932–4.

    Article  CAS  PubMed  Google Scholar 

  59. Kreuder J, Borkhardt A, Repp R, et al. Inherited metabolic myopathy and hemolysis due to a mutation in aldolase A. N Engl J Med. 1996;334:1100–4.

    Article  CAS  PubMed  Google Scholar 

  60. Yao DC, Tolan DR, Murray MF, et al. Hemolytic anemia and severe rhabdomyolysis caused by compound heterozygous mutations of the gene for erythrocyte/muscle isozyme of aldolase. Blood. 2004;103:2401–3.

    Article  CAS  PubMed  Google Scholar 

  61. Sotiriou E, Greene P, Krishna S, et al. Myopathy and Parkinsonism in phosphoglycerate kinase deficiency. Muscle Nerve. 2010;41:707–10.

    CAS  PubMed  Google Scholar 

  62. DiMauro S, Spiegel R. Progress and problems in muscle glycogenoses. Acta Myologica. 2011;30:96–102.

    CAS  PubMed  Google Scholar 

  63. DiMauro S, Miranda AF, Khan S, et al. Human muscle phosphoglycerate mutase deficiency: newly discovered metabolic myopathy. Science. 1981;212:1277–9.

    Article  CAS  PubMed  Google Scholar 

  64. Naini A, Toscano A, Musumeci O, et al. Muscle phosphoglycerate mutase deficiency revisited. Arch Neurol. 2009;66:394–8.

    Article  PubMed  Google Scholar 

  65. Toscano A, Tsujino S, Vita G, et al. Molecular basis of muscle phosphoglycerate mutase (PGAM-M) deficiency in the Italian kindred. Muscle Nerve. 1996;19:1134–7.

    Article  CAS  PubMed  Google Scholar 

  66. Tonin P, Bruno C, Cassandrini D, et al. Unusual presentation of phosphoglycerate mutase deficiency due to two different mutations in PGAM-M gene. Neuromuscul Disord. 2009;19:776–8.

    Article  PubMed  Google Scholar 

  67. Hadjigeorgiou GM, Kawashima N, Bruno C, et al. Manifesting heterozygotes in a Japanese family with a novel mutation in the muscle-specific phosphoglycerate mutase (PGAM-M) gene. Neuromuscul Disord. 1999;9:399–402.

    Article  CAS  PubMed  Google Scholar 

  68. Vissing J, Schmalbruch H, Haller RG, Clausen T. Muscle phosphoglycerate mutase deficiency with tubular aggregates: effect of dantrolene. Ann Neurol. 1999;46:274–7.

    Article  CAS  PubMed  Google Scholar 

  69. Vissing J, Quistorff B, Haller RG. Effects of fuels on exercise capacity in muscle phosphoglycerate mutase deficiency. Arch Neurol. 2005;62:1440–3.

    Article  PubMed  Google Scholar 

  70. de Atauri P, Repiso A, Oliva B, et al. Characterization of the first described mutation of human red blood cell phosphoglycerate mutase. Biochim Biophys Acta. 2005;1740:403–10.

    Article  PubMed  CAS  Google Scholar 

  71. Comi GP, Fortunato F, Lucchiari S, et al. B-enolase deficiency, a new metabolic myopathy of distal glycolysis. Ann Neurol. 2001;50:202–7.

    Article  CAS  PubMed  Google Scholar 

  72. Kanno T, Sudo K, Takeuchi I, et al. Hereditary deficiency of lactate dehydrogenase M-subunit. Clin Chim Acta. 1980;108:267–76.

    Article  CAS  PubMed  Google Scholar 

  73. Maekawa M, Sudo K, Kanno T, Li S. Molecular characterization of genetic mutation in human lactate dehydrogenase-A (M) deficiency. Biochem Biophys Res Comm. 1990;168:677–82.

    Article  CAS  PubMed  Google Scholar 

  74. Maekawa M, Sudo K, Kanno T, et al. A novel mutation of lactate dehydrogenase A (M) gene in the fifth family with the enzyme deficiency. Hum Mol Genet. 1994;3:825–6.

    Article  CAS  PubMed  Google Scholar 

  75. Maekawa M, Sudo K, Li S, Kanno T. Analysis of genetic mutation in human lactate dehydrogenase-A (M) deficiency using DNA conformation polymorphism in combination with polyacrylamide gradient gel and silver staining. Biochem Biophys Res Comm. 1991;180:1083–90.

