Skip to main content

Advertisement

Log in

Physiological Monitoring of the Severe Traumatic Brain Injury Patient in the Intensive Care Unit

  • Neurotrauma (J Levine, Section Editor)
  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Traumatic brain injury (TBI) is a major cause of morbidity and mortality worldwide. Despite encouraging animal research, pharmacological agents and neuroprotectants have disappointed in the clinical environment. Current TBI management therefore is directed towards identification, prevention, and treatment of secondary cerebral insults that are known to exacerbate outcome after injury. This strategy is based on a variety of monitoring techniques that include the neurological examination, imaging, laboratory analysis, and physiological monitoring of the brain and other organ systems used to guide therapeutic interventions. Recent clinical series suggest that TBI management informed by multimodality monitoring is associated with improved patient outcome, in part because care is provided in a patient-specific manner. In this review we discuss physiological monitoring of the brain after TBI and the emerging field of neurocritical care bioinformatics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Maas AI, Menon DK, Lingsma HF, et al. Re-orientation of clinical research in traumatic brain injury: report of an international workshop on comparative effectiveness research. J Neurotrauma. 2011;29:32–46. This is a summary from an international workshop that describes the limitations of randomized trials in TBI, highlights priorities for future research, and describes the value of systems biology, high-quality clinical databases, and comparative effectiveness research.

    PubMed  Google Scholar 

  2. Teasdale G, Jennett B. Assessment of coma and impaired consciousness. A practical scale. Lancet. 1974;2:81–4.

    PubMed  CAS  Google Scholar 

  3. Wijdicks EF, Bamlet WR, Maramattom BV, Manno EM, McClelland RL. Validation of a new coma scale: the FOUR score. Ann Neurol. 2005;58:585–93.

    PubMed  Google Scholar 

  4. Ely EW, Margolin R, Francis J, May L, Truman B, Dittus R, Speroff T, Gautam S, Bernard GR, Inouye SK. Evaluation of delirium in critically ill patients: validation of the confusion assessment method for the intensive care unit (CAM-ICU). Crit Care Med. 2001;29:1370–9.

    PubMed  CAS  Google Scholar 

  5. Bergeron N, Dubois MJ, Dumont M, Dial S, Skrobik Y. Intensive care delirium screening checklist: evaluation of a new screening tool. Intensive Care Med. 2001;27:859–64.

    PubMed  CAS  Google Scholar 

  6. Bratton SL, Chestnut RM, Ghajar J, McConnell Hammond FF, Harris OA, Hartl R, Manley GT, Nemecek A, Newell DW, Rosenthal G, Schouten J, Shutter L, Timmons SD, Ullman JS, Videtta W, Wilberger JE, Wright DW. Guidelines for the management of severe traumatic brain injury. VI. Indications for intracranial pressure monitoring. J Neurotrauma. 2007;24 Suppl 1:S37–44.

    PubMed  Google Scholar 

  7. Bouzat P, Francony G, Fauvage B, Payen JF. Transcranial Doppler pulsatility index for initial management of brain-injured patients. Neurosurgery. 2010;67:E1863–4.

    PubMed  Google Scholar 

  8. • Rajajee V, Vanaman M, Fletcher JJ, Jacobs TL. Optic nerve ultrasound for the detection of raised intracranial pressure. Neurocrit Care. 2011;15:506–15. This is a prospective observational study in 65 patients with acute brain injury of various causes. An optic nerve sheath diameter of 0.48 cm or greater was associated with an ICP greater than 20 mmHg.

    PubMed  Google Scholar 

  9. Smith M. Monitoring intracranial pressure in traumatic brain injury. Anesth Analg. 2008;106:240–8.

    PubMed  Google Scholar 

  10. Ehtisham A, Taylor S, Bayless L, et al. Placement of external ventricular drains and intracranial pressure monitors by neurointensivists. Neurocrit Care. 2009;10:241–7.

    PubMed  Google Scholar 

  11. Timofeev I, Dahyot-Fizelier C, Keong N, Nortje J, Al-Rawi PG, Czosnyka M, Menon DK, Kirkpatrick PJ, Gupta AK, Hutchinson PJ. Ventriculostomy for control of raised ICP in acute traumatic brain injury. Acta Neurochir Suppl. 2008;102:99–104.

    PubMed  CAS  Google Scholar 

  12. Birch AA, Eynon CA, Schley D. Erroneous intracranial pressure measurements from simultaneous pressure monitoring and ventricular drainage catheters. Neurocrit Care. 2006;5:51–4.

    PubMed  CAS  Google Scholar 

  13. • Exo J, Kochanek PM, Adelson PD, Greene S, Clark RS, Bayir H, Wisniewski SR, Bell MJ. Intracranial pressure-monitoring systems in children with traumatic brain injury: Combining therapeutic and diagnostic tools. Pediatr Crit Care Med. 2011;12(5):560–5. This is a retrospective review of children with severe TBI who had an EVD and an intraparenchymal ICP monitor. EVD and intraparenchymal measurements of ICP correlated, but intermittent EVD ICP measurements may fail to identify ICP events when draining CSF.

    PubMed  Google Scholar 

  14. Lozier AP, Sciacca RR, Romagnoli MF, Connolly Jr ES. Ventriculostomy-related infections: a critical review of the literature. Neurosurgery. 2002;51(1):170–81. discussion 181-2.

    PubMed  Google Scholar 

  15. Beer R, Lackner P, Pfausler B, Schmutzhard E. Nosocomial ventriculitis and meningitis in neurocritical care patients. J Neurol. 2008;255:1617–24.

    PubMed  CAS  Google Scholar 

  16. Marshall LF, Smith RW, Shapiro HM. The outcome with aggressive treatment in severe head injuries. Part I: the significance of intracranial pressure monitoring. J Neurosurg. 1979;50(1):20–5.

    PubMed  CAS  Google Scholar 

  17. Narayan RK, Kishore PR, Becker DP, et al. Intracranial pressure: to monitor or not to monitor? A review of our experience with severe head injury. J Neurosurg. 1982;56:650–9.

    PubMed  CAS  Google Scholar 

  18. Marmarou A, Anderson RL, Ward JD, et al. Impact of ICP instability and hypotension on outcome in patients with severe head trauma. J Neurosurg. 1991;75(Suppl):S159–S66.

    Google Scholar 

  19. Vik A, Nag T, Fredriksli OA, Skandsen T, Moen KG, Schirmer-Mikalsen K, Manley GT. Relationship of “dose” of intracranial hypertension to outcome in severe traumatic brain injury. J Neurosurg. 2008;109(4):678–84.

    PubMed  Google Scholar 

  20. • Stein DM, Hu PF, Brenner M, Sheth KN, Liu KH, Xiong W, Aarabi B, Scalea TM. Brief episodes of intracranial hypertension and cerebral hypoperfusion are associated with poor functional outcome after severe traumatic brain injury. J Trauma. 2011;71(2):364–74. Thus is a prospective study of 60 patients. The number of brief 5-min episodes of increased ICP or cerebral hypoperfusion was associated with poor outcome.

