Skip to main content

Advertisement

Log in

The Role of Neuroinflammation in Dementias

  • Neuroimaging (DJ Brooks, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

The molecular mechanism of neuronal loss and synaptic damage in Alzheimer’s disease (AD), Parkinson’s disease dementia (PDD), frontotemporal dementia (FTD) and Lewy body dementia (LBD) is poorly understood and could differ among different types of neurodegenerative processes. However, the presence of neuroinflammation is a common feature of dementia. In this setting, reactive microgliosis, oxidative damage and mitochondrial dysfunction are associated with the pathogenesis of all types of neurodegenerative dementia. Moreover, an increased body of evidence suggests that microglia may play a central role in AD progression. In this paper, we review the scientific literature on neuroinflammation related to the most common neurodegenerative dementias (AD, PDD, FTD and LBD) focussing on the possible molecular mechanisms and the available clinical evidence. Furthermore, we discuss the neuroimaging techniques that are currently used for the study of neuroinflammation in human brain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Prince M et al. The global prevalence of dementia: a systematic review and metaanalysis. Alzheimers Dement. 2013;9(1):63–75. e2.

    Article  PubMed  Google Scholar 

  2. Emre M, Cummings JL, Lane RM. Rivastigmine in dementia associated with Parkinson’s disease and Alzheimer’s disease: similarities and differences. J Alzheimers Dis. 2007;11(4):509–19.

    CAS  PubMed  Google Scholar 

  3. Petersen RC et al. Current concepts in mild cognitive impairment. Arch Neurol. 2001;58(12):1985–92.

    Article  CAS  PubMed  Google Scholar 

  4. Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004;256(3):183–94.

    Article  CAS  PubMed  Google Scholar 

  5. Schapira AH, Jenner P. Etiology and pathogenesis of Parkinson’s disease. Mov Disord. 2011;26(6):1049–55.

    Article  PubMed  Google Scholar 

  6. Iannaccone S et al. In vivo microglia activation in very early dementia with Lewy bodies, comparison with Parkinson’s disease. Parkinsonism Relat Disord. 2013;19(1):47–52.

    Article  CAS  PubMed  Google Scholar 

  7. Varnum MM, Ikezu T. The classification of microglial activation phenotypes on neurodegeneration and regeneration in Alzheimer’s disease brain. Arch Immunol Ther Exp (Warsz). 2012;60(4):251–66.

    Article  CAS  Google Scholar 

  8. McGeer PL et al. Reactive microglia are positive for HLA-DR in the substantia nigra of Parkinson’s and Alzheimer’s disease brains. Neurology. 1988;38(8):1285–91.

    Article  CAS  PubMed  Google Scholar 

  9. Sastre M et al. Inflammatory risk factors and pathologies associated with Alzheimer’s disease. Curr Alzheimer Res. 2011;8(2):132–41.

    Article  CAS  PubMed  Google Scholar 

  10. McGeer PL, Itagaki S, McGeer EG. Expression of the histocompatibility glycoprotein HLA-DR in neurological disease. Acta Neuropathol. 1988;76(6):550–7.

    Article  CAS  PubMed  Google Scholar 

  11. Imamura K et al. Cytokine production of activated microglia and decrease in neurotrophic factors of neurons in the hippocampus of Lewy body disease brains. Acta Neuropathol. 2005;109(2):141–50.

    Article  CAS  PubMed  Google Scholar 

  12. Mrak RE, Griffin WS. Common inflammatory mechanisms in Lewy body disease and Alzheimer disease. J Neuropathol Exp Neurol. 2007;66(8):683–6.

    Article  CAS  PubMed  Google Scholar 

  13. Morales I et al. Neuroinflammation in the pathogenesis of Alzheimer’s disease. A rational framework for the search of novel therapeutic approaches. Front Cell Neurosci. 2014;8:112.