    Article  CAS  PubMed  Google Scholar 

  76. Tsujino S, Shanske S, Brownell A, et al. Molecular genetic studies of muscle lactate dehydrogenase deficiency in white patients. Ann Neurol. 1994;36:661–5.

    Article  CAS  PubMed  Google Scholar 

  77. Kanno T, Maekawa M. Lactate dehydrogenase M-subunit deficiency: clinical features, metabolic background, and genetic heterogeneities. Muscle Nerve. 1995;Suppl. 3:S54–60.

    Article  Google Scholar 

  78. Kollberg G, Tulinius M, Gilljam T, et al. Cardiomyopathy and ­exercise intolerance in muscle glycogen storage disease 0. N Engl J Med. 2007;357:1507–14.

    Article  CAS  PubMed  Google Scholar 

  79. Cameron JM, Levandovskiy V, MacKay N, et al. Identification of a novel mutation in GSY1 (muscle-specific glycogen synthase) resulting in sudden cardiac death, that is diagnosable from skin fibroblasts. Mol Genet Metab. 2009;98:378–82.

    Article  CAS  PubMed  Google Scholar 

  80. Sukigara S, Liang W-C, Komaki H, et al. Muscle glycogen storage disease 0 presenting recurrent syncope with weakness and myalgia. Neuromuscul Disord. 2012;22:162–5.

    Article  PubMed  Google Scholar 

  81. Moslemi A-R, Lindberg C, Nilsson J, et al. Glycogenin-1 deficiency and inactivated priming of glycogen synthesis. N Engl J Med. 2010;362:1203–10.

    Article  CAS  PubMed  Google Scholar 

  82. DiMauro S, DiMauro-Melis PM. Muscle carnitine palmitoyltransferase deficiency and myoglobinuria. Science. 1973;182:929–31.

    Article  CAS  PubMed  Google Scholar 

  83. Bank WJ, DiMauro S, Bonilla E, et al. A disorder of muscle lipid metabolism and myoglobinuria. Absence of carnitine palmitoyltransferase. N Engl J Med. 1975;292:443–9.

    Article  CAS  PubMed  Google Scholar 

  84. Britton CH, Schultz RA, Zhang B, et al. Human liver mitochondrial carnitine palmitoyltransferase I: characterization of its cDNA and chromosomal localization and partial analysis of the gene. Proc Natl Acad Sci USA. 1995;92:1984–8.

    Article  CAS  PubMed  Google Scholar 

  85. Gellera C, Verderio E, Floridia G, et al. Assignment of the human carnitine palmitoyltransferase II gene (CPT1) to chromosome 1p32. Genomics. 1994;24:195–7.

    Article  CAS  PubMed  Google Scholar 

  86. DiDonato S, Taroni F. Disorders of lipid metabolism. In: Engel AG, Franzini-Armstrong C, editors. Myology, vol. 2. New York: McGraw-Hill; 2004. p. 1587–621.

    Google Scholar 

  87. Kaufmann P, El-Schahawi M, DiMauro S. Carnitine palmitoyltransferase II deficiency: diagnosis by molecular analysis of blood. Mol Cell Biochem. 1997;174:237–9.

    Article  CAS  PubMed  Google Scholar 

  88. Montermini L, Wang H, Verderio E, et al. Identification of 5′ regulatory regions of the human carnitine palmitoyltransferase II gene. Biochim Biophys Acta. 1994;1219:237–40.

    Article  CAS  PubMed  Google Scholar 

  89. Orngreen MC, Duno M, Ejstrup R, et al. Fuel utilization ib subjects with carnitine palmitoyltransferase 2 gene mutations. Ann Neurol. 2005;57:60–6.

    Article  CAS  PubMed  Google Scholar 

  90. Quinzii CM, Hirano M. Coenzyme Q and mitochondrial disease. Dev Disabil Res Rev. 2010;16:183–8.

    Article  PubMed  Google Scholar 

  91. Roe CR, Yang B-Z, Brunengraber H, et al. Carnitine palmitoyltransferase II deficiency: successful anaplerotic diet therapy. Neurology. 2008;71:260–4.

    Article  CAS  PubMed  Google Scholar 

  92. Bonnefont J-P, Bastin J, Behin A, Djouadi F. Bezafibrate for an inborn mitochondrial beta-oxidation defect. N Engl J Med. 2009;360:838840.

    Article  Google Scholar 

  93. Ohashi Y, Hasegawa Y, Murayama K, et al. A new diagnostic test for VLCAD deficiency using immunohistochemistry. Neurology. 2004;62:2209–13.

