Skip to main content

Advertisement

Log in

Exploring the Potential of Farnesol as a Novel Antifungal Drug and Related Challenges

  • HOT TOPIC
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Farnesol (FOH) is a quorum-sensing molecule with potential as an antifungal drug. Given the growing concern about fungal drug resistance, exploring new solutions is crucial. Therefore, summarizing the antifungal activity of FOH is expected to be the basis for further FOH research and application. Herein, we reviewed the in vitro and in vivo antifungal efficacy of FOH alone and in combination with conventional antifungal drugs, as well as its mechanisms of action. Furthermore, we discussed the prospects and challenges of the FOH application in detail.

Recent Findings

Recent studies have revealed that FOH can target various aspects, such as reactive oxygen species production, induction of apoptosis, and modulation of virulence factors, to inhibit fungal growth and reduce fungal pathogenicity, thereby exerting its antifungal activity. Furthermore, FOH can suppress resistance-associated genes, such as those of biofilm and ergosterol, so as to enhance the fungicidal effectiveness of conventional antifungal drugs. However, the action mechanism of FOH on drug efflux pumps remains unclear and warrants further investigation.

Summary

FOH can prevent and treat fungal infections. It exerts significant antimicrobial effects on fungal planktonic and biofilm cells, enhances the antimicrobial efficacy of conventional antifungal drugs, and reverses and reduces fungal drug resistance. However, further in vitro and in vivo studies are needed to assess the safety of FOH due to potential adverse effects on immune cells and other factors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Lee Y, Puumala E, Robbins N, Cowen LE. Antifungal drug resistance: molecular mechanisms in Candida albicans and beyond. Chem Rev. 2021;121(6):3390–411. https://doi.org/10.1021/acs.chemrev.0c00199.

    Article  CAS  PubMed  Google Scholar 

  2. Pappas PG, Lionakis MS, Arendrup MC, Ostrosky-Zeichner L, Kullberg BJ. Invasive candidiasis Nature Reviews Disease Primers. 2018;4:18026. https://doi.org/10.1038/nrdp.2018.26.

    Article  PubMed  Google Scholar 

  3. Vitalis E, Nagy F, Toth Z, et al. Candida biofilm production is associated with higher mortality in patients with candidaemia. Mycoses. 2020;63(4):352–60. https://doi.org/10.1111/myc.13049.

    Article  CAS  PubMed  Google Scholar 

  4. Muderris T, Kaya S, Ormen B, Gokmen AA, Akpinar CV, Gul SY. Mortality and risk factor analysis for Candida blood stream infection: a three-year retrospective study. Journal De Mycologie Medicale. 2020. https://doi.org/10.1016/j.mycmed.2020.101008.

    Article  PubMed  Google Scholar 

  5. Saghrouni F, Ben Abdeljelil J, Boukadida J, Ben SM. Molecular methods for strain typing of Candida albicans: a review. J Appl Microbiol. 2013;114(6):1559–74. https://doi.org/10.1111/jam.12132.

    Article  CAS  PubMed  Google Scholar 

  6. Rodrigues CF, Černáková L. Farnesol and tyrosol: secondary metabolites with a crucial quorum-sensing role in Candida biofilm development. Genes (Basel). 2020. https://doi.org/10.3390/genes11040444.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tian X, Ding H, Ke W, Wang L. Quorum sensing in fungal species. Annu Rev Microbiol. 2021;75:449–69. https://doi.org/10.1146/annurev-micro-060321-045510.

    Article  CAS  PubMed  Google Scholar 

  8. Hornby JM, Jensen EC, Lisec AD, et al. Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol. 2001;67(7):2982–92. https://doi.org/10.1128/AEM.67.7.2982-2992.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hornby JM, Kebaara BW, Nickerson KW. Farnesol biosynthesis in Candida albicans: cellular response to sterol inhibition by zaragozic acid b. Antimicrob Agents Chemother. 2003;47(7):2366–9. https://doi.org/10.1128/AAC.47.7.2366-2369.2003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hornby JM, Nickerson KW. Enhanced production of farnesol by Candida albicans treated with four azoles. Antimicrob Agents Chemother. 2004;48(6):2305–7. https://doi.org/10.1128/AAC.48.6.2305-2307.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Nikoomanesh F, Falahatinejad M, Černáková L, et al. Combination of farnesol with common antifungal drugs: inhibitory effect against Candida species isolated from women with RVVC. Medicina (Kaunas). 2023. https://doi.org/10.3390/medicina59040743.