    PubMed Central  PubMed  Google Scholar 

  14. Heneka MT, O’Banion MK. Inflammatory processes in Alzheimer’s disease. J Neuroimmunol. 2007;184(1–2):69–91.

    Article  CAS  PubMed  Google Scholar 

  15. Hanisch UK, Kettenmann H. Microglia: active sensor and versatile effector cells in the normal and pathologic brain. Nat Neurosci. 2007;10(11):1387–94.

    Article  CAS  PubMed  Google Scholar 

  16. Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 1996;19(8):312–8.

    Article  CAS  PubMed  Google Scholar 

  17. Liu X et al. Age-dependent neuroinflammatory responses and deficits in long-term potentiation in the hippocampus during systemic inflammation. Neuroscience. 2012;216:133–42.

    Article  CAS  PubMed  Google Scholar 

  18. Mills CD et al. M-1/M-2 macrophages and the Th1/Th2 paradigm. J Immunol. 2000;164(12):6166–73.

    Article  CAS  PubMed  Google Scholar 

  19. Cunningham C. Microglia and neurodegeneration: the role of systemic inflammation. Glia. 2013;61(1):71–90. doi:10.1002/glia.22350. This article is an evidence-based review that reported the most significant articles related to role of neuroinflammation and the progression of chronic neurodegenerative disease.

    Article  PubMed  Google Scholar 

  20. Lyman M et al. Neuroinflammation: the role and consequences. Neurosci Res. 2014;79:1–12.

    Article  CAS  PubMed  Google Scholar 

  21. Jimenez S et al. Inflammatory response in the hippocampus of PS1M146L/APP751SL mouse model of Alzheimer’s disease: age-dependent switch in the microglial phenotype from alternative to classic. J Neurosci. 2008;28(45):11650–61.

    Article  CAS  PubMed  Google Scholar 

  22. Tanaka S et al. Involvement of interleukin-1 in lipopolysaccaride-induced microglial activation and learning and memory deficits. J Neurosci Res. 2011;89(4):506–14.

    Article  CAS  PubMed  Google Scholar 

  23. [Abstracts of the 9th Conference on Alzheimer Disease, Kecskemet, Hungary, September 21–23, 2005]. Ideggyogy Sz, 2005. 58(9–10): p. 344–57.

  24. Tanaka S et al. Activation of microglia induces symptoms of Parkinson’s disease in wild-type, but not in IL-1 knockout mice. J Neuroinflammation. 2013;10:143.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  25. Heneka MT et al. NLRP3 is activated in Alzheimer’s disease and contributes to pathology in APP/PS1 mice. Nature. 2013;493(7434):674–8.

    Article  CAS  PubMed  Google Scholar 

  26. Langenfurth A et al. Membrane-type 1 metalloproteinase is upregulated in microglia/brain macrophages in neurodegenerative and neuroinflammatory diseases. J Neurosci Res. 2014;92(3):275–86.

    Article  CAS  PubMed  Google Scholar 

  27. Cunningham C et al. Systemic inflammation induces acute behavioral and cognitive changes and accelerates neurodegenerative disease. Biol Psychiatry. 2009;65(4):304–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Cunningham C et al. Central and systemic endotoxin challenges exacerbate the local inflammatory response and increase neuronal death during chronic neurodegeneration. J Neurosci. 2005;25(40):9275–84.

    Article  CAS  PubMed  Google Scholar 

  29. Lunnon K et al. Systemic inflammation modulates Fc receptor expression on microglia during chronic neurodegeneration. J Immunol. 2011;186(12):7215–24.

    Article  CAS  PubMed  Google Scholar 

  30. Liu B, Hong JS. Role of microglia in inflammation-mediated neurodegenerative diseases: mechanisms and strategies for therapeutic intervention. J Pharmacol Exp Ther. 2003;304(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  31. Dickson DW et al. Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer’s disease. Glia. 1993;7(1):75–83.

    Article  CAS  PubMed  Google Scholar 

  32. Barger SW, Harmon AD. Microglial activation by Alzheimer amyloid precursor protein and modulation by apolipoprotein E. Nature. 1997;388(6645):878–81.

