Skip to main content

Advertisement

Log in

Mechanisms of apoptosis in central nervous system tumors: Application to theory

  • Published:
Current Neurology and Neuroscience Reports Aims and scope Submit manuscript

Abstract

Apoptosis is a key concept for the successful therapy of brain tumors. This review focuses on the mechanisms of apoptosis occurring spontaneously in malignant gliomas, discusses the different methods employed to assess apoptosis in vivo and in vitro, and considers the value of quantifying apoptosis in surgical biopsies for diagnosis and prognosis. Further, novel strategies to induce apoptosis in human malignant glioma cells are reviewed, including experimental therapy with death ligands, methods for sensitizing glioma cells to the induction of apoptosis, p53 gene transfer, and approaches to target the expression of therapeutic genes selectively to tumor cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Kerr JF, Wyllie AH, Currie AR: Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br J Cancer 1972, 26:239–257.

    PubMed  CAS  Google Scholar 

  2. KleihuesP,Burger PC, Collins VP, et al.: Glioblastoma. In Pathology and Genetics of Tumours of the Nervous System. Edited by Kleihues P, Cavenee WK. Lyon, France: IARC; 2000:29–39.

    Google Scholar 

  3. Tohma Y, Gratas C, Van Meir EG, et al.: Necrogenesis and Fas/APO-1 (CD95) expression in primary (de novo) and secondary glioblastomas. J Neuropathol Exp Neurol 1998, 57:239–245.

    PubMed  CAS  Google Scholar 

  4. Schiffer D, Cavalla P, Migheli A, et al.: Apoptosis and cell proliferation in human neuroepithelial tumors. Neurosci Lett 1995, 195:81–84.

    Article  PubMed  CAS  Google Scholar 

  5. Tachibana O, Lampe J, Kleihues P, Ohgaki H: Preferential expression of Fas/APO1 (CD95) and apoptotic cell death in perinecrotic cells of glioblastoma multiforme. Acta Neuropathol 1996, 92:431–434.

    Article  PubMed  CAS  Google Scholar 

  6. Plate KH, Breier G, Weich HA, Risau W: Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 1992, 359:845–848.

    Article  PubMed  CAS  Google Scholar 

  7. Leist M, Single B, Castoldi AF, et al.: Intracellular adenosine triphosphate (ATP) concentration: a switch in the decision between apoptosis and necrosis. J Exp Med 1997, 185:1481–1486.

    Article  PubMed  CAS  Google Scholar 

  8. Weller M, Kleihues P, Dichgans J, Ohgaki H: CD95 ligand: lethal weapon against malignant glioma? Brain Pathol 1998, 8:285–293.

    Article  PubMed  CAS  Google Scholar 

  9. Read TA, Sorensen DR, Mahesparan R, et al.: Local endostatin treatment of gliomas administered by microencapsulated producer cells. Nat Biotechnol 2001, 19:29–34. This study demonstrates that successful antiangiogenesis can result in tumor hypoxia and apoptosis in vivo. Further, it provides a novel technique for the local delivery of antiangiogenic proteins from genetically engineered cells encapsulated in ultrapure sodium alginate.

    Article  PubMed  CAS  Google Scholar 

  10. Alarcon RM, Rupnow BA, Graeber TG, Knox SJ, Giaccia AJ: Modulation of c-Myc activity and apoptosis in vivo. Cancer Res 1996, 56:4315–4319.

    PubMed  CAS  Google Scholar 

  11. Holash J, Maisonpierre PC, Compton D, et al.: Vessel cooption, regression, and growth in tumors mediated by angiopoietins and VEGF. Science 1999, 284:1994–1998. This paper sheds new light on the initial stages of tumor angiogenesis and suggests an intriguing mechanism underlying early and pronounced tumor hypoxia by regression of coopted host vasculature. This phenomenon may trigger the selection of hypoxia-resistant tumor cells.

    Article  PubMed  CAS  Google Scholar 

  12. Graeber TG, Osmanian C, Jacks T, et al.: Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumours. Nature 1996, 379:88–91.