    Article  PubMed  Google Scholar 

  12. Nagy F, Toth Z, Daroczi L, et al. Farnesol increases the activity of echinocandins against Candida auris biofilms. Med Mycol. 2020;58(3):404–7. https://doi.org/10.1093/mmy/myz057.

    Article  CAS  PubMed  Google Scholar 

  13. Cernakova L, Dizova S, Gaskova D, Jancikova I, Bujdakova H. Impact of farnesol as a modulator of efflux pumps in a fluconazole-resistant strain of Candida albicans. Microb Drug Resist. 2019;25(6):805–12. https://doi.org/10.1089/mdr.2017.0332.

    Article  CAS  PubMed  Google Scholar 

  14. Fernandes Costa A, Evangelista Araujo D, Santos Cabral M, et al. Development, characterization, and in vitro-in vivo evaluation of polymeric nanoparticles containing miconazole and farnesol for treatment of vulvovaginal candidiasis. Med Mycol. 2019;57(1):52–62. https://doi.org/10.1093/mmy/myx155.

    Article  CAS  PubMed  Google Scholar 

  15. Brilhante RS, de Lima RA, Caetano EP, et al. Effect of farnesol on growth, ergosterol biosynthesis, and cell permeability in Coccidioides posadasii. Antimicrob Agents Chemother. 2013;57(5):2167–70. https://doi.org/10.1128/aac.02457-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Onder S, Oz Y. In vitro effects of farnesol alone and in combination with antifungal drugs against Aspergillus clinical isolates. Med Mycol J. 2021;62(1):5–10. https://doi.org/10.3314/mmj.20-00016.

    Article  CAS  PubMed  Google Scholar 

  17. Cordeiro RA, Teixeira CE, Brilhante RS, et al. Minimum inhibitory concentrations of amphotericin B, azoles and caspofungin against Candida species are reduced by farnesol. Med Mycol. 2013;51(1):53–9. https://doi.org/10.3109/13693786.2012.692489.

    Article  CAS  PubMed  Google Scholar 

  18. Shirtliff ME, Krom BP, Meijering RA, et al. Farnesol-induced apoptosis in Candida albicans. Antimicrob Agents Chemother. 2009;53(6):2392–401. https://doi.org/10.1128/AAC.01551-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Langford ML, Hasim S, Nickerson KW, Atkin AL. Activity and toxicity of farnesol towards Candida albicans are dependent on growth conditions. Antimicrob Agents Chemother. 2010;54(2):940–2. https://doi.org/10.1128/AAC.01214-09.

    Article  CAS  PubMed  Google Scholar 

  20. Liu P, Luo L, Guo J, et al. Farnesol induces apoptosis and oxidative stress in the fungal pathogen Penicillium expansum. Mycologia. 2010;102(2):311–8. https://doi.org/10.3852/09-176.

    Article  CAS  PubMed  Google Scholar 

  21. Dinamarco TM, Goldman MH, Goldman GH. Farnesol-induced cell death in the filamentous fungus Aspergillus nidulans. Biochem Soc Trans. 2011;39(5):1544–8. https://doi.org/10.1042/bst0391544.

    Article  CAS  PubMed  Google Scholar 

  22. Wang X, Wang Y, Zhou Y, Wei X. Farnesol induces apoptosis-like cell death in the pathogenic fungus Aspergillus flavus. Mycologia. 2014;106(5):881–8. https://doi.org/10.3852/13-292.

    Article  CAS  PubMed  Google Scholar 

  23. Nagy F, Vitalis E, Jakab A, et al. In vitro and in vivo effect of exogenous farnesol exposure against Candida auris. Frontiers in Microbiology. 2020. https://doi.org/10.3389/fmicb.2020.00957.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Deveau A, Piispanen AE, Jackson AA, Hogan DA. Farnesol induces hydrogen peroxide resistance in Candida albicans yeast by inhibiting the RAS-cyclic AMP signaling pathway. Eukaryot Cell. 2010;9(4):569–77. https://doi.org/10.1128/EC.00321-09.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen S, Xu Z, Liu S, Duan W, Huang Y, Wei X. A possible mechanism of farnesol tolerance in C. albicans biofilms implemented by activating the PKC signalling pathway and stabilizing ROS levels. J Med Microbiol. 2022. https://doi.org/10.1099/jmm.0.001476.