    Article  CAS  PubMed  Google Scholar 

  33. DeGiorgio LA et al. Amyloid precursor protein gene disruption attenuates degeneration of substantia nigra compacta neurons following axotomy. Brain Res. 2002;938(1–2):38–44.

    Article  CAS  PubMed  Google Scholar 

  34. McGeer PL, McGeer EG. The alpha-synuclein burden hypothesis of Parkinson disease and its relationship to Alzheimer disease. Exp Neurol. 2008;212(2):235–8.

    Article  CAS  PubMed  Google Scholar 

  35. Yoshiyama Y et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron. 2007;53(3):337–51.

    Article  CAS  PubMed  Google Scholar 

  36. Lue LF et al. Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am J Pathol. 1999;155(3):853–62.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Ferrari CC et al. Progressive neurodegeneration and motor disabilities induced by chronic expression of IL-1beta in the substantia nigra. Neurobiol Dis. 2006;24(1):183–93.

    Article  CAS  PubMed  Google Scholar 

  38. Wright AL et al. Neuroinflammation and neuronal loss precede Abeta plaque deposition in the hAPP-J20 mouse model of Alzheimer’s disease. PLoS ONE. 2013;8(4):e59586.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. de Pablos RM et al. Chronic stress enhances microglia activation and exacerbates death of nigral dopaminergic neurons under conditions of inflammation. J Neuroinflammation. 2014;11:34.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  40. Griffin EW et al. Cyclooxygenase-1-dependent prostaglandins mediate susceptibility to systemic inflammation-induced acute cognitive dysfunction. J Neurosci. 2013;33(38):15248–58.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Hensley K et al. p38 kinase is activated in the Alzheimer’s disease brain. J Neurochem. 1999;72(5):2053–8.

    Article  CAS  PubMed  Google Scholar 

  42. Kim SH, Smith CJ, Van Eldik LJ. Importance of MAPK pathways for microglial pro-inflammatory cytokine IL-1 beta production. Neurobiol Aging. 2004;25(4):431–9.

    Article  CAS  PubMed  Google Scholar 

  43. Kielian T, Drew PD. Effects of peroxisome proliferator-activated receptor-gamma agonists on central nervous system inflammation. J Neurosci Res. 2003;71(3):315–25.

    Article  CAS  PubMed  Google Scholar 

  44. Bassil F, et al. Insulin, IGF-1 and GLP-1 signaling in neurodegenerative disorders: targets for disease modification? Prog Neurobiol. 2014;118:1–18.

  45. Vandal M, et al. Insulin reverses the high-fat diet-induced increase in brain Aβ and improves memory in an animal model of Alzheimer disease. Diabetes. 2014;63:4291–301

  46. Ghosh S et al. Sustained interleukin-1beta overexpression exacerbates tau pathology despite reduced amyloid burden in an Alzheimer’s mouse model. J Neurosci. 2013;33(11):5053–64.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Detrait ER et al. Peripheral administration of an anti-TNF-alpha receptor fusion protein counteracts the amyloid induced elevation of hippocampal TNF-alpha levels and memory deficits in mice. Neurochem Int. 2014;72:10–3.

    Article  CAS  PubMed  Google Scholar 

  48. Sun Q et al. Increased plasma TACE activity in subjects with mild cognitive impairment and patients with Alzheimer’s disease. J Alzheimers Dis. 2014;41(3):877–86.

    PubMed Central  CAS  PubMed  Google Scholar 

  49. Woodling NS et al. Suppression of Alzheimer-associated inflammation by microglial prostaglandin-E2 EP4 receptor signaling. J Neurosci. 2014;34(17):5882–94.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  50. Imamura K et al. Distribution of major histocompatibility complex class II-positive microglia and cytokine profile of Parkinson’s disease brains. Acta Neuropathol. 2003;106(6):518–26.