    Article  CAS  PubMed  Google Scholar 

  94. Laforet P, Acquaviva-Bourdain C, Rigal O, et al. Diagnostic assessment and long-term follow-up of 13 patients with very long-chain acyl-Coenzyme A dehydrogenase (VLCAD) deficiency. Neuromuscul Disord. 2009;19:324–9.

    Article  PubMed  Google Scholar 

  95. Laforet P, Vianey-Saban C. Disorders of muscle lipid metabolism: diagnostic and therapeutic challenges. Neuromuscul Disord. 2010;20:693–700.

    Article  PubMed  Google Scholar 

  96. Tein I, DiMauro S, DeVivo DC. Recurrent childhood myoglobinuria. Adv Pediatr. 1990;37:77–117.

    CAS  PubMed  Google Scholar 

  97. Zeharia A, Shaag A, Houtkooper RH, et al. Mutations in LPIN cause recurrent childhood myoglobinuria in childhood. Am J Hum Genet. 2008;83:489–94.

    Article  CAS  PubMed  Google Scholar 

  98. DiMauro S. Mitochondrial myopathies. Curr Opin Rheumatol. 2006;18:636–41.

    Article  CAS  PubMed  Google Scholar 

  99. Emmanuele V, Sotiriou E, Gutierrez Rios P, et al. A novel mutation in the mitochondrial DNA cytochrome b gene (MTCYB) in a patient with MELAS syndrome. J Child Neurol. 2013;28:236–42.

    Google Scholar 

  100. Andreu AL, Tanji K, Bruno C, et al. Exercise intolerance due to a nonsense mutation in the mtDNA ND4 gene. Ann Neurol. 1999;45:820–3.

    Article  CAS  PubMed  Google Scholar 

  101. Bet L, Bresolin N, Moggio M, et al. A case of mitochondrial myopathy, lactic acidosis and complex I deficiency. J Neurol. 1990;237:399–404.

    Article  CAS  PubMed  Google Scholar 

  102. Musumeci O, Andreu AL, Shanske S, et al. Intragenic inversion of mtDNA: a new type of pathogenic mutation in a patient with mitochondrial myopathy. Am J Hum Genet. 2000;66:1900–4.

    Article  CAS  PubMed  Google Scholar 

  103. Keightley JA, Hoffbuhr KC, Burton MD, et al. A microdeletion in cytochrome c oxidase (COX) subunit III associated with COX deficiency and recurrent myoglobinuria. Nat Genet. 1996;12:410–5.

    Article  CAS  PubMed  Google Scholar 

  104. Karadimas CL, Greenstein P, Sue CM, et al. Recurrent myoglobinuria due to a nonsense mutation in the COX I gene of mtDNA. Neurology. 2000;55:644–9.

    Article  CAS  PubMed  Google Scholar 

  105. Rahman S, Taanman J-W, Cooper M, et al. A missense mutation of cytochrome oxidase subunit II causes defective assembly and myopathy. Am J Hum Genet. 1999;65:1030–9.

    Article  CAS  PubMed  Google Scholar 

  106. Kollberg G, Moslemi A-R, Lindberg C, et al. Mitochondrial ­myopathy and rhabdomyolysis associated with a novel nonsense mutation in the gene encoding cytochrome c oxidase subunit I. J Neuropathol Exp Neurol. 2005;64:123–8.

    CAS  PubMed  Google Scholar 

  107. McFarland R, Taylor RW, Chinnery PF, et al. A novel sporadic mutation in cytochrome c oxidase subunit II as a cause of rhabdomyolysis. Neuromuscul Disord. 2004;14:162–6.

    Article  PubMed  Google Scholar 

  108. Haller RG, Henriksson KG, Jorfeldt L, et al. Deficiency of skeletal muscle succinate dehydrogenase and aconitase. J Clin Invest. 1991;88:1197–206.

    Article  CAS  PubMed  Google Scholar 

  109. Hall RE, Henriksson KG, Lewis SF, et al. Mitochondrial myopathy with succinate dehydrogenase and aconitase deficiency. Abnormalities of several iron-sulfur proteins. J Clin Invest. 1993;92:2660–6.

    Article  CAS  PubMed  Google Scholar 

  110. Mochel F, Knight MA, Tong W-H, et al. Splice mutation in the iron-sulfur cluster scaffold protein ISCU causes myopathy with exercise intolerance. Am J Hum Genet. 2008;82:652–60.