    Article  PubMed  Google Scholar 

  26. Heinisch JJ, Rodicio R. Protein kinase c in fungi-more than just cell wall integrity. FEMS Microbiol Rev. 2018. https://doi.org/10.1093/femsre/fux051.

    Article  PubMed  Google Scholar 

  27. Song J, Zhou J, Zhang L, Li R. Mitochondria-mediated azole drug resistance and fungal pathogenicity: opportunities for therapeutic development. Microorganisms. 2020. https://doi.org/10.3390/microorganisms8101574.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Pathirana RU, Boone C, Nickerson KW. Longer ubiquinone side chains contribute to enhanced farnesol resistance in yeasts. Microorganisms. 2020. https://doi.org/10.3390/microorganisms8111641.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Wang FJ, Liu ZH. Systematic analysis of protein expression in Candida albicans exposed to farnesol. Chin Med J (Engl). 2019;132(19):2348–53. https://doi.org/10.1097/CM9.0000000000000420.

    Article  CAS  PubMed  Google Scholar 

  30. Jakab Á, Balla N, Ragyák Á, et al. Transcriptional profiling of the Candida auris response to exogenous farnesol exposure. mSphere. 2021;6(5):e0071021. https://doi.org/10.1128/mSphere.00710-21.

    Article  PubMed  Google Scholar 

  31. Jin X, Zhang M, Lu J, et al. Hinokitiol chelates intracellular iron to retard fungal growth by disturbing mitochondrial respiration. J Adv Res. 2021;34:65–77. https://doi.org/10.1016/j.jare.2021.06.016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Semighini CP, Murray N, Harris SD. Inhibition of Fusarium graminearum growth and development by farnesol. FEMS Microbiol Lett. 2008;279(2):259–64. https://doi.org/10.1111/j.1574-6968.2007.01042.x.

    Article  CAS  PubMed  Google Scholar 

  33. Fairn GD, MacDonald K, McMaster CR. A chemogenomic screen in saccharomyces cerevisiae uncovers a primary role for the mitochondria in farnesol toxicity and its regulation by the Pkc1 pathway. J Biol Chem. 2007;282(7):4868–74. https://doi.org/10.1074/jbc.M610575200.

    Article  CAS  PubMed  Google Scholar 

  34. Egbe NE, Dornelles TO, Paget CM, Castelli LM, Ashe MP. Farnesol inhibits translation to limit growth and filamentation in C. albicans and S. cerevisiae. Microb Cell. 2017;4(9):294–304. https://doi.org/10.15698/mic2017.09.589.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ahmad Khan MS, Alshehrei F, Al-Ghamdi SB, Bamaga MA, Al-Thubiani AS, Alam MZ. Virulence and biofilms as promising targets in developing antipathogenic drugs against candidiasis. Future Sci OA. 2020;6(2):FSO440. https://doi.org/10.2144/fsoa-2019-0027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Decanis N, Tazi N, Correia A, Vilanova M, Rouabhia M. Farnesol, a fungal quorum-sensing molecule triggers Candida albicans morphological changes by downregulating the expression of different secreted aspartyl proteinase genes. Open Microbiol J. 2011;5:119–26. https://doi.org/10.2174/1874285801105010119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Nikoomanesh F, Roudbarmohammadi S, Khoobi M, Haghighi F, Roudbary M. Design and synthesis of mucoadhesive nanogel containing farnesol: investigation of the effect on HWP1, SAP6 and Rim101 genes expression of Candida albicans in vitro. Artif Cells Nanomed Biotechnol. 2019;47(1):64–72. https://doi.org/10.1080/21691401.2018.1543193.

    Article  CAS  PubMed  Google Scholar 

  38. Sharma M, Prasad R. The quorum-sensing molecule farnesol is a modulator of drug efflux mediated by abc multidrug transporters and synergizes with drugs in Candida albicans. Antimicrob Agents Chemother. 2011;55(10):4834–43. https://doi.org/10.1128/AAC.00344-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jabra-Rizk MA, Shirtliff M, James C, Meiller T. Effect of farnesol on Candida dubliniensis biofilm formation and fluconazole resistance. FEMS Yeast Res. 2006;6(7):1063–73. https://doi.org/10.1111/j.1567-1364.2006.00121.x.