    Article  CAS  PubMed  Google Scholar 

  51. Hirsch EC, Hunot S. Neuroinflammation in Parkinson’s disease: a target for neuroprotection? Lancet Neurol. 2009;8(4):382–97.

    Article  CAS  PubMed  Google Scholar 

  52. Brochard V et al. Infiltration of CD4+ lymphocytes into the brain contributes to neurodegeneration in a mouse model of Parkinson disease. J Clin Invest. 2009;119(1):182–92.

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Harms AS et al. MHCII is required for alpha-synuclein-induced activation of microglia, CD4 T cell proliferation, and dopaminergic neurodegeneration. J Neurosci. 2013;33(23):9592–600.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  54. Lee HJ et al. Direct transfer of alpha-synuclein from neuron to astroglia causes inflammatory responses in synucleinopathies. J Biol Chem. 2010;285(12):9262–72.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Halliday GM, Stevens CH. Glia: initiators and progressors of pathology in Parkinson’s disease. Mov Disord. 2011;26(1):6–17.

    Article  PubMed  Google Scholar 

  56. Lee HJ, Kim C, Lee SJ. Alpha-synuclein stimulation of astrocytes: potential role for neuroinflammation and neuroprotection. Oxidative Med Cell Longev. 2010;3(4):283–7.

    Article  Google Scholar 

  57. He Z et al. Progranulin is a mediator of the wound response. Nat Med. 2003;9(2):225–9.

    Article  CAS  PubMed  Google Scholar 

  58. Tang W et al. The growth factor progranulin binds to TNF receptors and is therapeutic against inflammatory arthritis in mice. Science. 2011;332(6028):478–84.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Baker M et al. Mutations in progranulin cause tau-negative frontotemporal dementia linked to chromosome 17. Nature. 2006;442(7105):916–9.

    Article  CAS  PubMed  Google Scholar 

  60. Martens LH et al. Progranulin deficiency promotes neuroinflammation and neuron loss following toxin-induced injury. J Clin Invest. 2012;122(11):3955–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  61. Bugiani O. FTDP-17: phenotypical heterogeneity within P301S. Ann Neurol. 2000;48(1):126.

    Article  CAS  PubMed  Google Scholar 

  62. Bellucci A et al. Presence of reactive microglia and neuroinflammatory mediators in a case of frontotemporal dementia with P301S mutation. Neurodegener Dis. 2011;8(4):221–9.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Schmidt R et al. Early inflammation and dementia: a 25-year follow-up of the Honolulu-asia aging study. Ann Neurol. 2002;52(2):168–74.

    Article  PubMed  Google Scholar 

  64. Engelhart MJ et al. Inflammatory proteins in plasma and the risk of dementia: the rotterdam study. Arch Neurol. 2004;61(5):668–72.

    Article  PubMed  Google Scholar 

  65. Jiang T et al. Triggering receptor expressed on myeloid cells 2 knockdown exacerbates aging-related neuroinflammation and cognitive deficiency in senescence-accelerated mouse prone 8 mice. Neurobiol Aging. 2014;35(6):1243–51.

    Article  CAS  PubMed  Google Scholar 

  66. Guerreiro R et al. TREM2 variants in Alzheimer’s disease. N Engl J Med. 2013;368(2):117–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Rayaprolu S et al. TREM2 in neurodegeneration: evidence for association of the p.R47H variant with frontotemporal dementia and Parkinson’s disease. Mol Neurodegener. 2013;8:19.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  68. Rohn TT. The triggering receptor expressed on myeloid cells 2: “TREM-ming” the inflammatory component associated with Alzheimer’s disease. Oxidative Med Cell Longev. 2013;2013:860959.