    Article  CAS  PubMed  Google Scholar 

  111. Kollberg G, Melberg A, Holme E, Oldfors A. Transient restoration of succinate dehydrogenase activity after rhabdomyolysis in iron-sulfur cluster deficiency myopathy. Neuromuscul Disord. 2010;21:115–20.

    Article  PubMed  Google Scholar 

  112. Ogasahara S, Engel AG, Frens D, Mack D. Muscle coenzyme Q deficiency in familial mitochondrial encephalomyopathy. Proc Natl Acad Sci USA. 1989;86:2379–82.

    Article  CAS  PubMed  Google Scholar 

  113. Sobreira C, Hirano M, Shanske S, et al. Mitochondrial encephalomyopathy with coenzyme Q10 deficiency. Neurology. 1997;48:1238–43.

    Article  CAS  PubMed  Google Scholar 

  114. DiGiovanni S, Mirabella M, Papacci M, et al. Apoptosis and ROS detoxification enzymes correlate with cytochrome c oxidase deficiency in mitochondrial encephalomyopathies. Mol Cell Neurosci. 2001;17:696–705.

    Article  CAS  Google Scholar 

  115. Lalani S, Vladutiu GD, Plunkett K, et al. Isolated mitochondrial myopathy associated with muscle coenzyme Q10 deficiency. Arch Neurol. 2005;62:317–20.

    Article  PubMed  Google Scholar 

  116. Auré K, Benoist JF, Ogier de Baulny H, et al. Progression despite replacement of a myopathic form of coenzyme Q10 defect. Neurology. 2004;63:727–9.

    Article  PubMed  Google Scholar 

  117. Horvath R, Scneiderat P, Schoser BGH, et al. Coenzyme Q10 deficiency and isolated myopathy. Neurology. 2006;66:253–5.

    Article  CAS  PubMed  Google Scholar 

  118. Gempel K, Topaloglu H, Talim B, et al. The myopathic form of coenzyme Q10 deficiency is caused by mutations in the electron-transferring-flavoprotein dehydrogenase (ETFDH) gene. Brain. 2007;130:2037–44.

    Article  PubMed  Google Scholar 

  119. Liang W-C, Ohkuma A, Hayashi YK, et al. ETFDH mutations, CoQ10 levels, and respiratory chain activities in patients with ribo­flavin-responsive multiple acyl-CoA dehydrogenase deficiency. Neuromuscul Disord. 2009;19:212–6.

    Article  PubMed  Google Scholar 

  120. Ohkuma A, Noguchi S, Sugie H, et al. Clinical and genetic analysis of lipid storage myopathies. Muscle Nerve. 2009;39:333–42.

    Article  PubMed  Google Scholar 

  121. Sabina RL. Myoadenylate deficiency. Neurol Clin. 2000;18:185–94.

    Article  CAS  PubMed  Google Scholar 

  122. Gambetti PL, DiMauro S, Baker L. Nervous system in Pompe ­disease. Ultrastructure and biochemistry. J Neuropathol Exp Neurol. 1971;30:412–30.

    Article  CAS  PubMed  Google Scholar 

  123. Martin JJ, DeBarsy T, Van Hoof F. Pompe disease: an inborn ­lysosomal disorder with storage of glycogen: a study of brain and striated muscle. Acta Neuropathol. 1973;23:229–44.

    Article  CAS  PubMed  Google Scholar 

  124. Powell HC, Haas R, Hall CL, et al. Peripheral nerve in type III glycogenosis: selective involvement of unmyelinated fiber Schwann cells. Muscle Nerve. 1985;8:667–71.

    Article  CAS  PubMed  Google Scholar 

  125. Moses SW, Gadoth N, Ben-David E, et al. Neuromuscular involvement in glycogen storage disease type III. Acta Paediatr Scand. 1986;7:289–96.

    Article  Google Scholar 

  126. Ugawa Y, Inoue K, Takemura T, Iwamasa T. Accumulation of glycogen in sural nerve axons in adult-onset type III glycogenosis. Ann Neurol. 1986;19:294–7.

    Article  CAS  PubMed  Google Scholar 

  127. Moses SW, Wanderman KL, Myroz A, Frydman M. Cardiac involvement in glycogen storage disease type III. Eur J Paediatr. 1989;148:764–6.

    Article  CAS  Google Scholar 

  128. Pompe JC. Over Idiopatische Hypertrophie van het Hart. Ned T Geneesk. 1932;76:304–11.

    Google Scholar 

  129. Putschar W. Uber angeborene Glykogenspeicherkrankenheit des Herzens: “Thesaurismosis glykogenica”. Beitr Path Anat. 1932;90:222–3.