    PubMed  Google Scholar 

  21. Treggiari MM, Schutz N, Yanez ND, Romand JA. Role of intracranial pressure values and patterns in predicting outcome in traumatic brain injury: a systematic review. Neurocrit Care. 2007;6:104–12.

    PubMed  Google Scholar 

  22. Stein SC, Georgoff P, Meghan S, et al. Relationship of aggressive monitoring and treatment to improved outcomes in severe traumatic brain injury. J Neurosurg. 2010;112:1105–12.

    PubMed  Google Scholar 

  23. Cremer OL, van Dijk GW, van Wensen E, Brekelmans GJ, Moons KG, Leenen LP, Kalkman CJ. Effect of intracranial pressure monitoring and targeted intensive care on functional outcome after severe head injury. Crit Care Med. 2005;33(10):2207–13.

    PubMed  Google Scholar 

  24. Shafi S, Diaz-Arrastia R, Madden C, Gentilello L. Intracranial pressure monitoring in brain-injured patients is associated with worsening of survival. J Trauma. 2008;64(2):335–40.

    PubMed  Google Scholar 

  25. Forsyth RJ, Wolny S, Rodrigues B. Routine intracranial pressure monitoring in acute coma. Cochrane Database Syst Rev. 2010(2):CD002043.

  26. • Katsnelson M, Mackenzie L, Frangos S, Oddo M, Levine JM, Pukenas B, Faerber J, Dong C, Andrew Kofke W, le Roux PD. Are initial radiographic and clinical scales associated with subsequent intracranial pressure and brain oxygen levels after severe traumatic brain injury? Neurosurgery. 2012;70(5):1095–105. One hundred and one patients with severe TBI were studied using mixed-effects models and logistic regression. The APACHE score and Marshall and Rotterdam CT grades (P < 0.001) were associated with mortality. There was no relationship between GCS score, Injury Severity Score, Marshall score, or Rotterdam score and subsequent ICP or PbtO 2 . The APACHE II score was inversely associated with median and minimum PbtO 2 and the amount of time of reduced PbtO 2 .

    PubMed  Google Scholar 

  27. Le Roux P, Lam AM, Newell DW, Grady MS, Winn HR. Cerebral arteriovenous difference of oxygen: a predictor of cerebral infarction and outcome in severe head injury. J Neurosurg. 1997;87:1–8.

    PubMed  Google Scholar 

  28. Stiefel MF, Udoetek J, Spiotta A, Gracias VH, Goldberg AH, Maloney-Wilensky E, Bloom S, Le Roux P. Conventional neurocritical care and cerebral oxygenation after traumatic brain injury. J Neurosurgery. 2006;105:568–75.

    Google Scholar 

  29. Menon DK, Coles JP, Gupta AK, Fryer TD, Smielewski P, Chatfield DA, Aigbirhio F, Skepper JN, Minhas PS, Hutchinson PJ, Carpenter TA, Clark JC, Pickard JD. Diffusion limited oxygen delivery following head injury. Crit Care Med. 2004;32:1384–90.

    PubMed  Google Scholar 

  30. Vespa PM, O’Phelan K, McArthur D, Miller C, Eliseo M, Hirt D, Glenn T, Hovda DA. Pericontusional brain tissue exhibits persistent elevation of lactate/pyruvate ratio independent of cerebral perfusion pressure. Crit Care Med. 2007;35(4):1153–60.

    PubMed  Google Scholar 

  31. •• Oddo M, Levine JM, Mackenzie L, Frangos S, Feihl F, Kasner SE, Katsnelson M, Pukenas B, Macmurtrie E, Maloney-Wilensky E, Kofke WA, LeRoux PD. Brain hypoxia is associated with short-term outcome after severe traumatic brain injury independently of intracranial hypertension and low cerebral perfusion pressure. Neurosurgery. 2011;69(5):1037–45. discussion 1045. An observational cohort of 103 severe TBI patients was monitored with ICP and PbtO 2 for more than 24 h. After ICP, CPP, age, GCS score, Marshall CT grade, and APACHE II score had been controlled for, brain hypoxia was independently associated with poor prognosis (adjusted odds ratio for favorable outcome, 0.89 per hour of brain hypoxia; 95 % confidence interval, 0.79-0.99; P = 0.04).

    PubMed  Google Scholar 

  32. Maloney-Wilensky E, Gracias V, Itkin A, Hoffman K, Bloom S, Yang W, Christian S, Le Roux P. Brain tissue oxygen and outcome after severe traumatic brain injury: a systematic review. Crit Care Med. 2009;37(6):2057–63.

    PubMed  Google Scholar 

  33. Oddo M, Le Roux P. What is the etiology, pathogenesis and pathophysiology of elevated intracranial pressure? In: Neligan P, Deutschman CS, editors. The evidenced based practice of critical care. Philadelphia: Elsevier Science; 2009. p. 399–405.

    Google Scholar 

  34. Miller JD. Volume and pressure in the craniospinal axis. Clin Neurosurg. 1975;22:76–105.

    PubMed  CAS  Google Scholar 

  35. Marmarou A, Shulman K, LaMorgese J. Compartmental analysis of compliance and outflow resistance of the cerebrospinal fluid system. J Neurosurg. 1975;43(5):523–34.

    PubMed  CAS  Google Scholar 

  36. Czosnyka M, Guazzo E, Whitehouse M, et al. Significance of intracranial pressure waveform analysis after head injury. Acta Neurochir. 1996;138:531–41. discussion 41–42.

    PubMed  CAS  Google Scholar 

  37. Balestreri M, Czosnyka M, Steiner LA, et al. Association between outcome, cerebral pressure reactivity and slow ICP waves following head injury. Acta Neurochir Suppl. 2005;95:25–8.

    PubMed  CAS  Google Scholar 

  38. Maset AL, Marmarou A, Ward JD, et al. Pressure-volume index in head injury. J Neurosurg. 1987;67:832–40.

    PubMed  CAS  Google Scholar 

  39. Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD. Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery. 1997;41(1):11–7. discussion 17-9.

    PubMed  CAS  Google Scholar 

  40. Czosnyka M, Smielewski P, Kirkpatrick P, Menon DK, Pickard JD. Monitoring of cerebral autoregulation in head-injured patients. Stroke. 1996;27(10):1829–34.

    PubMed  CAS  Google Scholar 

  41. Steiner LA, Czosnyka M, Piechnik SK, et al. Continuous monitoring of cerebrovascular pressure reactivity allows determination of optimal cerebral perfusion pressure in patients with traumatic brain injury. Crit Care Med. 2002;30:733–8.

    PubMed  Google Scholar 

  42. Czosnyka M, Brady K, Reinhard M, Smielewski P, Steiner LA. Monitoring of cerebrovascular autoregulation: facts, myths, and missing links. Neurocrit Care. 2009;10:373–86.