    Article  CAS  Google Scholar 

  69. Harold D et al. Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1088–93.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  70. Hollingworth P et al. Common variants at ABCA7, MS4A6A/MS4A4E, EPHA1, CD33 and CD2AP are associated with Alzheimer’s disease. Nat Genet. 2011;43(5):429–35.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  71. Hollingworth P et al. Genome-wide association study of Alzheimer’s disease with psychotic symptoms. Mol Psychiatry. 2012;17(12):1316–27.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  72. Karch CM et al. Expression of novel Alzheimer’s disease risk genes in control and Alzheimer’s disease brains. PLoS ONE. 2012;7(11):e50976.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Wang YL et al. Toll-like receptor 9 promoter polymorphism is associated with decreased risk of Alzheimer’s disease in Han Chinese. J Neuroinflammation. 2013;10(1):101.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  74. Block ML, Hong JS. Microglia and inflammation-mediated neurodegeneration: multiple triggers with a common mechanism. Prog Neurobiol. 2005;76(2):77–98.

    Article  CAS  PubMed  Google Scholar 

  75. Wynne AM, Henry CJ, Godbout JP. Immune and behavioral consequences of microglial reactivity in the aged brain. Integr Comp Biol. 2009;49(3):254–66.

    Article  CAS  PubMed  Google Scholar 

  76. Tucsek Z, et al. Obesity in aging exacerbates blood–brain barrier disruption, neuroinflammation, and oxidative stress in the mouse hippocampus: effects on expression of genes involved in beta-amyloid generation and Alzheimer’s disease. J Gerontol A Biol Sci Med Sci. 2014;69:1212–26.

  77. Park SM et al. Effects of collagen-induced rheumatoid arthritis on amyloidosis and microvascular pathology in APP/PS1 mice. BMC Neurosci. 2011;12:106.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  78. Boyd TD et al. GM-CSF upregulated in rheumatoid arthritis reverses cognitive impairment and amyloidosis in Alzheimer mice. J Alzheimers Dis. 2010;21(2):507–18. doi:10.3233/JAD-2010-091471. These authors showed that subcutaneous GM-CSF administration significantly reduced brain amyloidosis and completely reversed the cognitive impairment, while increasing hippocampal synaptic area and microglial density in mice model.

    CAS  PubMed  Google Scholar 

  79. Misiak B, Leszek J, Kiejna A. Metabolic syndrome, mild cognitive impairment and Alzheimer’s disease—the emerging role of systemic low-grade inflammation and adiposity. Brain Res Bull. 2012;89(3–4):144–9.

    Article  CAS  PubMed  Google Scholar 

  80. Doruk H et al. The relationship between body mass index and incidental mild cognitive impairment, Alzheimer’s disease and vascular dementia in elderly. J Nutr Health Aging. 2010;14(10):834–8.

    Article  CAS  PubMed  Google Scholar 

  81. Ho AJ et al. Obesity is linked with lower brain volume in 700 AD and MCI patients. Neurobiol Aging. 2010;31(8):1326–39.

    Article  PubMed Central  PubMed  Google Scholar 

  82. Naorungroj S et al. Cognitive decline and oral health in middle-aged adults in the ARIC study. J Dent Res. 2013;92(9):795–801.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  83. Noble JM et al. Periodontitis is associated with cognitive impairment among older adults: analysis of NHANES-III. J Neurol Neurosurg Psychiatry. 2009;80(11):1206–11.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  84. McGeer PL, Schulzer M, McGeer EG. Arthritis and anti-inflammatory agents as possible protective factors for Alzheimer’s disease: a review of 17 epidemiologic studies. Neurology. 1996;47(2):425–32.

    Article  CAS  PubMed  Google Scholar 

  85. Ferraccioli G et al. Rheumatoid arthritis and Alzheimer’s disease: genetic and epigenetic links in inflammatory regulation. Discov Med. 2012;14(79):379–88.

    PubMed  Google Scholar 

  86. Aisen PS et al. Effects of rofecoxib or naproxen vs placebo on Alzheimer disease progression: a randomized controlled trial. JAMA. 2003;289(21):2819–26.

    Article  CAS  PubMed  Google Scholar 

  87. Soininen H et al. Long-term efficacy and safety of celecoxib in Alzheimer’s disease. Dement Geriatr Cogn Disord. 2007;23(1):8–21.