    Google Scholar 

  130. Hers HG. Alpha-glucosidase deficiency in generalized glycogen storage disease (Pompe disease). Biochem J. 1963;86:11–6.

    CAS  PubMed  Google Scholar 

  131. Lejeune N, Thines-Sempoux D, Hers HG. Tissue fractionation studies: 16. Intracellular distribution and properties of alpha-glucosidases in rat liver. Biochem J. 1963;86:16–21.

    CAS  PubMed  Google Scholar 

  132. Hers HG. Inborn lysosomal diseases. Gastroenterology. 1965;48:625–33.

    CAS  PubMed  Google Scholar 

  133. Engel AG, Gomez MR, Seybold ME, Lambert EH. The spectrum and diagnosis of acid maltase deficiency. Neurology. 1973;23:95–105.

    Article  CAS  PubMed  Google Scholar 

  134. Nascimbeni AC, Fanin M, Tasca E, Angelini C. Molecular pathology and enzyme processing in various phenotypes of acid maltase deficiency. Neurology. 2008;70:617–26.

    Article  CAS  PubMed  Google Scholar 

  135. Hasilik A, Neufeld EF. Biosynthesis of lysosomal enzymes in fibroblasts. Synthesis as precursors of higher molecular weight. J Biol Chem. 1982;255:4937–45.

    Google Scholar 

  136. Hasilik A, Neufeld EF. Biosynthesis of lysosomal enzymes in fibroblasts. Phosphorylation of mannose residues. J Biol Chem. 1982;255:4946–50.

    Google Scholar 

  137. DiMauro S, Stern LZ, Mehler M, et al. Adult-onset acid maltase deficiency: a postmortem study. Muscle Nerve. 1978;1:27–36.

    Article  CAS  PubMed  Google Scholar 

  138. Mehler M, DiMauro S. Residual acid maltase activity in late-onset acid maltase deficiency. Neurology. 1977;27:178–84.

    Article  CAS  PubMed  Google Scholar 

  139. Reuser AJ, Kroos M, Willemsen R, et al. Clinical diversity in glycogenosis type II. Biosynthesis and in situ localization of acid alpha-glucosidase in mutant fibroblasts. J Clin Invest. 1987;79:1689–99.

    Article  CAS  PubMed  Google Scholar 

  140. Settembre C, Fraldi A, Jahreiss L, et al. A block of autophagy in lysosomal storage disorders. Hum Mol Genet. 2008;17:119–29.

    Article  CAS  PubMed  Google Scholar 

  141. Fukuda T, Ewan L, Bauer M, et al. Dysfunction of endocytic and autophagic pathways in a lysosomal storage disease. Ann Neurol. 2006;59:700–8.

    Article  CAS  PubMed  Google Scholar 

  142. Malicdan MC, Noguchi S, Nonaka I, et al. Lysosomal myopathies: an excessive build-up in autophagosomes is too much to handle. Neuromusc Disord. 2008;18:521–9.

    Article  PubMed  Google Scholar 

  143. Engel AG, Hirschhorn R, Huie MI. Acid maltase deficiency. In: Engel AG, Franzini-Armstrong C, editors. Myology, vol. 2. New York: McGraw-Hill; 2004. p. 1559–86.

    Google Scholar 

  144. Mellies U, Lofaso F. Pompe disease: a neuromuscular disease with respiratory muscle involvement. Respir Med. 2009;103:477–84.

    Article  PubMed  Google Scholar 

  145. Amato AA, Leep Hunderfund AN, Selcen D, Keegan BM. A 49-year-old woman with progressive shortness of breath. Neurology. 2011;76:830–6.

    Article  PubMed  Google Scholar 

  146. Kretzchmer HA, Wagner H, Hubner G, et al. Aneurysms and vacuolar degeneration of cerebral arteries in late-onset acid maltase deficiency. J Neurol Sci. 1990;98:169–83.

    Article  Google Scholar 

  147. Carlier R-Y, Laforet P, Wary C, et al. Whole-body muscle MRI in 20 patients suffering from late onset Pompe disease: involvement patterns. Neuromuscul Disord. 2011;21:791–9.

    Article  PubMed  Google Scholar 

  148. Danon MJ, Oh SJ, DiMauro S, et al. Lysosomal glycogen storage disease with normal acid maltase. Neurology. 1981;31:51–7.