    PubMed  Google Scholar 

  43. Jaeger M, Dengl M, Meixensberger J, Schuhmann MU. Effects of cerebrovascular pressure reactivity- guided optimization of cerebral perfusion pressure on brain tissue oxygenation after traumatic brain injury. Crit Care Med. 2010;38:1343–7.

    PubMed  Google Scholar 

  44. • Kosty JA, Kumar M, Park S, Le Roux P, Kofke WA. Comparison of Clinician Practices in Measuring Cerebral Perfusion Pressure (CPP): A Literature Review and Multidisciplinary Survey. Proceedings of the Neurocritical Care Society Annual Meeting, Montreal, Canada, 2011. This is a review of citations in the third edition of the guidelines for the management of severe TBI, meta-analyses on CPP published by the Cochrane Library, and survey results from 241 members of the Neurocritical Care Society. There was variability in both clinical practice and research reports in how MABP is measured to determine CPP. Among survey responders, 59 % referenced the heart and 41 % referenced the midbrain.

  45. Czosnyka M, Matta BF, Smielewski P, et al. Cerebral perfusion pressure in head-injured patients: a noninvasive assessment using transcranial Doppler ultrasonography. J Neurosurg. 1998;88(5):802–8.

    PubMed  CAS  Google Scholar 

  46. Czosnyka M, Smielewski P, Kirkpatrick P, et al. Continuous monitoring of cerebrovascular pressure-reactivity in head injury. Acta Neurochir Suppl. 1998;71:74–7.

    PubMed  CAS  Google Scholar 

  47. Robertson CS, Valadka AB, Hannay HJ, et al. Prevention of secondary ischemic insults after severe head injury. Crit Care Med. 1999;27(10):2086–95.

    PubMed  CAS  Google Scholar 

  48. Vespa P. What is the optimal threshold for cerebral perfusion pressure following traumatic brain injury? Neurosurg Focus. 2003;15(6):E4.

    PubMed  Google Scholar 

  49. Nordstrom CH, Reinstrup P, Xu W, et al. Assessment of the lower limit for cerebral perfusion pressure in severe head injuries by bedside monitoring of regional energy metabolism. Anesthesiology. 2003;98(4):809–14.

    PubMed  Google Scholar 

  50. •• Aries MJ, Czosnyka M, Budohoski KP, Steiner LA, Lavinio A, Kolias AG, Hutchinson PJ, Brady KM, Menon DK, Pickard JD, Smielewski P. Continuous determination of optimal cerebral perfusion pressure in traumatic brain injury. Crit Care Med. 2012;40(8):2456–63. An automated curve fitting method was used to determine CPP at the minimum value of the PRx (CPP opt ) in 327 patients with severe TBI. Patients with a median CPP close to CPP opt were more likely to have a favorable outcome.

    PubMed  Google Scholar 

  51. Chieregato A, Sabia G, Tanfani A, Compagnone C, Tagliaferri F, Targa L. Xenon-CT and transcranial Doppler in poor-grade or complicated aneurysmatic subarachnoid hemorrhage patients undergoing aggressive management of intracranial hypertension. Intensive Care Med. 2006;32:1143–50.

    PubMed  Google Scholar 

  52. • Washington CW, Zipfel GJ. Detection and monitoring of vasospasm and delayed cerebral ischemia: a review and assessment of the literature. Neurocrit Care. 2011;15:312–7. This is a literature review of English-language articles describing the use of TCD ultrasonography, CT angiography, and CTP in evaluation of vasospasm and delayed cerebral ischemia after SAH.

    PubMed  Google Scholar 

  53. Carrera E, Schmidt JM, Oddo M, Fernandez L, Claassen J, Seder D, Lee K, Badjatia N, Connolly Jr ES, Mayer SA. Transcranial Doppler for predicting delayed cerebral ischemia after subarachnoid hemorrhage. Neurosurgery. 2009;65:316–23.

    PubMed  Google Scholar 

  54. Jahromi BS, MacDonald RL. Vasospasm: diagnosis and medical management. In: Le Roux P, Winn HR, Newell DW, editors. Management of cerebral aneurysms. Philadelphia: Elsevier; 2004. p. 455–87.

    Google Scholar 

  55. Homburg AM, Jakobsen M, Enevoldsen E. Transcranial Doppler recordings in raised intracranial pressure. Acta Neurol Scand. 1993;87:488–93.

    PubMed  CAS  Google Scholar 

  56. Molina CA, Alexandrov AV. Transcranial ultrasound in acute stroke: from diagnosis to therapy. Cerebrovasc Dis. 2007;24 Suppl 1:1–6.

    PubMed  Google Scholar 

  57. Figaji AA, Zwane E, Fieggen AG, et al. Pressure autoregulation, intracranial pressure, and brain tissue oxygenation in children with severe traumatic brain injury. J Neurosurg Pediatr. 2009;4:420–8.

    PubMed  Google Scholar 

  58. Kincaid MS. Transcranial Doppler ultrasonography: a diagnostic tool of increasing utility. Curr Opin Anaesthesiol. 2008;21:552–9.

    PubMed  Google Scholar 

  59. Stolz E, Cioli F, Allendoerfer J, et al. Can early neurosonology predict outcome in acute stroke? A metaanalysis of prognostic clinical effect sizes related to the vascular status. Stroke. 2008;39:3255–61.

    PubMed  Google Scholar 

  60. Rigamonti A, Ackery A, Baker AJ. Transcranial Doppler monitoring in subarachnoid hemorrhage: a critical tool in critical care. Can J Anaesth. 2008;55:112–23.

    PubMed  Google Scholar 

  61. Martin KK, Wigginton JB, Babikian VL, et al. Intraoperative cerebral high intensity transient signals and postoperative cognitive function: a systematic review. Am J Surg. 2009;197:55–63.

    PubMed  Google Scholar 

  62. Poppert H, Sadikovic S, Sander K, et al. Embolic signals in unselected stroke patients: prevalence and diagnostic benefit. Stroke. 2006;37:2039–43.

    PubMed  Google Scholar 

  63. • Sharma D, Souter MJ, Moore AE, Lam AM. Clinical experience with transcranial Doppler ultrasonography as a confirmatory test for brain death: a retrospective analysis. Neurocrit Care. 2011;14(3):370–6. TCD ultrasonography confirmed brain death diagnosis in 51 patients (57 %) and was inconclusive in 38 patients (43 %).

    PubMed  Google Scholar 

  64. Lee SC, Chen JF, Lee ST. Continuous regional cerebral blood flow monitoring in the neurosurgical intensive care unit. J Clin Neurosci. 2005;12:520–3.

    PubMed  Google Scholar 

  65. Gaines C, Carter LP, Crowell RM. Comparison of local cerebral blood flow determined by thermal and hydrogen clearance. Stroke. 1983;14:66–9.

