Skip to main content
Log in

Genetics and molecular pathogenesis of the myotonic dystrophies

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Pathogenic repeat expansions were initially identified as causing either a loss of gene product, such as in fragile X mental retardation, or an expansion of a polyglutamine region of a protein, as was first shown in spinobulbar muscular atrophy (Kennedy’s disease). The pathogenic effect of the repeat expansion in myotonic dystrophy type 1, however, has been controversial because it does not encode a protein but nonetheless results in a highly penetrant dominant disease. Clinical and molecular characterization of myotonic dystrophy types 1 and 2 have now demonstrated a novel disease mechanism involving pathogenic effects of repeat expansions that are expressed in RNA but are not translated into protein.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Harper PS: Myotonic Dystrophy, vol 37. London: WB Saunders; 2001. This monograph on myotonic dystrophy is the most complete collection of clinical information about DM1.

    Google Scholar 

  2. Brook JD, McCurrah ME, Harley HG, et al.: Molecular basis of myotonic dystrophy: Expansion of a trinucleotide (CTG) repeat at the 3′ end of a transcript encoding a protein kinase family member. Cell 1992, 68:799–808.

    Article  PubMed  CAS  Google Scholar 

  3. Fu YH, Pizzuti A, Fenwick RG Jr, et al.: An unstable triplet repeat in a gene related to myotonic muscular dystrophy. Science 1992, 255:1256–1258.

    Article  PubMed  CAS  Google Scholar 

  4. Ricker K, Koch MC, Lehmann-Horn F, et al.: Proximal myotonic myopathy: a new dominant disorder with myotonia, muscle weakness, and cataracts. Neurology 1994, 44:1448–1452.

    PubMed  CAS  Google Scholar 

  5. Thornton CA, Griggs RC, Moxley RT: Myotonic dystrophy with no trinucleotide repeat expansion. Ann Neurol 1994, 35:269–272.

    Article  PubMed  CAS  Google Scholar 

  6. Moxley R: Proximal myotonic myopathy: mini-review of a recently delineated clinical disorder. Neuromusc Disord 1996, 6:87–93.

    Article  PubMed  Google Scholar 

  7. Udd B, Krahe R, Wallgren-Petterson C, et al.: Proximal myotonic dystrophy-a family with autosomal domiant muscular dystrophy, cataracts, hearing loss and hypogonadism: heterogeneity of proximal myotonic syndromes? Neuromusc Disord 1997, 7:217–228.

    Article  PubMed  CAS  Google Scholar 

  8. Ranum L, Rasmussen P, Benzow K, et al.: Genetic mapping of a second myotonic dystrophy locus. Nat Genet 1998, 19:196–198.

    Article  PubMed  CAS  Google Scholar 

  9. Day JW, Roelofs R, Leroy B, et al.: Clinical and genetic characteristics of a five-generation family with a novel form of myotonic dystrophy (DM2). Neuromuscul Disord 1999, 9:19–27.

    Article  PubMed  CAS  Google Scholar 

  10. Consortium IMD: New nomenclature and DNA testing guidelines for myotonic dystrophy type 1 (DM1). The International Myotonic Dystrophy Consortium (IDMC). Neurology 2000, 54:1218–1221.

    Google Scholar 

  11. Day J, Ricker K, Jacobsen J, et al.: Myotonic dystrophy type 2: molecular, diagnostic and clinical spectrum. Neurology 2003, 60:657–664. This paper details the necessary molecular methods for DM2 diagnosis. The clinical features of a large collection of genetically confirmed cases are presented, as are correlations of genetic features with clinical phenotype.

    Article  PubMed  CAS  Google Scholar 

  12. Vihola A, Bassez G, Meola G, et al.: Histopathological differences of myotonic dystrophy type 1 (DM1) and PROMM/DM2. Neurology 2003, 60:1854–1857.

    PubMed  CAS  Google Scholar 

  13. Schoser BG, Schneider-Gold C, Kress W, et al.: Muscle pathology in 57 patients with myotonic dystrophy type 2. Muscle Nerve 2004, 29:275–281.

    Article  PubMed  Google Scholar 

  14. Mathieu J, Boivin H, Meunier D, et al.: Assesment of a diseasespecific muscular impairment rating scale in myotonic dystrophy. Neurology 2001, 56:336–340.

    PubMed  CAS  Google Scholar 

  15. Ricker K, Koch M, Lehmann-Horn F, et al.: Proximal myotonic myopathy: clinical features of a multisystem disorder similar to myotonic dystrophy. Arch Neurol 1995, 52:25–31.

    PubMed  CAS  Google Scholar 

  16. Phillips MF, Harper PS: Cardiac disease in myotonic dystrophy. Cardiovasc Res 1997, 33:13–22.

    Article  PubMed  CAS  Google Scholar 

  17. Schoser BG, Ricker K, Schneider-Gold C, et al.: Sudden cardiac death in myotonic dystrophy type 2. Neurology 2004, In press.

  18. Savkur RS, Philips AV, Cooper TA: Aberrant regulation of insulin receptor alternative splicing is associated with insulin resistance in myotonic dystrophy. Nat Genet 2001, 29:40–47. This paper details the splicing changes of the insulin receptor in DM1, correlating the presence of the pathogenic DM1 expansion with the alteration of CUG-BP, and the resultant generation of abnormal isoforms that confer insulin insensitivity.

    Article  PubMed  CAS  Google Scholar 

  19. Savkur RS, Philips AV, Cooper TA, et al.: Insulin receptor splicing alteration in myotonic dystrophy type 2. Am J Hum Genet 2004, 74:1309–1313. This paper demonstrates the insulin receptor splicing changes in DM2 muscle, providing additional molecular evidence for the common pathophysiologic process in DM1 and DM2.

    Article  PubMed  CAS  Google Scholar 

  20. Hund E, Jansen O, Koch MC, et al.: Proximal myotonic myopathy with MRI white matter abnormalities of the brain. Neurology 1997, 48:33–37.

    PubMed  CAS  Google Scholar 

  21. Buxton J, Shelbourne P, Davies J, et al.: Detection of an unstable fragment of DNA specific to individuals with myotonic dystrophy. Nature 1992, 355:547–548.

    Article  PubMed  CAS  Google Scholar 

  22. Harley HG, Brook JD, Rundle SA, et al.: Expansion of an unstable DNA region and phenotypic variation in myotonic dystrophy. Nature 1992, 355:545–546.

    Article  PubMed  CAS  Google Scholar 

  23. Mahadevan M, Tsilfidis C, Sabourin L, et al.: Myotonic dystrophy mutation: an unstable CTG repeat in the 3′ untranslated region of the gene. Science 1992, 255:1253–1255.

    Article  PubMed  CAS  Google Scholar 

  24. Boucher CA, King SK, Carey N, et al.: A novel homeodomainencoding gene is associated with a large CpG island interrupted by the myotonic dystrophy unstable (CTG)n repeat. Hum Mol Genet 1995, 4:1919–1925.

    Article  PubMed  CAS  Google Scholar 

  25. Monckton DG, Wong LJ, Ashizawa T, Caskey CT: Somatic mosaicism, germline expansions, germline reversions and intergenerational reductions in myotonic dystrophy males: small pool PCR analyses. Hum Mol Genet 1995, 4:1–8.

    PubMed  CAS  Google Scholar 

  26. Hamshere MG, Harley H, Harper P, et al.: Myotonic dystrophy: the correlation of (CTG) repeat length in leucocytes with age at onset is significant only for patients with small expansions. J Med Genet 1999, 36:59–61.

    PubMed  CAS  Google Scholar 

  27. Liquori C, Ricker K, Moseley ML, et al.: Myotonic dystrophy type 2 caused by a CCTG expansion in intron 1 of ZNF9. Science 2001, 293:864–867. This paper details the original identification of the DM2 mutation and demonstrates the somatic and intergenerational instability of the repeat.

    Article  PubMed  CAS  Google Scholar 

  28. Liquori CL, Ikeda Y, Weatherspoon M, et al.: Myotonic dystrophy type 2: human founder haplotype and evolutionary conservation of the repeat tract. Am J Hum Genet 2003, 73:849–862.

    Article  PubMed  CAS  Google Scholar 

  29. Schoser BG, Kress W, Walter MC, et al.: Homozygosity for CCTG mutation in myotonic dystrophy type 2. Brain 2004, In press.

  30. Schneider C, Ziegler A, Ricker K, et al.: Proximal myotonic myopathy: evidence for anticipation in families with linkage to chromosome 3q. Neurology 2000, 55:383–388.

    PubMed  CAS  Google Scholar 

  31. Pellizzoni L, Lotti F, Maras B, Pierandrei-Amaldi P: Cellular nucleic acid binding protein binds a conserved region of the 5′ UTR of Xenopus laevis ribosomal protein mRNAs. J Mol Biol 1997, 267:264–275.

    Article  PubMed  CAS  Google Scholar 

  32. Pellizzoni L, Lotti F, Rutjes SA, Pierandrei-Amaldi P: Involvement of the Xenopus laevis Ro60 autoantigen in the alternative interaction of La and CNBP proteins with the 5′UTR of L4 ribosomal protein mRNA. J Mol Biol 1998, 281:593–608.

    Article  PubMed  CAS  Google Scholar 

  33. Taneja KL, McCurrach M, Schalling M, et al.: Foci of trinucleotide repeat transcripts in nuclei of myotonic dystrophy cells and tissues. J Cell Biol 1995, 128:995–1002.

    Article  PubMed  CAS  Google Scholar 

  34. Timchenko LT, Miller JW, Timchenko NA, et al.: Identification of a (CUG)n triplet repeat RNA-binding protein and its expression in myotonic dystrophy. Nucleic Acid Res 1996, 24:4407–4414.

    Article  PubMed  CAS  Google Scholar 

  35. Michalowski S, Miller JW, Urbinati CR, et al.: Visualization of double-stranded RNAs from the myotonic dystrophy protein kinase gene and interactions with CUG-binding protein. Nucleic Acid Res 1999, 27:3534–3542.

    Article  PubMed  CAS  Google Scholar 

  36. Ebralidze A, Wang Y, Petkova V, et al.: RNA leaching of transcription factors disrupts transcription in myotonic dystrophy. Science 2004, 303:383–387.

    Article  PubMed  CAS  Google Scholar 

  37. Amack JD, Paguio AP, Mahadevan MS: Cis and trans effects of the myotonic dystrophy (DM) mutation in a cell culture model. Hum Mol Genet 1999, 8:1975–1984.

    Article  PubMed  CAS  Google Scholar 

  38. Mankodi A, Logigian E, Callahan L, et al.: Myotonic dystrophy in transgenic mice expressing an expanded CUG repeat. Science 2000, 289:1769–1773. The mouse model developed in this report verified the pathogenic effects of the DM1 CTG expansion when transcribed into RNA. Expression was restricted to muscle, so the mouse has myotonia and myopathic features but could not manifest any of the multisystemic features of the disease.

    Article  PubMed  CAS  Google Scholar 

  39. Seznec H, Agbulut O, Sergeant N, et al.: Mice transgenic for the human myotonic dystrophy region with expanded CTG repeats display muscular and brain abnormalities. Hum Mol Genet 2001, 10:2717–2726.

    Article  PubMed  CAS  Google Scholar 

  40. Mankodi A, Urbinati CR, Yuan QP, et al.: Muscleblind localizes to nuclear foci of aberrant RNA in myotonic dystrophy types 1 and 2. Hum Mol Genet 2001, 10:2165–2170.

    Article  PubMed  CAS  Google Scholar 

  41. Fardaei M, Rogers MT, Thorpe HM, et al.: Three proteins, MBNL, MBLL and MBXL, co-localize in vivo with nuclear foci of expanded-repeat transcripts in DM1 and DM2 cells. Hum Mol Genet 2002, 11:805–814.

    Article  PubMed  CAS  Google Scholar 

  42. Timchenko LT, Timchenko NA, Caskey CT, Roberts R: Novel proteins with binding specificity for DNA CTG repeats and RNA CUG repeats: implications for myotonic dystrophy. Hum Mol Genet 1996, 5:115–121.

    Article  PubMed  CAS  Google Scholar 

  43. Miller JW, Urbinati CR, Teng-Umnuay P, et al.: Recruitment of human muscleblind proteins to (CUG)(n) expansions associated with myotonic dystrophy. EMBO J 2000, 19:4439–4448.

    Article  PubMed  CAS  Google Scholar 

  44. Ho TH, Charlet BN, Poulos MG, et al.: Muscleblind proteins regulate alternative splicing. EMBO J 2004, 23:3103–3112.

    Article  PubMed  CAS  Google Scholar 

  45. Philips AV, Timchenko LT, Cooper TA: Disruption of splicing regulated by a CUG-binding protein in myotonic dystrophy. Science 1998, 280:737–741.

    Article  PubMed  CAS  Google Scholar 

  46. Mankodi A, Takahashi MP, Jiang H, et al.: Expanded CUG Repeats Trigger Aberrant Splicing of ClC-1 Chloride Channel Pre-mRNA and Hyperexcitability of Skeletal Muscle in Myotonic Dystrophy. Mol Cell 2002, 10:35–44. This paper details the physiologic, genetic, and immunohistologic abnormalities of chloride channel proteins in muscle of transgenic mice, and from patients with DM1 and DM2. This demonstrates the common pathophysiologic process in these three tissues affecting the chloride currents, which underlies the myotonia in these diseases.

    Article  PubMed  CAS  Google Scholar 

  47. Charlet BN, Savkur RS, Singh G, et al.: Loss of the musclespecific chloride channel in type 1 myotonic dystrophy due to misregulated alternative splicing. Mol Cell 2002, 10:45–53. This paper demonstrates the role of chloride channel splicing irregularities in DM1 due to the repeat expansion in RNA and resultant abnormal activity of CUG-BP.

    Article  Google Scholar 

  48. Sergeant N, Sablonniere B, Schraen-Maschke S, et al.: Dysregulation of human brain microtubule-associated tau mRNA maturation in myotonic dystrophy type 1. Hum Mol Genet 2001, 10:2143–2155.

    Article  PubMed  CAS  Google Scholar 

  49. Buj-Bello A, Furling D, Tronchere H, et al.: Muscle-specific alternative splicing of myotubularin-related 1 gene is impaired in DM1 muscle cells. Hum Mol Genet 2002, 11:2297–2307.

    Article  PubMed  CAS  Google Scholar 

  50. Kanadia RN, Johnstone KA, Mankodi A, et al.: A muscleblind knockout model for myotonic dystrophy. Science 2003, 302:1978–1980. This important mouse model demonstrates the role of MBNL in DM pathogenesis. Although MBNL had previously been shown to co-localize with DM ribonuclear inclusions, this paper demonstrates the importance of reduced MBNL in generating abnormal alternative splicing.

    Article  PubMed  CAS  Google Scholar 

  51. Filippova GN, Thienes CP, Penn BH, et al.: CTCF-binding sites flank CTG/CAG repeats and form a methylation-sensitive insulator at the DM1 locus. Nat Genet 2001, 28:335–343. The identification of insulator sites flanking the DM1 expansion, and the recognition that congenital DM1 is associated with methylation of the sites and increased expression of the DMPK gene, provide a potential molecular model for generation of the congenital phenotype of DM1.

    Article  PubMed  CAS  Google Scholar 

  52. Imbert G, Kretz C, Johnson K, Mandel JL: Origin of the expansion mutation in myotonic dystrophy. Nat Genet 1993, 4:72–76.

    Article  PubMed  CAS  Google Scholar 

  53. Deka R, Majumder PP, Shriver MD, et al.: Distribution and evolution of CTG repeats at the myotonin protein kinase gene in human populations. Genome Res 1996, 6:142–154.

    PubMed  CAS  Google Scholar 

  54. Bachinski LL, Udd B, Meola G, et al.: Confirmation of the type 2 myotonic dystrophy (CCTG)n expansion mutation in patients with proximal myotonic myopathy/proximal myotonic dystrophy of different European origins: a single shared haplotype indicates an ancestral founder effect. Am J Hum Genet 2003, 73:835–848.

    Article  PubMed  CAS  Google Scholar 

  55. Le Ber I, Martinez M, Campion D, et al.: A non-DM1, non-DM2 multisystem myotonic disorder with frontotemporal dementia: phenotype and suggestive mapping of the DM3 locus to chromosome 15q21-24. Brain 2004, 127(Pt 9):1979–1992.

    Article  Google Scholar 

  56. Meola G, Sansone V, Milanese SD, et al.: Lack of DM1-(CTG)n and DM2-(CCTG)n mutations in two families with autosomal dominant muscle weakness, myotonia, and cataracts: DM3? Neurology 2004, 62:A354.

    Google Scholar 

  57. Langlois MA, Lee NS, Rossi JJ, Puymirat J: Hammerhead ribozyme-mediated destruction of nuclear foci in myotonic dystrophy myoblasts. Mol Ther 2003, 7:670–680.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Day, J.W., Ranum, L.P.W. Genetics and molecular pathogenesis of the myotonic dystrophies. Curr Neurol Neurosci Rep 5, 55–60 (2005). https://doi.org/10.1007/s11910-005-0024-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-005-0024-1

Keywords

Navigation