    Article  PubMed  CAS  Google Scholar 

  13. Schmaltz C, Hardenbergh PH, Wells A, Fisher DE: Regulation of proliferation-survival decisions during tumor cell hypoxia. Mol Cell Biol 1998, 18:2845–2854.

    PubMed  CAS  Google Scholar 

  14. Parliament MB, Franko AJ, Allalunis Turner MJ, et al.: Anomalous patterns of nitroimidazole binding adjacent to necrosis in human glioma xenografts: possible role of decreased oxygen consumption. Br J Cancer 1997, 75:311–318.

    PubMed  CAS  Google Scholar 

  15. Leaver HA, Whittle IR, Wharton SB, Ironside JW: Apoptosis in human primary brain tumours. Br J Neurosurg 1998, 12:539–546.

    Article  PubMed  CAS  Google Scholar 

  16. Korkolopoulou PA, Konstantinidou AE, Patsouris ES, et al.: Detection of apoptotic cells in archival tissue from diffuse astrocytomas using a monoclonal antibody to single-stranded DNA. J Pathol 2001, 193:377–382.

    Article  PubMed  CAS  Google Scholar 

  17. Schiffer D, Fiano V, Chiado-Piat L, et al.: Distribution of activated caspase-3 in relation with apoptosis in human malignant gliomas. Neurosci Lett 2001, 300:37–40. This study describes an effort to improve the specificity of detection of apoptosis in surgical biopsies from malignant gliomas by staining for activated caspase 3. However, the method is not yet sufficiently validated for routine diagnostics.

    Article  PubMed  CAS  Google Scholar 

  18. Heesters MA, Koudstaal J, Go KG, Molenaar WM: Analysis of proliferation and apoptosis in brain gliomas: prognostic and clinical value. J Neurooncol 1999, 44:255–266. The most comprehensive study to date of the prognostic value of apoptosis and proliferation in gliomas, demonstrating that an apoptotic index has no prognostic value within grades of malignancy.

    Article  PubMed  CAS  Google Scholar 

  19. Korshunov A, Golanov A, Sycheva R, Pronin I: Prognostic value of tumour associated antigen immunoreactivity and apoptosis in cerebral glioblastomas: an analysis of 168 cases. J Clin Pathol 1999, 52:574–580.

    PubMed  CAS  Google Scholar 

  20. Rhodes RH: Biological evaluation of biopsies from adult cerebral astrocytomas: cell-growth/cell-suicide ratios and their relationship to patient survival. J Neuropathol Exp Neurol 1998, 57:746–57.

    PubMed  CAS  Google Scholar 

  21. Wharton SB, Hamilton FA, Chan WK, Chan KK, Anderson JR: Proliferation and cell death in oligodendrogliomas. Neuropathol Appl Neurobiol 1998, 24:21–28.

    Article  PubMed  CAS  Google Scholar 

  22. Schiffer D, Dutto A, Cavalla P, et al.: Role of apoptosis in the prognosis of oligodendrogliomas. Neurochem Int 1997, 31:245–250.

    Article  PubMed  CAS  Google Scholar 

  23. Ellison DW, Steart PV, Gatter KC, Weller RO: Apoptosis in cerebral astrocytic tumours and its relationship to expression of the bcl-2 and p53 proteins. Neuropathol Appl Neurobiol 1995, 21:352–361.

    PubMed  CAS  Google Scholar 

  24. Tews DS: Cell death and oxidative stress in gliomas. Neuropathol Appl Neurobiol 1999, 25:272–284.

    Article  PubMed  CAS  Google Scholar 

  25. Kordek R, Hironishi M, Liberski PP, Yanagihara R, Gajdusek DC: Apoptosis in glial tumors as determined by in situ nonradioactive labeling of DNA breaks. Acta Neuropathol 1996, 91:112–116.

    Article  PubMed  CAS  Google Scholar 

  26. Krajewski S, Krajewska M, Ehrmann J, et al.: Immunohistochemical analysis of Bcl-2, Bcl-X, Mcl-1, and Bax in tumors of central and peripheral nervous system origin. Am J Pathol 1997, 150:805–814.

    PubMed  CAS  Google Scholar 

  27. Weller M, Malipiero U, Aguzzi A, Reed JC, Fontana A: Protooncogene bcl-2 gene transfer abrogates Fas/APO-1 antibody-mediated apoptosis of human malignant glioma cells and confers resistance to chemotherapeutic drugs and therapeutic irradiation. J Clin Invest 1995, 95:2633–2643.

    PubMed  CAS  Google Scholar 

  28. Strik H, Deininger M, Streffer J, et al.: BCL-2 family protein expression in initial and recurrent glioblastomas: modulation by radiochemotherapy. J Neurol Neurosurg Psychiatry 1999, 67:763–768.

    Article  PubMed  CAS  Google Scholar 

  29. Rieger L, Weller M, Bornemann A, et al.: BCL-2 family protein expression in human malignant glioma: a clinical-pathological correlative study. J Neurol Sci 1998, 155:68–75.

    Article  PubMed  CAS  Google Scholar 

  30. Roth W, Fontana A, Trepel M, et al.: Immunochemotherapy of malignant glioma: synergistic activity of CD95 ligand and chemotherapeutics. Cancer Immunol Immunother 1997, 44:55–63.

    Article  PubMed  CAS  Google Scholar 

  31. Glaser T, Weller M: Caspase-dependent chemotherapyinduced death of glioma cells requires mitochondrial cytochrome c release. Biochem Biophys Res Commun 2001, 281:322–327.

    Article  PubMed  CAS  Google Scholar 

  32. Glaser T, Wagenknecht B, Groscurth P, Krammer PH, Weller M: Death ligand/receptor-independent caspase activation mediates drug-induced cytotoxic cell death in human malignant glioma cells. Oncogene 1999, 18:5044–5053.

    Article  PubMed  CAS  Google Scholar 

  33. Roth W, Isenmann S, Nakamura M, et al.: Soluble decoy receptor 3 is expressed by malignant gliomas and suppresses CD95 ligand-induced apoptosis and chemotaxis. Cancer Res 2001, 61:2759–2765.

    PubMed  CAS  Google Scholar 

  34. Weller M, Frei K, Groscurth P, et al.: Anti-Fas/APO-1 antibody-mediated apoptosis of cultured human glioma cells. Induction and modulation of sensitivity by cytokines. J Clin Invest 1994, 94:954–964.

    Article  PubMed  CAS  Google Scholar 

  35. Shinoura N, Yoshida Y, Sadata A, et al.: Apoptosis by retrovirus- and adenovirus-mediated gene transfer of Fas ligand to glioma cells: implications for gene therapy. Hum Gene Ther 1998, 9:1983–1993.

    PubMed  CAS  Google Scholar 

  36. Becher B, D’Souza SD, Troutt AB, Antel JP: Fas expression on human fetal astrocytes without susceptibility to fasmediated cytotoxicity. Neuroscience 1998, 84:627–634.

    Article  PubMed  CAS  Google Scholar 

  37. Ogasawara J, Watanabe-Fukunaga R, Adachi M, et al.: Lethal effect of the anti-Fas antibody in mice. Nature 1993, 364:806–809.

    Article  PubMed  CAS  Google Scholar 

  38. Ambar BB, Frei K, Malipiero U, et al.: Treatment of experimental glioma by administration of adenoviral vectors expressing Fas ligand. Hum Gene Ther 1999, 10:1641–1648.

    Article  PubMed  CAS  Google Scholar 

  39. Maleniak TC, Darling JL, Lowenstein PR, Castro MG: Adenovirus-mediated expression of HSV1-TK or Fas ligand induces cell death in primary human glioma-derived cell cultures that are resistant to the chemotherapeutic agent CCNU. Cancer Gene Ther 2001, 8:589–598.

    Article  PubMed  CAS  Google Scholar 

  40. Kondo S, Ishizaka Y, Okada T, et al.: FADD gene therapy for malignant gliomas in vitro and in vivo. Hum Gene Ther 1998, 9:1599–1608.

    PubMed  CAS  Google Scholar 

  41. Yount GL, Afshar G, Ries S, et al.: Transcriptional activation of TRADD mediates p53-independent radiation-induced apoptosis of glioma cells. Oncogene 2001, 20:2826–2835.

    Article  PubMed  CAS  Google Scholar 

  42. Yu JS, Sena-Esteves M, Paulus W, Breakefield XO, Reeves SA: Retroviral delivery and tetracycline-dependent expression of IL-1beta-converting enzyme (ICE) in a rat glioma model provides controlled induction of apoptotic death in tumor cells. Cancer Res 1996, 56:5423–5427.

    PubMed  CAS  Google Scholar 

  43. Galve-Roperh I, Sanchez C, Cortes ML, et al.: Anti-tumoral action of cannabinoids: involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation. Nat Med 2000, 6:313–319.

    Article  PubMed  CAS  Google Scholar 

  44. Roth W, Isenmann S, Naumann U, et al.: Locoregional Apo2L/ TRAIL eradicates intracranial human malignant glioma xenografts in athymic mice in the absence of neurotoxicity. Biochem Biophys Res Commun 1999, 265:479–483.

    Article  PubMed  CAS  Google Scholar 

  45. Rohn TA, Wagenknecht B, Roth W, et al.: CCNU-dependent potentiation of TRAIL/Apo2L-induced apoptosis in human glioma cells is p53-independent but may involve enhanced cytochrome c release. Oncogene 2001, 20:4128–4137.

    Article  PubMed  CAS  Google Scholar 

  46. Nagane M, Pan G, Weddle JJ, et al.: Increased death receptor 5 expression by chemotherapeutic agents in human gliomas causes synergistic cytotoxicity with tumor necrosis factorrelated apoptosis-inducing ligand in vitro and in vivo. Cancer Res 2000, 60:847–853. The study by Roth et al. [44] and this study are the first to demonstrate the efficacy of apo2L/TRAIL against malignant glioma cells in vivo.

    PubMed  CAS  Google Scholar 

  47. Ichikawa K, Liu W, Zhao L, et al.: Tumoricidal activity of a novel anti-human DR5 monoclonal antibody without hepatocyte cytotoxicity. Nat Med 2001, 7:954–60. This study demonstrates that selective stimulation of DR5 with an agonistic antibody is effective and has less toxicity for normal cells than the natural apo2L/TRAIL.

    Article  PubMed  CAS  Google Scholar 

  48. Hao C, Beguinot F, Condorelli G, et al.: Induction and intracellular regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mediated apotosis in human malignant glioma cells. Cancer Res 2001, 61:1162–1170.

    PubMed  CAS  Google Scholar 

  49. Knight MJ, Riffkin CD, Muscat AM, Ashley DM, Hawkins CJ: Analysis of FasL and TRAIL induced apoptosis pathways in glioma cells. Oncogene 2001, 20:5789–5798.

    Article  PubMed  CAS  Google Scholar 

  50. Glaser T, Wagenknecht B, Weller M: Identification of p21 as a target of cycloheximide-mediated facilitation of CD95-mediated apoptosis in human malignant glioma cells. Oncogene 2001, 20:4757–4767.

    Article  PubMed  CAS  Google Scholar 

  51. Kokunai T, Urui S, Tomita H, Tamaki N: Overcoming of radioresistance in human gliomas by p21WAF1/CIP1 antisense oligonucleotide. J Neurooncol 2001, 51:111–119.

    Article  PubMed  CAS  Google Scholar 

  52. Ruan S, Okcu MF, Pong RC, et al.: Attenuation of WAF1/Cip1 expression by an antisense adenovirus expression vector sensitizes glioblastoma cells to apoptosis induced by chemotherapeutic agents 1,3-bis(2-chloroethyl)-1-nitrosourea and cisplatin. Clin Cancer Res 1999, 5:197–202. This study and the study by Glaser et al. [50] and Kokunai et al. [51] demonstrate the key role of p21 for the resistance of malignant glioma cells to chemotherapy, radiotherapy, and CD95L

    PubMed  CAS  Google Scholar 

  53. Watanabe K, Tachibana O, Sata K, et al.: Overexpression of the EGF receptor and p53 mutations are mutually exclusive in the evolution of primary and secondary glioblastomas. Brain Pathol 1996, 6:217–223.

    PubMed  CAS  Google Scholar 

  54. Nagane M, Levitzki A, Gazit A, Cavenee WK, Huang HJ: Drug resistance of human glioblastoma cells conferred by a tumor-specific mutant epidermal growth factor receptor through modulation of Bcl-XL and caspase-3-like proteases. Proc Natl Acad Sci U S A 1998, 95:5724–5729.

    Article  PubMed  CAS  Google Scholar 

  55. Nishikawa R, Ji XD, Harmon RC, et al.: A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. Cancer Res 1994, 91:7727–7731.

    CAS  Google Scholar 

  56. Holland EC, Celestino J, Dai C, et al.: Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet 2000, 25:55–57.

    Article  PubMed  CAS  Google Scholar 

  57. Steinbach JP, Supra P, Huang HJ, et al.: CD95-mediated apoptosis of human malignant glioma cells: modulation by epidermal growth factor receptor activity. Brain Pathol 2002, 12:12–20.

    Article  PubMed  CAS  Google Scholar 

  58. Weller M: Predicting response to cancer chemotherapy: the role of p53. Cell Tissue Res 1998, 292:435–445.

    Article  PubMed  CAS  Google Scholar 

  59. Weller M, Rieger J, Grimmel C, et al.: Predicting chemoresistance in human malignant glioma cells: the role of molecular genetic analyses. Int J Cancer 1998, 79:640–644.

    Article  PubMed  CAS  Google Scholar 

  60. Naumann U, Kugler S, Wolburg H, et al.: Chimeric tumor suppressor 1, a p53-derived chimeric tumor suppressor gene, kills p53 mutant and p53 wild-type glioma cells in synergy with irradiation and CD95 ligand. Cancer Res 2001, 61:5833–5842.

    PubMed  CAS  Google Scholar 

  61. Li H, Alonso-Vanegas M, Colicos MA, et al.: Intracerebral adenovirus-mediated p53 tumor suppressor gene therapy for experimental human glioma. Clin Cancer Res 1999, 5:637–642.

    PubMed  CAS  Google Scholar 

  62. Hirose Y, Berger MS, Pieper RO: Abrogation of the Chk1-mediated G(2) checkpoint pathway potentiates temozolomide-induced toxicity in a p53-independent manner in human glioblastoma cells. Cancer Res 2001, 61:5843–5849.

    PubMed  CAS  Google Scholar 

  63. Komata T, Kondo Y, Kanzawa T, et al.: Treatment of malignant glioma cells with the transfer of constitutively active caspase-6 using the human telomerase catalytic subunit (human telomerase reverse transcriptase) gene promoter. Cancer Res 2001, 61:5796–5802.

    PubMed  CAS  Google Scholar 

  64. Ruan H, Wang J, Hu L, et al.: Killing of brain tumor cells by hypoxia-responsive element mediated expression of BAX. Neoplasia 1999, 1:431–437. The approaches described in here are tempting, because they allow targeting of gene expression to a population of (tumor) target cells following indiscriminate gene transfer.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steinbach, J.P., Weller, M. Mechanisms of apoptosis in central nervous system tumors: Application to theory. Curr Neurol Neurosci Rep 2, 246–253 (2002). https://doi.org/10.1007/s11910-002-0083-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11910-002-0083-5

Keywords

Navigation