    PubMed  CAS  Google Scholar 

  66. Vajkoczy P, Roth H, Horn P, et al. Continuous monitoring of regional cerebral blood flow: experimental and clinical validation of a novel thermal diffusion microprobe. J Neurosurg. 2000;93:265–74.

    PubMed  CAS  Google Scholar 

  67. Vajkoczy P, Horn P, Thome C, et al. Regional cerebral blood flow monitoring in the diagnosis of delayed ischemia following aneurysmal subarachnoid hemorrhage. J Neurosurg. 2003;98:1227–34.

    PubMed  Google Scholar 

  68. Sioutos PJ, Orozco JA, Carter LP, Weinand ME, Hamilton AJ, Williams FC. Continuous regional cerebral cortical blood flow monitoring in head-injured patients. Neurosurgery. 1995;36(5):943–9.

    PubMed  CAS  Google Scholar 

  69. Miller JI, Chou MW, Capocelli A, et al. Continuous intracranial multimodality monitoring comparing local cerebral blood flow, cerebral perfusion pressure, and microvascular resistance. Acta Neurochir Suppl. 1998;71:82–4.

    PubMed  CAS  Google Scholar 

  70. • Rosenthal G, Sanchez-Mejia RO, Phan N, et al. Incorporating a parenchymal thermal diffusion cerebral blood flow probe in bedside assessment of cerebral autoregulation and vasoreactivity in patients with severe traumatic brain injury. J Neurosurg. 2011;114:62–70. Twenty patients with severe TBI were studied. CAR and CO 2 vasoreactivity can be assessed using a Hemedex probe.

    PubMed  Google Scholar 

  71. Bonner RF, Nossal R. Principles of laser-Doppler flowmetry. In: Shepherd AP, Oberg PA, editors. Laser Doppler flowmetry. Boston: Kluwer; 1990. p. 17–45.

    Google Scholar 

  72. Bolognese P, Miller JI, Heger IM, et al. Laser Doppler flowmetry in neurosurgery. J Neurosurg Anesthesiol. 1993;5:151–8.

    PubMed  CAS  Google Scholar 

  73. Bhatia A, Gupta AK. Neuromonitoring in the intensive care unit. I. Intracranial pressure and cerebral blood flow monitoring. Intensive Care Med. 2007;33:1263–71.

    PubMed  Google Scholar 

  74. DeGeorgia MA, Deogaonkar A. Multimodal monitoring in the neurological intensive care unit. Neurologist. 2005;11:45–54.

    Google Scholar 

  75. Klaessens JHGM, Kolkman RGM, Hopman JCW, et al. Monitoring cerebral perfusion using near-infrared spectroscopy and laser Doppler flowmetry. Physiol Meas. 2003;24:N35–40.

    PubMed  CAS  Google Scholar 

  76. Wright WL. Multimodal monitoring in the ICU: when could it be useful? J Neurol Sci. 2007;261:10–5.

    PubMed  Google Scholar 

  77. Eyre JA, Essex TJH, Flecknell PA, et al. A comparison of measurements of cerebral blood flow in the rabbit using laser Doppler spectroscopy and radionuclide labelled microspheres. Clin Phys Physiol Meas. 1988;9:65–74.

    PubMed  CAS  Google Scholar 

  78. Fakuda O, Endo S, Kuwayama N, et al. The characteristics of laser-Doppler flowmetry for the measurement of regional cerebral blood flow. Neurosurgery. 1995;36:358–64.

    Google Scholar 

  79. Frerichs KU, Feuerstein GZ. Laser-Doppler flowmetry. A review of its application for measuring cerebral and spinal cord blood flow. Mol Chem Neuropathol. 1990;12:55–70.

    PubMed  CAS  Google Scholar 

  80. Kirkpatrick PJ, Smielweski P, Czosnyka, et al. Continuous monitoring of cortical perfusion by laser Doppler flowmetry in ventilated patients with head injury. J Neurolog Neurosurg Psychiatry. 1994;57:1382–88.

    CAS  Google Scholar 

  81. Kirkpatrick PJ, Smielweski P, Piechnik, et al. Early effects of mannitol in patients with head injuries assessed using bedside multimodality monitoring. Neurosurgery. 1996;39:714–20.

    PubMed  CAS  Google Scholar 

  82. Lam JMK, Hsiang JNK, Poon WS. Monitoring of autoregulation using laser Doppler flowmetry in patients with head injury. J Neurosurg. 1997;86:438–45.

    PubMed  CAS  Google Scholar 

  83. Smielewski P, Czosnyka M, Kirkpatrick P, et al. Evaluation of the transient hyperemic response test in head injured patients. J Neurosurg. 1997;86:773–8.

    PubMed  CAS  Google Scholar 

  84. Powers WJ, Zazulia AR. PET in cerebrovascular disease. PET Clin. 2010;5(1):83106.

    PubMed  Google Scholar 

  85. • Heiss WD. PET in coma and in vegetative state. Eur J Neurol. 2012;19(2):207–11. This is a review on the use of PET.

    PubMed  Google Scholar 

  86. Johnston AJ, Steiner LA, Coles JP, et al. Effect of cerebral perfusion pressure augmentation on regional oxygenation and metabolism after head injury. Crit Care Med. 2005;33(1):189–95.

    PubMed  Google Scholar 

  87. Hutchinson PJ, Gupta AK, Fryer TF, et al. Correlation between cerebral blood flow, substrate delivery, and metabolism in head injury: a combined microdialysis and triple oxygen positron emission tomography study. J Cereb Blood Flow Metab. 2002;22(6):735–45.

    PubMed  Google Scholar 

  88. Stocchetti N, Paparella A, Brindelli F, Bacchi M, Piazza P, Zuccoli P. Cerebral venous oxygen saturation studied with bilateral samples in the internal jugular veins. Neurosurgery. 1994;34:38–44.

    PubMed  CAS  Google Scholar 

  89. Ketty SS, Schmidt CF. The nitrous oxide method for the quantitative determination of cerebral blood flow in man: theory, procedure and normal values. J Clin Invest. 1948;27:476–83.

    Google Scholar 

  90. Matta BF, Lam AM, Mayberg TS, Shapira Y, Winn HR. A critique of the intraoperative use of jugular venous bulb catheters during neurosurgical procedures. Anesth Analg. 1994;79:745–50.

    PubMed  CAS  Google Scholar 

  91. Feldman Z, Robertson CS. Monitoring of cerebral hemodynamics with jugular bulb catheters. Crit Care Clin. 1997;13(1):51–77.

    PubMed  CAS  Google Scholar 

  92. Robertson CS, Gopinath SP, Goodman JC, et al. SjvO2 monitoring in head injured patients. J Neurotrauma. 1995;12:891–6.

    PubMed  CAS  Google Scholar 

  93. Artru F, Dailler F, Burel E, et al. Assessment of jugular blood oxygen and lactate indices for detection of cerebral ischemia and prognosis. J Neurosurg Anesthesiol. 2004;16:226–31.