    Article  CAS  PubMed  Google Scholar 

  88. Leoutsakos JM et al. Effects of non-steroidal anti-inflammatory drug treatments on cognitive decline vary by phase of pre-clinical Alzheimer disease: findings from the randomized controlled Alzheimer’s disease anti-inflammatory prevention trial. Int J Geriatr Psychiatr. 2012;27(4):364–74. doi:10.1002/gps.2723. This recent revision of the AD Anti-inflammatory Prevention Trial supports a beneficial role of NSAID only in the early, asymptomatic, phases of Alzheimer disease suggesting that neuroinflammation could be a crucial events in the neurodegeneration process.

    Google Scholar 

  89. Breitner JC et al. Extended results of the Alzheimer’s disease anti-inflammatory prevention trial. Alzheimers Dement. 2011;7(4):402–11.

    Article  PubMed Central  PubMed  Google Scholar 

  90. Hirsch EC, Vyas S, Hunot S. Neuroinflammation in Parkinson’s disease. Parkinsonism Relat Disord. 2012;18 Suppl 1:S210–2.

    Article  PubMed  Google Scholar 

  91. Matsuda R et al. Quantitive cytokine mRNA expression profiles in the colonic mucosa of patients with steroid naive ulcerative colitis during active and quiescent disease. Inflamm Bowel Dis. 2009;15(3):328–34.

    Article  PubMed  Google Scholar 

  92. Devos D et al. Colonic inflammation in Parkinson’s disease. Neurobiol Dis. 2013;50:42–8.

    Article  CAS  PubMed  Google Scholar 

  93. Chen H et al. Nonsteroidal antiinflammatory drug use and the risk for Parkinson’s disease. Ann Neurol. 2005;58(6):963–7.

    Article  CAS  PubMed  Google Scholar 

  94. Wahner AD et al. Nonsteroidal anti-inflammatory drugs may protect against Parkinson disease. Neurology. 2007;69(19):1836–42.

    Article  CAS  PubMed  Google Scholar 

  95. Leung E et al. Microglia activation mediates fibrillar amyloid-beta toxicity in the aged primate cortex. Neurobiol Aging. 2011;32(3):387–97.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  96. Frautschy SA et al. Microglial response to amyloid plaques in APPsw transgenic mice. Am J Pathol. 1998;152(1):307–17.

    PubMed Central  CAS  PubMed  Google Scholar 

  97. Cagnin A, Gerhard A, Banati RB. In vivo imaging of neuroinflammation. Eur Neuropsychopharmacol. 2002;12(6):581–6.

    Article  CAS  PubMed  Google Scholar 

  98. Cosenza-Nashat M et al. Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain. Neuropathol Appl Neurobiol. 2009;35(3):306–28.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  99. Shah F et al. Synthesis of the enantiomers of [N-methyl-11C]PK 11195 and comparison of their behaviours as radioligands for PK binding sites in rats. Nucl Med Biol. 1994;21(4):573–81.

    Article  CAS  PubMed  Google Scholar 

  100. Chauveau F et al. Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers. Eur J Nucl Med Mol Imaging. 2008;35(12):2304–19.

    Article  PubMed  Google Scholar 

  101. Politis M, Su P, Piccini P. Imaging of microglia in patients with neurodegenerative disorders. Front Pharmacol. 2012;3:96.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  102. Yasuno F et al. Increased binding of peripheral benzodiazepine receptor in mild cognitive impairment-dementia converters measured by positron emission tomography with [(1)(1)C]DAA1106. Psychiatry Res. 2012;203(1):67–74.

    Article  CAS  PubMed  Google Scholar 

  103. Edison P et al. Microglia, amyloid, and cognition in Alzheimer’s disease: an [11C](R)PK11195-PET and [11C]PIB-PET study. Neurobiol Dis. 2008;32(3):412–9.

    Article  CAS  PubMed  Google Scholar 

  104. Cagnin A et al. In vivo detection of microglial activation in frontotemporal dementia. Ann Neurol. 2004;56(6):894–7.