    Article  CAS  PubMed  Google Scholar 

  40. Dekkerová J, Černáková L, Kendra S, et al. Farnesol boosts the antifungal effect of fluconazole and modulates resistance in Candida auris through regulation of the CDR1 and ERG11 genes. J Fungi (Basel). 2022. https://doi.org/10.3390/jof8080783.

    Article  PubMed  Google Scholar 

  41. Cordeiro RD, Nogueira GC, Brilhante RSN, et al. Farnesol inhibits in vitro growth of the cryptococcus neoformans species complex with no significant changes in virulence-related exoenzymes. Vet Microbiol. 2012;159(3–4):375–80. https://doi.org/10.1016/j.vetmic.2012.04.008.

    Article  CAS  PubMed  Google Scholar 

  42. Cordeiro RA, Pereira LMG, de Sousa JK, et al. Farnesol inhibits planktonic cells and antifungal-tolerant biofilms of trichosporon asahii and trichosporon inkin. Med Mycol. 2019;57(8):1038–45. https://doi.org/10.1093/mmy/myy160.

    Article  CAS  PubMed  Google Scholar 

  43. Derengowski LS, De-Souza-Silva C, Braz SV, et al. Antimicrobial effect of farnesol, a Candida albicans quorum sensing molecule, on paracoccidioides brasiliensis growth and morphogenesis. Ann Clin Microbiol Antimicrob. 2009;8:13. https://doi.org/10.1186/1476-0711-8-13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Pumeesat P, Wongsuk T, Muangkaew W, Luplertlop N. Growth-inhibitory effects of farnesol against Scedosporium boydii and Lomentospora prolificans. Southeast Asian J Trop Med Public Health. 2017;48(1):170–8.

    PubMed  Google Scholar 

  45. Kischkel B, Souza GK, Chiavelli LUR, Pomini AM, Svidzinski TIE, Negri M. The ability of farnesol to prevent adhesion and disrupt Fusarium keratoplasticum biofilm. Appl Microbiol Biotechnol. 2020;104(1):377–89. https://doi.org/10.1007/s00253-019-10233-2.

    Article  CAS  PubMed  Google Scholar 

  46. Brilhante RSN, Pereira VS, Nobre AFD, et al. Exogenous fungal quorum sensing molecules inhibit planktonic cell growth and modulate filamentation and biofilm formation in the Sporothrix schenckii complex. Biofouling. 2020;36(8):909–21. https://doi.org/10.1080/08927014.2020.1828373.

    Article  CAS  PubMed  Google Scholar 

  47. Lohse MB, Gulati M, Johnson AD, Nobile CJ. Development and regulation of single- and multi-species Candida albicans biofilms. Nat Rev Microbiol. 2018;16(1):19–31. https://doi.org/10.1038/nrmicro.2017.107.

    Article  CAS  PubMed  Google Scholar 

  48. Dizova S, Bujdakova H. Properties and role of the quorum sensing molecule farnesol in relation to the yeast Candida albicans. Pharmazie. 2017;72(6):307–12. https://doi.org/10.1691/ph.2017.6174.

    Article  CAS  PubMed  Google Scholar 

  49. Ramage G, Saville SP, Wickes BL, Lopez-Ribot JL. Inhibition of Candida albicans biofilm formation by farnesol, a quorum-sensing molecule. Appl Environ Microbiol. 2002;68(11):5459–63. https://doi.org/10.1128/AEM.68.11.5459-5463.2002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sachivkina N, Podoprigora I, Bokov D. Morphological characteristics of Candida albicans, Candida krusei, Candida guilliermondii, and Candida glabrata biofilms, and response to farnesol. Vet World. 2021;14(6):1608–14. https://doi.org/10.14202/vetworld.2021.1608-1614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zibafar E, Hashemi SJ, Zaini F, Zeraati H, Rezaie S, Kordbacheh P. Inhibitory effect of farnesol on biofilm formation by Candida tropicalis. Daru-Journal of Pharmaceutical Sciences. 2009;17(1):19–23.