    PubMed  Google Scholar 

  94. Sheinberg GM, Kanter MJ, Robertson CS, et al. Continuous monitoring of jugular venous oxygen saturation in head-injured patients. J Neurosurg. 1992;76:212–7.

    PubMed  CAS  Google Scholar 

  95. Gopinath SP, Rogertson CS, Constant CF, et al. Jugular venous desaturation and outcome after head injury. J Neurol Neurosurg Psychiatry. 1994;57:717–23.

    PubMed  CAS  Google Scholar 

  96. Thiagarajan A, Goverdhan P, Chari P, Somasunderam K. The effect of hyperventilation and hyperoxia on cerebral venous oxygen saturation in patients with traumatic brain injury. Anesth Analg. 1998;87:850–3.

    PubMed  CAS  Google Scholar 

  97. Goetting MG, Preston G. Jugular bulb catheterization: experience with 123 patients. Crit Care Med. 1990;18(11):1220–3.

    PubMed  CAS  Google Scholar 

  98. Brain Trauma Foundation, American Association of Neurological Surgeons, Congress of Neurological Surgeons, Joint Section on Neurotrauma and Critical Care, AANS/CNS. Guidelines for the management of severe traumatic brain injury. X. Brain oxygen monitoring and thresholds. J Neurotrauma. 2007;24 Suppl 1:S65–70.

    Google Scholar 

  99. Rosenthal G, Hemphill III JC, Sorani M, et al. Brain tissue oxygen tension is more indicative of oxygen diffusion than oxygen delivery and metabolism in patients with traumatic brain injury. Crit Care Med. 2008;36:1917–24.

    PubMed  CAS  Google Scholar 

  100. Hemphill 3rd JC, Knudson MM, Derugin N, Morabito D, Manley GT. Carbon dioxide reactivity and pressure autoregulation of brain tissue oxygen. Neurosurgery. 2001;48:377–83.

    PubMed  Google Scholar 

  101. Scheufler K-M, Lehnert A, Rohrborn H-J, et al. Individual values of brain tissue oxygen pressure, microvascular oxygen saturation, cytochrome redox level and energy metabolites in detecting critically reduced cerebral energy state during acute changes in global cerebral perfusion. J Neurosurg Anesthesiol. 2004;16:210–9.

    PubMed  Google Scholar 

  102. Scheufler KM, Rohrborn HJ, Zentner J. Does tissue oxygen-tension reliably reflect cerebral oxygen delivery and consumption? Anesth Analg. 2002;95:1042–48.

    PubMed  CAS  Google Scholar 

  103. Maloney-Wilensky E, Le Roux P. The physiology behind direct brain oxygen monitors and practical aspects of their use. Childs Nerv System. 2010;26(4):419–30.

    Google Scholar 

  104. Longhi L, Valeriani V, Rossi S, De Marchi M, Egidi M, Stocchetti N. Effects of hyperoxia on brain tissue oxygen tension in cerebral focal lesions. Acta Neurochir Suppl. 2002;81:315–7.

    PubMed  CAS  Google Scholar 

  105. Pennings FA, Schuurman PR, van den Munckhof P, Bouma GJ. Brain tissue oxygen pressure monitoring in awake patients during functional neurosurgery: the assessment of normal values. J Neurotrauma. 2008;25:1173–7.

    PubMed  Google Scholar 

  106. Hoffman WE, Charbel FT, Edelman G. Brain tissue oxygen, carbon dioxide, and pH in neurosurgical patients at risk for ischemia. Anesth Analg. 1996;82(3):582–6.

    PubMed  CAS  Google Scholar 

  107. Doppenberg EM, Zauner A, Watson JC, et al. Determination of the ischemic threshold for brain oxygen tension. Acta Neurochir Suppl. 1998;71:166–9.

    PubMed  CAS  Google Scholar 

  108. Bardt TF, Unterberg AW, Hartl R, et al. Monitoring of brain tissue PO2 in traumatic brain injury: effect of cerebral hypoxia on outcome. Acta Neurochir Suppl. 1998;71:153–6.

    PubMed  CAS  Google Scholar 

  109. Kiening KL, Unterberg AW, Bardt TF, et al. Monitoring of cerebral oxygenation in patients with severe head injuries: brain tissue PO2 versus jugular vein oxygen saturation. J Neurosurg. 1996;85(5):751–7.

    PubMed  CAS  Google Scholar 

  110. Chang JJ, Youn TS, Benson D, Mattick H, Andrade N, Harper CR, Moore CB, Madden CJ, Diaz-Arrastia RR. Physiologic and functional outcome correlates of brain tissue hypoxia in traumatic brain injury. Crit Care Med. 2009;37(1):283–90.

    PubMed  CAS  Google Scholar 

  111. Gopinath SP, Valadka AB, Uzura M, Robertson CS. Comparison of jugular venous oxygen saturation and brain tissue PO2 as monitors of cerebral ischemia after head injury. Crit Care Med. 1999;27:2337–45.

    PubMed  CAS  Google Scholar 

  112. Dings J, Meixensberger J, Jager A, et al. Clinical experience with 118 brain tissue oxygen partial pressure catheter probes. Neurosurgery. 1998;43:1082–95.

    PubMed  CAS  Google Scholar 

  113. van Santbrink H, Maas AIR, Avezaat CJJ. Continuous monitoring of partial pressure of brain tissue oxygen in patients with severe head injury. Neurosurgery. 1996;38:21–31.

    PubMed  Google Scholar 

  114. van den Brink WA, van Santbrink H, Steyerberg EW, et al. Brain oxygen tension in severe head injury. Neurosurgery. 2000;46:868–78.

    PubMed  Google Scholar 

  115. •• Ponce LL, Pillai S, Cruz J, Li X, Hannay HJ, Gopinath S, Robertson CS. Position of probe determines prognostic information of brain tissue pO2 in severe traumatic brain injury. Neurosurgery. 2012;70(6):1492–502. Four hundred and five patients who had PbtO 2 monitoring after severe TBI were examined. When the PbtO 2 probe was in abnormal brain, the average PbtO 2 was higher in those patients with a favorable outcome, but a relationship between outcome and PbtO 2 in multivariate analysis was not observed when the probe was in normal-appearing brain.

    PubMed  Google Scholar 

  116. Hlatky R, Valadka AB, Goodman JC, Contant CF, Robertson CS. Patterns of energy substrates during ischemia measured in the brain by microdialysis. J Neurotrauma. 2004;21(7):894–906.

    PubMed  Google Scholar 

  117. Rose JC, Neill TA, Hemphill 3rd JC. Continuous monitoring of the microcirculation in neurocritical care: an update on brain tissue oxygenation. Curr Opin Crit Care. 2006;12:97–102.

    PubMed  Google Scholar 

  118. Gracias VH, Guillamondegui OD, Stiefel MF, Wilensky EM, Bloom S, Pryor JP, Reilly PM, Le Roux P, Schwab CW. Cerebral cortical oxygenation: a pilot study. J Trauma. 2004;56:469–74.