    Article  CAS  PubMed  Google Scholar 

  149. Nishino I, Fu J, Tanji K, et al. Primary LAMP-2 deficiency causes X-linked vacuolar cardiomyopathy and myopathy (Danon disease). Nature. 2000;406:906–10.

    Article  CAS  PubMed  Google Scholar 

  150. Shanske S, DiMauro S. Late-onset acid maltase deficiency. Biochemical studies of leukocytes. J Neurol Sci. 1981;50:57–62.

    Article  CAS  PubMed  Google Scholar 

  151. van der Ploeg AT. Where do we stand in enzyme replacement therapy in Pompe disease? Neuromusc Dis. 2010;20:733–4.

    Google Scholar 

  152. Kishnani PS, Goldenberg PC, DeArmey SL, et al. Cross-reacting immunological material status affects treatment outcomes in Pompe disease infants. Mol Genet Metab. 2010;99:26–33.

    Article  CAS  PubMed  Google Scholar 

  153. van der Ploeg AT, Clemens PR, Corzo D, et al. A randomized study of alglucosidase alfa in late-onset Pompe disease. N Engl J Med. 2010;362:1396–406.

    Article  PubMed  Google Scholar 

  154. Hagemans MLC, Janssens ACJW, Winkel LPF, et al. Late-onset Pompe disease primarily affects quality of life in physical health domains. Neurology. 2004;63:1688–92.

    Article  CAS  PubMed  Google Scholar 

  155. Laloui K, Wary C, Carlier R-Y, et al. Making diagnosis of Pompe disease at a presymptomatic stage: to treat or not to treat? Neurology. 2011;77:594–5.

    Article  CAS  PubMed  Google Scholar 

  156. Van den Hout JMP, Reuser AJJ, de Klerk JBC, et al. Enzyme therapy for Pompe disease with recombinant human alpha-glucoside from rabbit milk. J Inherit Metab Dis. 2001;24:266–74.

    Article  PubMed  Google Scholar 

  157. Van den Hout J, Kamphoven JHJ, Winkel LPF, et al. Long-term intravenous treatment of Pompe disease with recombinant human alpha-glucosidase from milk. Pediatrics. 2004;113:e448–57.

    Article  PubMed  Google Scholar 

  158. Chakrapani A, Vellodi A, Robinson P, et al. Treatment of infantile Pompe disease with aglucosidase alpha: the UK experience. J Inherit Metab Dis. 2010;33:747–50.

    Article  CAS  PubMed  Google Scholar 

  159. Mellies U, Stehling F, Dohna-Schwake C, et al. Respiratory failure in Pompe disease: treatment with noninvasive ventilation. Neurology. 2005;64:1465–7.

    Article  CAS  PubMed  Google Scholar 

  160. Slonim AE, Bulone L, Minikes J, et al. Benign course of glycogen storage disease type IIb in two brothers: nature or nurture? Muscle Nerve. 2006;33:571–4.

    Article  PubMed  Google Scholar 

  161. Kishnani P, Austin SL, Arn P, et al. Glycogen storage disease type III diagnosis and management guidelines. Genet Med. 2010;12:446–63.

    Article  CAS  PubMed  Google Scholar 

  162. DiMauro S, Hartwig GB, Hays AP, et al. Debrancher deficiency: neuromuscular disorder in five adults. Ann Neurol. 1979;5:422–36.

    Article  CAS  PubMed  Google Scholar 

  163. Wary C, Nadaj-Pakleza A, Laforet P, et al. Investigating glycogenosis type III with multi-parametric functional NMR imaging and spectroscopy. Neuromuscul Disord. 2010;20:548–58.

    Article  PubMed  Google Scholar 

  164. Shen J, Bao Y, Liu H-M, et al. Mutations in exon 3 of the glycogen debranching enzyme gene are associated with glycogen storage disease type III that is differentially expressed in liver and muscle. J Clin Invest. 1996;98:352–7.

    Article  CAS  PubMed  Google Scholar 

  165. Bruno C, van Diggelen OP, Cassandrini D, et al. Clinical and genetic heterogeneity of branching enzyme deficiency (glycogenosis type IV). Neurology. 2004;63:1053–8.

    Article  CAS  PubMed  Google Scholar 

  166. Tay SKH, Akman HO, Chung WK, et al. Fatal infantile neuromuscular presentation of glycogen storage disease type IV. Neuromuscul Disord. 2004;14:253–60.