    CAS  Google Scholar 

  52. Sebaa S, Boucherit-Otmani Z, Courtois P. Effects of tyrosol and farnesol on Candida albicans biofilm. Mol Med Rep. 2019;19(4):3201–9. https://doi.org/10.3892/mmr.2019.9981.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Luo AH, Wang F, Sun DG, Liu XY, Xin BC. Formation, development, and cross-species interactions in biofilms. Frontiers in Microbiology. 2022. https://doi.org/10.3389/fmicb.2021.757327.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yılmaz Öztürk B, Yenice Gürsu B, Dağ İ. In vitro effect of farnesol on planktonic cells and dual biofilm formed by Candida albicans and Escherichia coli. Biofouling. 2022;38(4):355–66. https://doi.org/10.1080/08927014.2022.2066530.

    Article  CAS  PubMed  Google Scholar 

  55. Fernandes RA, Monteiro DR, Arias LS, Fernandes GL, Delbem AC, Barbosa DB. Biofilm formation by Candida albicans and streptococcus mutans in the presence of farnesol: a quantitative evaluation. Biofouling. 2016;32(3):329–38. https://doi.org/10.1080/08927014.2016.1144053.

    Article  CAS  PubMed  Google Scholar 

  56. Monteiro DR, Arias LS, Fernandes RA, et al. Antifungal activity of tyrosol and farnesol used in combination against Candida species in the planktonic state or forming biofilms. J Appl Microbiol. 2017;123(2):392–400. https://doi.org/10.1111/jam.13513.

    Article  CAS  PubMed  Google Scholar 

  57. Gaálová-Radochová B, Kendra S, Jordao L, et al. Effect of quorum sensing molecule farnesol on mixed biofilms of Candida albicans and Staphylococcus aureus. Antibiotics (Basel). 2023. https://doi.org/10.3390/antibiotics12030441.

    Article  PubMed  Google Scholar 

  58. Wang X, He H, Liu J, Xie S, Han J. Inhibiting roles of farnesol and hog in morphological switching of Candida albicans. Am J Transl Res. 2020;12(11):6988–7001.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Nickerson KW, Atkin AL. Deciphering fungal dimorphism: farnesol’s unanswered questions. Mol Microbiol. 2017;103(4):567–75. https://doi.org/10.1111/mmi.13601.

    Article  CAS  PubMed  Google Scholar 

  60. Chen S, Xia J, Li C, Zuo L, Wei X. The possible molecular mechanisms of farnesol on the antifungal resistance of C. albicans biofilms: the regulation of CYR1 and PDE2. BMC Microbiol. 2018;18(1):203. https://doi.org/10.1186/s12866-018-1344-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Lorek J, Poggeler S, Weide MR, Breves R, Bockmuhl DP. Influence of farnesol on the morphogenesis of Aspergillus niger. J Basic Microbiol. 2008;48(2):99–103. https://doi.org/10.1002/jobm.200700292.

    Article  PubMed  Google Scholar 

  62. Fan Y, He H, Dong Y, Pan H. Hyphae-specific genes HGC1, ALS3, HWP1, and ECE1 and relevant signaling pathways in Candida albicans. Mycopathologia. 2013;176(5–6):329–35. https://doi.org/10.1007/s11046-013-9684-6.

    Article  CAS  PubMed  Google Scholar 

  63. Cao YY, Cao YB, Xu Z, et al. Cdna microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. Antimicrob Agents Chemother. 2005;49(2):584–9. https://doi.org/10.1128/AAC.49.2.584-589.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Katragkou A, McCarthy M, Alexander EL, et al. In vitro interactions between farnesol and fluconazole, amphotericin b or micafungin against Candida albicans biofilms. J Antimicrob Chemother. 2015;70(2):470–8. https://doi.org/10.1093/jac/dku374.

    Article  CAS  PubMed  Google Scholar 

  65. Xia J, Qian F, Xu W, Zhang Z, Wei X. In vitro inhibitory effects of farnesol and interactions between farnesol and antifungals against biofilms of Candida albicans resistant strains. Biofouling. 2017;33(4):283–93. https://doi.org/10.1080/08927014.2017.1295304.

    Article  CAS  PubMed  Google Scholar 

  66. Kovács R, Bozó A, Gesztelyi R, et al. Effect of caspofungin and micafungin in combination with farnesol against Candida parapsilosis biofilms. Int J Antimicrob Agents. 2016;47(4):304–10. https://doi.org/10.1016/j.ijantimicag.2016.01.007.