    PubMed  Google Scholar 

  119. Al-Rawi PG, Hutchinson PJ, Gupta AK, et al. Multiparameter brain tissue monitoring correlation between parameters and identification of CPP thresholds. Zentralbl Neurochir. 2000;61(2):74–9.

    PubMed  CAS  Google Scholar 

  120. Dohmen C, Bosche B, Graf R, et al. Identification and clinical impact of impaired cerebrovascular autoregulation in patients with malignant middle cerebral artery infarction. Stroke. 2007;38(1):56–61.

    PubMed  Google Scholar 

  121. Gupta AK, Hutchinson PJ, Fryer T, et al. Measurement of brain tissue oxygenation performed using positron emission tomography scanning to validate a novel monitoring method. J Neurosurg. 2002;96(2):263–8.

    PubMed  Google Scholar 

  122. Oddo M, Frangos S, Maloney-Wilensky E, Andrew Kofke W, Le Roux P, Levine JM. Effect of Shivering on Brain Tissue Oxygenation During Induced Normothermia in Patients With Severe Brain Injury. Neurocrit Care. 2010;12(1):10–6.

    PubMed  CAS  Google Scholar 

  123. Weiner GM, Lacey MR, Mackenzie L, Shah DP, Frangos SG, Grady MS, Kofke WA, Levine J, Schuster J, Le Roux P. Decompressive craniectomy for elevated intracranial pressure and its effect on the cumulative ischemic burden and therapeutic intensity levels after sever traumatic brain injury. Neurosurgery. 2010;66:1111–9.

    PubMed  Google Scholar 

  124. Smith MJ, Maggee S, Stiefel M, Bloom S, Gracias V, Le Roux P. Packed red blood cell transfusion increases local cerebral oxygenation. Crit Care Med. 2005;33:1104–8.

    PubMed  Google Scholar 

  125. Muench E, Horn P, Bauhuf C, Roth H, Philipps M, Hermann P, Quintel M, Schmiedek P, Vajkoczy P. Effects of hypervolemia and hypertension on regional cerebral blood flow, intracranial pressure, and brain tissue oxygenation after subarachnoid hemorrhage. Crit Care Med. 2007;35:1844–51.

    PubMed  Google Scholar 

  126. Spiotta AM, Stiefel MF, Gracias VH, et al. Brain tissue oxygen-directed management and outcome in patients with severe traumatic brain injury. J Neurosurg. 2010;113:571–80.

    PubMed  Google Scholar 

  127. Narotam PK, Morrison JF, Nathoo N. Brain tissue oxygen monitoring in traumatic brain injury and major trauma: outcome analysis of a brain tissue oxygen-directed therapy. J Neurosurg. 2009;111:672–82.

    PubMed  Google Scholar 

  128. Martini RP, Deem S, Yanez ND, et al. Management guided by brain tissue oxygen monitoring and outcome following severe traumatic brain injury. J Neurosurg. 2009;111(4):644–9.

    PubMed  Google Scholar 

  129. • Nangunoori R, Maloney-Wilensky E, Stiefel M, et al. Brain tissue oxygen-based therapy and outcome after severe traumatic brain injury: a systematic literature review. Neurocrit Care. 2012;17(1):131–8. Seven studies that compared ICP/CPP- and PbtO 2 -based therapy with ICP/CPP-based therapy were identified. Four studies that included 491 evaluable patients were used in the final analysis. Summary results suggested that combined ICP/CPP- and PbtO 2 -based therapy is associated with better outcome after severe TBI than ICP/CPP-based therapy alone.

    PubMed  CAS  Google Scholar 

  130. Misra M, Stark J, Dujovny M, et al. Transcranial cerebral oximetry in random normal subjects. Neurol Res. 1998;20(2):137–41.

    PubMed  CAS  Google Scholar 

  131. Samra SK, Stanley JC, Zelenock GB, Dorje P. An assessment of contributions made by extracranial tissues during cerebral oximetry. J Neurosurg Anaesthesiol. 1999;11(1):1–5.

    CAS  Google Scholar 

  132. Highton D, Elwell C, Smith M. Noninvasive cerebral oximetry: is there light at the end of the tunnel? Curr Opin Anaesthesiol. 2010;23:576–81.

    PubMed  Google Scholar 

  133. Hirsch JC, Charpie JR, Ohye RG, Gurney JG. Near infrared spectroscopy (NIRS) should not be standard of care for postoperative management. Semin Thorac Cardiovasc Surg Pediatr Card Surg Annu. 2010;13:51–4.

    PubMed  Google Scholar 

  134. Lee JK, Kibler KK, Benni PB, et al. Cerebrovascular reactivity measured by near-infrared spectroscopy. Stroke. 2009;40:1820–6.

    PubMed  Google Scholar 

  135. Zweifel C, Lavinio A, Steiner LA, Radolovich D, Smielewski P, Timofeev I, Hiler M, Balestreri M, Kirkpatrick PJ, Pickard JD, Hutchinson P, Czosnyka M. Continuous monitoring of cerebrovascular pressure reactivity in patients with head injury. Neurosurg Focus. 2008;25(4):E2.

    PubMed  Google Scholar 

  136. Kirkpatrick PJ, Smielewski P, Czosnyka M, Menon DK, Pickard JD. Near infrared spectroscopy use in patients with head injury. J Neurosurg. 1995;83:963–70.

    PubMed  CAS  Google Scholar 

  137. Leal-Noval SR, Cayuela A, Arellano-Orden V, Marín-Caballos A, Padilla V, Ferrándiz-Millón C, Corcia Y, García-Alfaro C, Amaya-Villar R, Murillo-Cabezas F. Invasive and noninvasive assessment of cerebral oxygenation in patients with severe traumatic brain injury. Intensive Care Med. 2010;36(8):1309–17.

    PubMed  CAS  Google Scholar 

  138. Adamides AA, Rosenfeldt FL, Winter CD, et al. Brain tissue lactate elevations predict episodes of intracranial hypertension in patients with traumatic brain injury. J Am Coll Surg. 2009;209:531–9.

    PubMed  Google Scholar 

  139. Belli A, Sen J, Petzold A, Russo S, Kitchen N, Smith M. Metabolic failure precedes intracranial pressure rises in traumatic brain injury: a microdialysis study. Acta Neurochir (Wien). 2008;150:461–9.

    CAS  Google Scholar 

  140. Vespa PM, McArthur D, O’Phelan K, et al. Persistently low extracellular glucose correlates with poor outcome 6 months after human traumatic brain injury despite a lack of increased lactate: a microdialysis study. J Cereb Blood Flow Metab. 2003;23(7):865–77.

    PubMed  CAS  Google Scholar 

  141. Vespa P, Bergsneider M, Hattori N, et al. Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab. 2005;25(6):763–74.

    PubMed  CAS  Google Scholar 

  142. Tisdall MM, Smith M. Cerebral microdialysis: research technique or clinical tool. Br J Anaesth. 2006;97:18–25.

    PubMed  CAS  Google Scholar 

  143. • Larach DB, Kofke WA, Le Roux P. Potential non-hypoxic/ischemic causes of increased cerebral interstitial fluid lactate/pyruvate ratio: a review of available literature. Neurocrit Care. 2011;15(3):609–22. This article reviews the potential nonhypoxic/ischemic causes of an increased LPR.

    PubMed  Google Scholar 

  144. Hutchinson PJ, Al-Rawi PG, O’Connell MT, et al. Head injury monitoring using cerebral microdialysis and Paratrend multiparameter sensors. Zentralbl Neurochir. 2000;61(2):88–94.

    PubMed  CAS  Google Scholar 

  145. Hutchinson PJ, Al-Rawi PG, O’Connell MT, et al. On-line monitoring of substrate delivery and brain metabolism in head injury. Acta Neurochir Suppl. 2000;76:431–5.

    PubMed  CAS  Google Scholar 

  146. Zauner A, Doppenberg EM, Woodward JJ, et al. Continuous monitoring of cerebral substrate delivery and clearance: initial experience in 24 patients with severe acute brain injuries. Neurosurgery. 1997;41(5):1082–91.

    PubMed  CAS  Google Scholar 

  147. •• Timofeev I, Carpenter KL, Nortje J, et al. Cerebral extracellular chemistry and outcome following traumatic brain injury: a microdialysis study of 223 patients. Brain. 2011;134(Pt 2):484–94. This article considers prospective observational CMD data from 223 patients. In a multivariate logistic regression model, positive predictors of mortality were glucose concentration, LPR, ICP, PRx, and age.

    PubMed  Google Scholar 

  148. Peerdeman SM, Girbes AR, Polderman KH, et al. Changes in cerebral interstitial glycerol concentration in head-injured patients; correlation with secondary events. Intensive Care Med. 2003;29(10):1825–8.

    PubMed  Google Scholar 

  149. Staub F, Graf R, Gabel P, et al. Multiple interstitial substances measured by microdialysis in patients with subarachnoid hemorrhage. Neurosurgery. 2000;47(5):1106–15.

    PubMed  CAS  Google Scholar 

  150. Obrenovitch TP, Urenjak J. Is high extracellular glutamate the key to excitotoxicity in traumatic brain injury? J Neurotrauma. 1997;14(10):677–98.

    PubMed  CAS  Google Scholar 

  151. Hillered L, Vespa PM, Hovda DA. Translational neurochemical research in acute human brain injury: the current status and potential future for cerebral microdialysis. J Neurotrauma. 2005;22(1):3–41.

    PubMed  Google Scholar 

  152. Oddo M, Milby A, Chen I, Frangos S, MacMutrie E, Maloney-Wilensky E, Stiefel MF, Kofke A, Levine JM, Le Roux P. Hemoglobin concentration and cerebral metabolism in patients with aneurysmal subarachnoid hemorrhage: a microdialysis study. Stroke. 2009;40(4):1275–81.

    PubMed  CAS  Google Scholar 

  153. Oddo M, Schmidt JM, Carrera C, Badjatia N, Connolly ES, Presciutti M, Ostapkovich ND, Levine JM, Le Roux P, Mayer SA. Impact of tight glycemic control on cerebral glucose metabolism after severe brain injury: a microdialysis study. Crit Care Med. 2008;36:3233–8.

    PubMed  CAS  Google Scholar 

  154. Nortje J, Coles JP, Timofeev I, et al. Effect of hyperoxia on regional oxygenation and metabolism after severe traumatic brain injury: preliminary findings. Crit Care Med. 2008;36(1):273–81.

    PubMed  CAS  Google Scholar 

  155. Marion DW, Puccio A, Wisniewski SR, et al. Effect of hyperventilation on extracellular concentrations of glutamate, lactate, pyruvate, and local cerebral blood flow in patients with severe traumatic brain injury. Crit Care Med. 2002;30(12):2619–25.

    PubMed  CAS  Google Scholar 

  156. Goodman JC, Robertson CS. Microdialysis: is it ready for prime time? Curr Opin Crit Care. 2009;15:110–7.

    PubMed  Google Scholar 

  157. Bellander BM, Cantais E, Enblad P, et al. Consensus meeting on microdialysis in neurointensive care. Intensive Care Med. 2004;30:2166–9.

    PubMed  Google Scholar 

  158. Abend NS, Dlugos DJ, Hahn CD, Hirsch LJ, Herman ST. Use of EEG monitoring and management of non-convulsive seizures in critically ill patients: a survey of neurologists. Neurocrit Care. 2010;12(3):382–9.

    PubMed  Google Scholar 

  159. Vespa PM, Miller C, McArthur D, Eliseo M, Etchepare M, Hirt D, Glenn TC, Martin N, Hovda D. Nonconvulsive electrographic seizures after traumatic brain injury result in a delayed, prolonged increase in intracranial pressure and metabolic crisis. Crit Care Med. 2007;35(12):2830–6.

    PubMed  Google Scholar 

  160. Pandian JD, Cascino GD, So EL, Manno E, Fulgham JR. Digital video-electroencephalographic monitoring in the neurological-neurosurgical intensive care unit: clinical features and outcome. Arch Neurol. 2004;61:1090–4.

    PubMed  Google Scholar 

  161. Claassen J, Mayer SA, Kowalski RG, Emerson RG, Hirsch LJ. Detection of electrographic seizures with continuous EEG monitoring in critically ill patients. Neurology. 2004;62:1743–8.

    PubMed  CAS  Google Scholar 

  162. Sundt Jr TM, Sharbrough FW, Anderson RE, Michenfelder JD. Cerebral blood flow measurements and electroencephalograms during carotid endarterectomy. J Neurosurg. 1974;41:310–20.

    PubMed  Google Scholar 

  163. Sundt Jr TM, Sharbrough FW, Piepgras DG, Kearns TP, Messick Jr JM, O’Fallon WM. Correlation of cerebral blood flow and electroencephalographic changes during carotid endarterectomy: with results of surgery and hemodynamics of cerebral ischemia. Mayo Clin Proc. 1981;56:533–43.

    PubMed  Google Scholar 

  164. Claassen J, Hirsch LJ, Kreiter KT, Du EY, Connolly ES, Emerson RG, Mayer SA. Quantitative continuous EEG for detecting delayed cerebral ischemia in patients with poor-grade subarachnoid hemorrhage. Clin Neurophysiol. 2004;115:2699–710.

    PubMed  Google Scholar 

  165. Vespa PM, Nuwer MR, Juhasz C, Alexander M, Nenov V, Martin N, Becker DP. Early detection of vasospasm after acute subarachnoid hemorrhage using continuous EEG ICU monitoring. Electroencephalogr Clin Neurophysiol. 1997;103:607–15.

    PubMed  CAS  Google Scholar 

  166. Hebb MO, McArthur DL, Alger J, Etchepare M, Glenn TC, Bergsneider M, Martin N, Vespa PM. Impaired percent alpha variability on continuous electroencephalography is associated with thalamic injury and predicts poor long-term outcome after human traumatic brain injury. J Neurotrauma. 2007;24:579–90.

    PubMed  Google Scholar 

  167. Wittman Jr JJ, Hirsch LJ. Continuous electroencephalogram monitoring in the critically ill. Neurocrit Care. 2005;2(3):330–41.

    PubMed  Google Scholar 

  168. Robinson LR, Micklesen PJ, Tirschwell DL, Lew HL. Predictive value of somatosensory evoked potentials for awakening from coma. Crit Care Med. 2003;31:960–7.

    PubMed  Google Scholar 

  169. • Oddo M, Rossetti AO. Predicting neurological outcome after cardiac arrest. Curr Opin Crit Care. 2011;17:254–9. This is a review of EEG, evoked potentials, and biomarkers to predict outcome after cardiac arrest.

    PubMed  Google Scholar 

  170. Vos PE, Lamers KJ, Hendriks JC, van Haaren M, Beems T, Zimmerman C, van Geel W, de Reus H, Biert J, Verbeek MM. Glial and neuronal proteins in serum predict outcome after severe traumatic brain injury. Neurology. 2004;62:1303–10.

    PubMed  CAS  Google Scholar 

  171. Anderson RE, Hansson LO, Nilsson O, Dijlai-Merzoug R, Settergren G. High serum S100B levels for trauma patients without head injuries. Neurosurgery. 2001;48(6):1255–8. discussion 1258-60.

    PubMed  CAS  Google Scholar 

  172. Vos PE, Jacobs B, Andriessen TM, Lamers KJ, Borm GF, Beems T, Edwards M, Rosmalen CF, Vissers JL. GFAP and S100B are biomarkers of traumatic brain injury: an observational cohort study. Neurology. 2010;75(20):1786–93.

    PubMed  CAS  Google Scholar 

  173. Pelinka LE, Kroepfl A, Leixnering M, Buchinger W, Raabe A, Redl H. GFAP versus S100B in serum after traumatic brain injury: relationship to brain damage and outcome. J Neurotrauma. 2004;21:1553–61.

    PubMed  Google Scholar 

  174. Ost M, Nylen K, Csajbok L, Ohrfelt AO, Tullberg M, Wikkelso C, Nellgard P, Rosengren L, Blennow K, Nellgard B. Initial CSF total tau correlates with 1-year outcome in patients with traumatic brain injury. Neurology. 2006;67:1600–4.

    PubMed  CAS  Google Scholar 

  175. Marklund N, Blennow K, Zetterberg H, Ronne-Engstrom E, Enblad P, Hillered L. Monitoring of brain interstitial total tau and beta amyloid proteins by microdialysis in patients with traumatic brain injury. J Neurosurg. 2009;110:1227–37.

    PubMed  CAS  Google Scholar 

  176. • Petzold A, Tisdall MM, Girbes AR, Martinian L, Thom M, Kitchen N, Smith M. In vivo monitoring of neuronal loss in traumatic brain injury: a microdialysis study. Brain. 2011;134:464–83. This reports a CMD study in ten patients. Extracellular fluid neurofilament heavy chain levels were of prognostic value.

    PubMed  Google Scholar 

  177. Pineda JA, Lewis SB, Valadka AB, Papa L, Hannay HJ, Heaton SC, Demery JA, Liu MC, Aikman JM, Akle V, Brophy GM, Tepas JJ, Wang KK, Robertson CS, Hayes RL. Clinical significance of alphaII-spectrin breakdown products in cerebrospinal fluid after severe traumatic brain injury. J Neurotrauma. 2007;24:354–66.

    PubMed  Google Scholar 

  178. Turck N, Vutskits L, Sanchez-Pena P, Robin X, Hainard A, Gex-Fabry M, Fouda C, Bassem H, Mueller M, Lisacek F, Puybasset L, Sanchez JC. A multiparameter panel method for outcome prediction following aneurysmal subarachnoid hemorrhage. Intensive Care Med. 2010;36:107–15.

    PubMed  Google Scholar 

  179. Siman R, Toraskar N, Dang A, McNeil E, McGarvey M, Plaum J, Maloney E, Grady MS. A panel of neuron-enriched proteins as markers for traumatic brain injury in humans. J Neurotrauma. 2009;26(11):1867–77.

    PubMed  Google Scholar 

  180. • Siman R, Giovannone N, Toraskar N, Frangos S, Stein SC, Levine JM, Kumar MA. Evidence that a panel of neurodegeneration biomarkers predicts vasospasm, infarction, and outcome in aneurysmal subarachnoid hemorrhage. PLoS One. 2011;6(12):e28938. In CSF samples from 14 patients, eight biomarkers for acute brain damage were quantified. This panel predicted lasting brain dysfunction and the pathophysiological processes after SAH.

    PubMed  CAS  Google Scholar 

  181. Diedler J, Czosnyka M. Merits and pitfalls of multimodality brain monitoring. Neurocrit Care. 2010;12(3):313–6.

    PubMed  Google Scholar 

  182. Piper I, Chambers I, Citerio G, et al. The brain monitoring with Information Technology (BrainIT) collaborative network: EC feasibility study results and future direction. Acta Neurochir (Wien). 2010;152:1859–71.

    Google Scholar 

  183. Sorani MD, Hemphill 3rd JC, Morabito D, et al. New approaches to physiological informatics in neurocritical care. Neurocrit Care. 2007;7:45–52.

    PubMed  Google Scholar 

  184. • Hemphill JC, Andrews P, De Georgia M. Medscape. Multimodal monitoring and neurocritical care bioinformatics. Nat Rev Neurol. 2011;7(8):451–60. This article reviews the acquisition, storage, and analysis of physiological and other data needed to manage brain injury.

    PubMed  Google Scholar 

  185. Reinstrup P, Ståhl N, Mellergård P, Uski T, Ungerstedt U, Nordström CH. Intracerebral microdialysis in clinical practice: baseline values for chemical markers during wakefulness, anesthesia, and neurosurgery. Neurosurgery. 2000;47(3):701–9.

    PubMed  CAS  Google Scholar 

  186. Schulz MK, Wang LP, Tange M, Bjerre P. Cerebral microdialysis monitoring: determination of normal and ischemic cerebral metabolisms in patients with aneurysmal subarachnoid hemorrhage. J Neurosurg. 2000;93(5):808–14.

    PubMed  CAS  Google Scholar 

Download references

Disclosure

No potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Le Roux.

Additional information

This article is part of the Topical Collection on Neurotrauma

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Roux, P. Physiological Monitoring of the Severe Traumatic Brain Injury Patient in the Intensive Care Unit. Curr Neurol Neurosci Rep 13, 331 (2013). https://doi.org/10.1007/s11910-012-0331-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11910-012-0331-2

Keywords

Navigation