    Article  PubMed  Google Scholar 

  167. Janecke AR, Dertinger S, Ketelsen UP, et al. Neonatal type IV glycogen storage disease associated with “null” mutations in glycogen branching enzyme 1. J Pediatr. 2004;145:705–9.

    Article  CAS  PubMed  Google Scholar 

  168. Konstantinidou AE, Anninos H, Gyftodimou Y, et al. Neonatal neuromuscular variant of glycogen storage disease type IV: histopathological findings leading to the diagnosis. Histopathology. 2006;48:878–80.

    Article  CAS  PubMed  Google Scholar 

  169. Taratuto AL, Akman HO, Saccoliti M, et al. Branching enzyme deficiency/glycogenosis storage disease type IV presenting as a severe congenital hypotonia: muscle biopsy and autopsy findings, biochemical and molecular studies. Neuromuscul Disord. 2010;20:783–90.

    Article  CAS  PubMed  Google Scholar 

  170. Alegria A, Martins E, Dias M, et al. Glycogen storage disease type IV presenting as hydrops fetalis. J Inherit Metab Dis. 1999;22:330–2.

    Article  CAS  PubMed  Google Scholar 

  171. Akman HO, Karadimas CL, Gyftodimou Y, et al. Prenatal diagnosis of glycogen storage disease type IV. Prenat Diagn. 2006;26(10):951–5.

    Article  CAS  PubMed  Google Scholar 

  172. Assereto S, van Diggelen OP, Diogo L, et al. Null mutations and lethal congenital form of glycogen storage disease type IV. Biochem Biophys Res Comm. 2007;361:445–50.

    Article  CAS  PubMed  Google Scholar 

  173. Herrick MK, Twiss JL, Vladutiu GD, et al. Concomitant branching enzyme and phosphorylase deficiencies. An unusual glycogenosis with extensive neuronal polyglucosan storage. J Neuropathol Exp Neurol. 1994;53:239–46.

    Article  CAS  PubMed  Google Scholar 

  174. Mochel F, Schiffmann R, Steenweg M, et al. Adult polyglucosan body disease: natural history and key MRI findings. Ann Neurol. 2012;72(3):433–41.

    Article  CAS  PubMed  Google Scholar 

  175. Akman HO, Sheiko T, Tay SKH, et al. Generation of a novel mouse model that recapitulates early and adult onset glycogenosis type IV. Hum Mol Genet. 2011;20:4430–9.

    Article  CAS  PubMed  Google Scholar 

  176. Tein I, DeVivo DC, Bierman F, et al. Impaired skin fibroblast carnitine uptake in primary systemic carnitine deficiency manifested by childhood carnitine-responsive cardiomyopathy. Pediatr Res. 1990;28:247–55.

    Article  CAS  PubMed  Google Scholar 

  177. Pons R, Carrozzo R, Tein I, et al. Deficient muscle carnitine transport in primary carnitine deficiency. Pediatr Res. 1997;42:583–7.

    Article  CAS  PubMed  Google Scholar 

  178. Nezu J-i, Tamai I, Oku A, et al. Primary systemic carnitine deficiency is caused by mutations in a gene encoding sodium ion-dependent carnitine transporter. Nat Genet. 1999;21:91–4.

    Article  CAS  PubMed  Google Scholar 

  179. Engel AG, Angelini C. Carnitine deficiency of human skeletal muscle with associated lipid storage myopathy: a new syndrome. Science. 1973;179:899–902.

    Article  CAS  PubMed  Google Scholar 

  180. Tein I, DiMauro S, Xie Z-W, De Vivo DC. Valproic acid impairs carnitine uptake in cultured human skin fibroblasts. An in vitro model for pathogenesis of valproic acid-associated carnitine deficiency. Pediatr Res. 1993;34:281–7.

    Article  CAS  PubMed  Google Scholar 

  181. Dalakas M, Leon-Monzon ME, Bernardini I, et al. Zidovudine-induced mitochondrial myopathy is associated with muscle carnitine deficiency and lipid storage. Ann Neurol. 1994;35:482–7.

    Article  CAS  PubMed  Google Scholar 

  182. Lafolla AK, Thompson RJ, Roe CR. Medium-chain acyl-coenzyme A dehydrogenase deficiency: clinical course in 120 affected children. J Pediatr. 1994;124:409–15.

    Article  Google Scholar 

  183. Olsen RK, Olpin S, Andresen BS, et al. ETFDH mutations as major cause of riboflavin-responsive multiple acyl-CoA dehydrogenase deficiency. Brain. 2007;130:2045–54.