    Article  CAS  PubMed  Google Scholar 

  67. Fernández-Rivero ME, Del Pozo JL, Valentín A, de Diego AM, Pemán J, Cantón E. Activity of amphotericin b and anidulafungin combined with rifampicin, clarithromycin, ethylenediaminetetraacetic acid, n-acetylcysteine, and farnesol against Candida tropicalis biofilms. J Fungi (Basel). 2017. https://doi.org/10.3390/jof3010016.

    Article  PubMed  Google Scholar 

  68. Yu LH, Wei X, Ma M, Chen XJ, Xu SB. Possible inhibitory molecular mechanism of farnesol on the development of fluconazole resistance in Candida albicans biofilm. Antimicrob Agents Chemother. 2012;56(2):770–5. https://doi.org/10.1128/AAC.05290-11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dizova S, Cernakova L, Bujdakova H. The impact of farnesol in combination with fluconazole on Candida albicans biofilm: regulation of ERG20, ERG9, and ERG11 genes. Folia Microbiol (Praha). 2018;63(3):363–71. https://doi.org/10.1007/s12223-017-0574-z.

    Article  CAS  PubMed  Google Scholar 

  70. Berman J, Krysan DJ. Drug resistance and tolerance in fungi. Nat Rev Microbiol. 2020;18(6):319–31. https://doi.org/10.1038/s41579-019-0322-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Dumitru R, Hornby JM, Nickerson KW. Defined anaerobic growth medium for studying Candida albicans basic biology and resistance to eight antifungal drugs. Antimicrob Agents Chemother. 2004;48(7):2350–4. https://doi.org/10.1128/aac.48.7.2350-2354.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Roudbary M, Vahedi-Shahandashti R, dos Santos ALS, et al. Biofilm formation in clinically relevant filamentous fungi: a therapeutic challenge. Crit Rev Microbiol. 2022;48(2):197–221. https://doi.org/10.1080/1040841x.2021.1950121.

    Article  CAS  PubMed  Google Scholar 

  73. Uppuluri P, Zaldivar MA, Anderson MZ, et al. Candida albicans dispersed cells are developmentally distinct from biofilm and planktonic cells. Mbio. 2018. https://doi.org/10.1128/mBio.01338-18.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rossignol T, Logue ME, Reynolds K, Grenon M, Lowndes NF, Butler G. Transcriptional response of Candida parapsilosis following exposure to farnesol. Antimicrob Agents Chemother. 2007;51(7):2304–12. https://doi.org/10.1128/AAC.01438-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Liu Z, Rossi JM, Myers LC. Candida albicans Zn cluster transcription factors Tac1 and Znc1 are activated by farnesol to upregulate a transcriptional program including the multidrug efflux pump Cdr1. Antimicrob Agents Chemother. 2018. https://doi.org/10.1128/aac.00968-18.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Zhu JS, Krom BP, Sanglard D, et al. Farnesol-induced apoptosis in Candida albicans is mediated by Cdr1-p extrusion and depletion of intracellular glutathione. Plos One. 2011. https://doi.org/10.1371/journal.pone.0028830.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Mahendrarajan V, Bari VK. A critical role of farnesol in the modulation of amphotericin B and aureobasidin A antifungal drug susceptibility. Mycology. 2022;13(4):305–17. https://doi.org/10.1080/21501203.2022.2138599.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Singkum P, Muangkaew W, Suwanmanee S, Pumeesat P, Wongsuk T, Luplertlop N. Suppression of the pathogenicity of Candida albicans by the quorum-sensing molecules farnesol and tryptophol. J Gen Appl Microbiol. 2020;65(6):277–83. https://doi.org/10.2323/jgam.2018.12.002.

    Article  CAS  PubMed  Google Scholar 

  79. Nickerson KW, Atkin AL, Hornby JM. Quorum sensing in dimorphic fungi: farnesol and beyond. Appl Environ Microbiol. 2006;72(6):3805–13. https://doi.org/10.1128/AEM.02765-05.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Černáková L, Jordao L, Bujdáková H. Impact of farnesol and Corsodyl(®) on Candida albicans forming dual biofilm with streptococcus mutans. Oral Dis. 2018;24(6):1126–31. https://doi.org/10.1111/odi.12873.

    Article  PubMed  Google Scholar 

  81. Hisajima T, Maruyama N, Tanabe Y, et al. Protective effects of farnesol against oral candidiasis in mice. Microbiol Immunol. 2008;52(7):327–33. https://doi.org/10.1111/j.1348-0421.2008.00044.x.

    Article  CAS  PubMed  Google Scholar 

  82. Li C, Xu Z, Liu S, Huang R, Duan W, Wei X. In vivo antifungal activities of farnesol combined with antifungal drugs against murine oral mucosal candidiasis. Biofouling. 2021;37(8):818–29. https://doi.org/10.1080/08927014.2021.1967938.

    Article  CAS  PubMed  Google Scholar 

  83. Bozo A, Doman M, Majoros L, Kardos G, Varga I, Kovacs R. The in vitro and in vivo efficacy of fluconazole in combination with farnesol against Candida albicans isolates using a murine vulvovaginitis model. J Microbiol. 2016;54(11):753–60. https://doi.org/10.1007/s12275-016-6298-y.

    Article  CAS  PubMed  Google Scholar 

  84. Sachivkina N, Senyagin A, Podoprigora I, et al. Enhancement of the antifungal activity of some antimycotics by farnesol and reduction of Candida albicans pathogenicity in a quail model experiment. Vet World. 2022;15(4):848–54. https://doi.org/10.14202/vetworld.2022.848-854.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Navarathna DH, Hornby JM, Krishnan N, Parkhurst A, Duhamel GE, Nickerson KW. Effect of farnesol on a mouse model of systemic candidiasis, determined by use of a DPP3 knockout mutant of Candida albicans. Infect Immun. 2007;75(4):1609–18. https://doi.org/10.1128/iai.01182-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hargarten JC, Moore TC, Petro TM, Nickerson KW, Atkin AL. Candida albicans quorum sensing molecules stimulate mouse macrophage migration. Infect Immun. 2015;83(10):3857–64. https://doi.org/10.1128/iai.00886-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jung YY, Hwang ST, Sethi G, Fan L, Arfuso F, Ahn KS. Potential anti-inflammatory and anti-cancer properties of farnesol. Molecules. 2018. https://doi.org/10.3390/molecules23112827.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Zhang Y, Long Y, Yu S, et al. Natural volatile oils derived from herbal medicines: a promising therapy way for treating depressive disorder. Pharmacol Res. 2021;164:105376. https://doi.org/10.1016/j.phrs.2020.105376.

    Article  CAS  PubMed  Google Scholar 

  89. Katsuyama M, Kobayashi Y, Ichikawa H, et al. A novel method to control the balance of skin microflora part 2. A study to assess the effect of a cream containing farnesol and xylitol on atopic dry skin. J Dermatol Sci. 2005;38(3):207–13. https://doi.org/10.1016/j.jdermsci.2005.01.003.

    Article  CAS  PubMed  Google Scholar 

  90. Chang WQ, Li Y, Zhang L, Cheng AX, Lou HX. Retigeric acid b attenuates the virulence of Candida albicans via inhibiting adenylyl cyclase activity targeted by enhanced farnesol production. PLoS ONE. 2012;7(7):10. https://doi.org/10.1371/journal.pone.0041624.

    Article  CAS  PubMed Central  Google Scholar 

  91. Singh BN, Upreti DK, Singh BR, et al. Quercetin sensitizes fluconazole-resistant Candida albicans to induce apoptotic cell death by modulating quorum sensing. Antimicrob Agents Chemother. 2015;59(4):2153–68. https://doi.org/10.1128/aac.03599-14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Li Y, Chen C, Cong L, et al. Inhibitory effects of a maleimide compound on the virulence factors of Candida albicans. Virulence. 2023;14(1):2230009. https://doi.org/10.1080/21505594.2023.2230009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Yan Y, Tan F, Miao H, Wang H, Cao Y. Effect of shikonin against Candida albicans biofilms. Front Microbiol. 2019;10:1085. https://doi.org/10.3389/fmicb.2019.01085.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Li Y, Shan MZ, Yan MJ, et al. The inhibition of trans-cinnamaldehyde on the virulence of Candida albicans via enhancing farnesol secretion with low potential for the development of resistance. Biochem Biophys Res Commun. 2019;515(4):544–50. https://doi.org/10.1016/j.bbrc.2019.05.165.

    Article  CAS  Google Scholar 

  95. Li Y, Shan M, Yan M, et al. Anticandidal activity of kalopanaxsaponin A: effect on proliferation, cell morphology, and key virulence attributes of Candida albicans. Front Microbiol. 2019;10:2844. https://doi.org/10.3389/fmicb.2019.02844.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Zhang L, Chang W, Sun B, Groh M, Speicher A, Lou H. Bisbibenzyls, a new type of antifungal agent, inhibit morphogenesis switch and biofilm formation through upregulation of DPP3 in Candida albicans. PLoS ONE. 2011;6(12):e28953. https://doi.org/10.1371/journal.pone.0028953.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Lee JH, Kim YG, Khadke SK, Lee J. Antibiofilm and antifungal activities of medium-chain fatty acids against Candida albicans via mimicking of the quorum-sensing molecule farnesol. Microb Biotechnol. 2021;14(4):1353–66. https://doi.org/10.1111/1751-7915.13710.

    Article  CAS  PubMed  Google Scholar 

  98. Su H, Han L, Ding N, Guan P, Hu C, Huang X. Bafilomycin C1 exert antifungal effect through disturbing sterol biosynthesis in Candida albicans. J Antibiot (Tokyo). 2018;71(4):467–76. https://doi.org/10.1038/s41429-017-0009-8.

    Article  CAS  PubMed  Google Scholar 

  99. Liu RH, Shang ZC, Li TX, Yang MH, Kong LY. In vitro antibiofilm activity of eucarobustol E against Candida albicans. Antimicrob Agents Chemother. 2017. https://doi.org/10.1128/aac.02707-16.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Unnanuntana A, Bonsignore L, Shirtliff ME, Greenfield EM. The effects of farnesol on Staphylococcus aureus biofilms and osteoblasts. An in vitro study. J Bone Joint Surg Am. 2009;91(11):2683–92. https://doi.org/10.2106/JBJS.H.01699.

    Article  PubMed  PubMed Central  Google Scholar 

  101. Abe S, Tsunashima R, Iijima R, et al. Suppression of anti-Candida activity of macrophages by a quorum-sensing molecule, farnesol, through induction of oxidative stress. Microbiol Immunol. 2009;53(6):323–30. https://doi.org/10.1111/j.1348-0421.2009.00128.x.

    Article  CAS  PubMed  Google Scholar 

  102. Vivas W, Leonhardt I, Hunniger K, Hader A, Marolda A, Kurzai O. Multiple signaling pathways involved in human dendritic cell maturation are affected by the fungal quorum-sensing molecule farnesol. J Immunol. 2019;203(11):2959–69. https://doi.org/10.4049/jimmunol.1900431.

    Article  CAS  PubMed  Google Scholar 

  103. Han Y, Zhang Y, Zeng W, et al. Synergy with farnesol rejuvenates colistin activity against colistin-resistant gram-negative bacteria in vitro and in vivo. Int J Antimicrob Agents. 2023;62(3):106899. https://doi.org/10.1016/j.ijantimicag.2023.106899.

    Article  CAS  PubMed  Google Scholar 

  104. Joo JH, Jetten AM. Molecular mechanisms involved in farnesol-induced apoptosis. Cancer Lett. 2010;287(2):123–35. https://doi.org/10.1016/j.canlet.2009.05.015.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank all the reviewers who participated in the review, as well as MJEditor (www.mjeditor.com) for providing English editing services during the preparation of this manuscript. The authors wish to thank Dr. Kenneth Nickerson for reviewing their manuscript.

Funding

This work was supported by the Health Commission of Sichuan Province (20PJ163) and the Department of Science and Technology of Sichuan Province (2022JDRC0139).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Dongming Zheng and Yan Li; Original Draft Preparation: Dongming Zheng and Yan Li; Writing Review and Editing: Dongming Zheng, Linlan Yang, Yuxin Bai, Jiangyan Yong, and Yan Li. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Yan Li.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, D., Yang, L., Bai, Y. et al. Exploring the Potential of Farnesol as a Novel Antifungal Drug and Related Challenges. Curr Infect Dis Rep 26, 123–135 (2024). https://doi.org/10.1007/s11908-024-00839-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11908-024-00839-7

Keywords

Navigation