    Article  PubMed  Google Scholar 

  105. McGeer PL et al. Microglia in degenerative neurological disease. Glia. 1993;7(1):84–92.

    Article  CAS  PubMed  Google Scholar 

  106. Lant SB RA, Thompson JC, Rollinson S, Pickering-Brown S, Snowden JS, Davidson YS, Gerhard A, Mann DM. Patterns of microglial cell activation in frontotemporal lobar degeneration. Neuropathol Appl Neurobiol. 2014;40:686–96.

  107. Maeda J et al. Novel peripheral benzodiazepine receptor ligand [11C]DAA1106 for PET: an imaging tool for glial cells in the brain. Synapse. 2004;52(4):283–91.

    Article  CAS  PubMed  Google Scholar 

  108. Wang M, Gao M, Zheng QH. Fully automated synthesis of PET TSPO radioligands [11C]DAA1106 and [18 F]FEDAA1106. Appl Radiat Isot. 2012;70(6):965–73.

    Article  CAS  PubMed  Google Scholar 

  109. Yasuno F et al. Increased binding of peripheral benzodiazepine receptor in Alzheimer’s disease measured by positron emission tomography with [11C]DAA1106. Biol Psychiatry. 2008;64(10):835–41.

    Article  CAS  PubMed  Google Scholar 

  110. Venneti S, Lopresti BJ, Wiley CA. Molecular imaging of microglia/macrophages in the brain. Glia. 2013;61(1):10–23. doi:10.1002/glia.22357. This review provides an interesting and updated overview of positron emission tomography (PET) and magnetic resonance (MR) imaging of microglia/macrophages in the brain.

    Article  PubMed Central  PubMed  Google Scholar 

  111. Yoder KK et al. Influence of TSPO genotype on 11C-PBR28 standardized uptake values. J Nucl Med. 2013;54(8):1320–2. doi:10.2967/jnumed.112.118885. This was one of the first study showing the effect of TSPO genotype on the binding potential of new microglial cell PET tracers.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  112. Kreisl WC et al. A genetic polymorphism for translocator protein 18 kDa affects both in vitro and in vivo radioligand binding in human brain to this putative biomarker of neuroinflammation. J Cereb Blood Flow Metab. 2013;33(1):53–8.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  113. Kreisl WC et al. In vivo radioligand binding to translocator protein correlates with severity of Alzheimer’s disease. Brain. 2013;136(Pt 7):2228–38.

    Article  PubMed Central  PubMed  Google Scholar 

  114. Fan Z, et al. Influence of microglial activation on neuronal function in Alzheimer’s and Parkinson’s disease dementia. Alzheimers Dement. 2014. doi:10.1016/j.jalz.2014.06.016.

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Giuseppe Pasqualetti received funding from University of Pisa and from PAIM (Pisa, Italy) and Italian Society of Pharmacology for research travel cost.

David J. Brooks was the chief medical officer for GE healthcare, and he has received consultancy fees/honoraria from the following: Acadia Pharmaceuticals Inc, Amsterdam Molecular Therapeuctics BV, AstraZeneca, BiogeIdec, NeuroNova AB, Eli Lilly and Company, Medtronic Inc, Shire Pharmaceuticals Inc, Synosia Therapeutics AG, GlaxoSmith Kline, UBC Biosciences Inc, Veralis (R&D) limited, Genentech Inc, Navidea.

Paul Edison received grant funding from Medical Research Council, UK; Alzheimer’s Research, UK; Alzheimer’s Society, UK; Novo Nordisk; GE Healthcare; and Piramal Life Science.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Edison.

Additional information

This article is part of the Topical Collection on Neuroimaging

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasqualetti, G., Brooks, D.J. & Edison, P. The Role of Neuroinflammation in Dementias. Curr Neurol Neurosci Rep 15, 17 (2015). https://doi.org/10.1007/s11910-015-0531-7

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-015-0531-7

Keywords

Navigation