    Article  PubMed  Google Scholar 

  184. Chanarin L, Patel A, Slavin G, et al. Neutral-lipid storage disease: a new disorder of lipid metabolism. Br Med J. 1975;1:553–5.

    Article  CAS  PubMed  Google Scholar 

  185. Bruno C, Bertini E, Di Rocco M, et al. Clinical and genetic characterization of Chanarin-Dorfman syndrome. Biochem Biophys Res Comm. 2008;369:1125–8.

    Article  CAS  PubMed  Google Scholar 

  186. Miranda AF, DiMauro S, Eastwood AB, et al. Lipid storage, ichthyosis, and steatorrhea. Muscle Nerve. 1979;2:1–13.

    Article  CAS  PubMed  Google Scholar 

  187. Hirano K-I, Ikeda Y, Zaima N, et al. Triglyceride deposit cardiomyovasculopathy. N Engl J Med. 2008;359:2396–8.

    Article  CAS  PubMed  Google Scholar 

  188. Campagna F, Nanni L, Quagliarini F, et al. Novel mutations in the adipose triglyceride kipase gene causing neutral lipid storage diseases with myopathy. Biochem Biophys Res Comm. 2008;377:843–6.

    Article  CAS  PubMed  Google Scholar 

  189. Akman HO, Davidzon G, Tanji K, et al. Neutral lipid storage disease with subclinical myopathy due to a retrotransposal insertion in the PNPLA2 gene. Neuromuscul Disord. 2010;20:397–402.

    Article  PubMed  Google Scholar 

  190. Legros F, Chatzoglou E, Frachon P, et al. Functional characterization of novel mutations in the human cytochrome b gene. Eur J Hum Genet. 2001;9:510–8.

    Article  CAS  PubMed  Google Scholar 

  191. Massie R, Wong L-JC, Milone M. Exercise intolerance due to cytochrome b mutation. Muscle Nerve. 2010;42:136–40.

    Article  CAS  PubMed  Google Scholar 

  192. Andreu AL, Bruno C, Shanske S, et al. Missense mutation in the mtDNA cytochrome b gene in a patient with myopathy. Neurology. 1998;51:1444–7.

    Article  CAS  PubMed  Google Scholar 

  193. Andreu AL, Bruno C, Dunne TC, et al. A nonsense mutation (G15059A) in the cytochrome b gene in a patient with exercise intolerance and myoglobinuria. Ann Neurol. 1999;45:127–30.

    Article  CAS  PubMed  Google Scholar 

  194. Bruno C, Santorelli FM, Assereto S, et al. Progressive exercise intolerance associated with a new muscle-restricted nonsense mutation (G142X) in the mitochondrial cytochrome b gene. Muscle Nerve. 2003;28:508–11.

    Article  CAS  PubMed  Google Scholar 

  195. Lamantea E, Carrara F, Mariotti C, et al. A novel nonsense mutation (Q352X) in the mitochondrial cytochrome b gene associated with a combined defect of complexes I and III. Neuromuscul Disord. 2002;12:49–52.

    Article  PubMed  Google Scholar 

  196. Mancuso M, Filosto M, Stevens JC, et al. Mitochondrial myopathy and complex III deficiency in a patient with a new stop-codon mutation (G339X) in the cytochrome b gene. J Neurol Sci. 2003;209:61–3.

    Article  CAS  PubMed  Google Scholar 

  197. Dumoulin R, Sagnol I, Ferlin T, et al. A novel gly290asp mitochondrial cytochrome b mutation linked to a complex III deficiency in progressive exercise intolerance. Mol Cell Probes. 1996;10:389–91.

    Article  CAS  PubMed  Google Scholar 

  198. DiMauro S, Haller RG. Metabolic myopathies: substrate use defects. In: Schapira AHV, Griggs RC, editors. Muscle diseases. Boston: Butterworth-Heinemann; 1999. p. 225–49.

    Google Scholar 

Download references

Acknowledgements

Some of the work described was supported by a grant from the Muscular Dystrophy Association. Dr. Paradas is supported by the Consejería de Salud, Junta de Andalucía, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salvatore DiMauro MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this chapter

Cite this chapter

DiMauro, S., Akman, H.O., Paradas, C. (2014). Metabolic Myopathies. In: Katirji, B., Kaminski, H., Ruff, R. (eds) Neuromuscular Disorders in Clinical Practice. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-6567-6_63

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-6567-6_63

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-6566-9

  • Online ISBN: 978-1-4614-6567-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics