Skip to main content
Log in

Applying Antimicrobial Pharmacokinetic Principles for Complex Patients: Critically Ill Adult Patients Receiving Extracorporeal Membrane Oxygenation and Renal Replacement Therapy

  • Sepsis in the ICU (J Lipman, Section Editor)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Extracorporeal membrane oxygenation (ECMO) is establishing itself as the standard of care for managing critically ill patients who have exhausted conventional treatment in many adult ICUs around the world. The integration and combined extracorporeal effects of this device with renal replacement therapy (RRT) have not been well studied. This is especially challenging in the pursuit of achieving optimal antimicrobial exposures in this group of critically ill patients. The objective of this review is to discuss the available literature to support clinicians in navigating dosing challenges in this clinical scenario.

Recent Findings

The number of antimicrobial pharmacokinetic (PK) studies in patients on RRT and ECMO is growing. However, very few studies have been designed to describe the combined effects of the concurrent use of two extracorporeal circuits. Currently available literature consists of studies with small sample sizes and provides inconsistent findings. Nevertheless, it is clear that it is not a simple sum of the independent RRT- and ECMO-induced PK changes in addition to the PK changes arising from severe physiological derangement associated with a critical illness. Preliminary data suggest that improvements in target attainment may be achieved through understanding the potential PK changes secondary to specific drug physicochemical properties and the extracorporeal circuits. Thus, the availability of therapeutic drug monitoring plays a key role in this complex patient group to recognise ineffective and toxic serum antimicrobial concentrations.

Summary

The data available to clinicians are insufficient to guide appropriate empirical drug dosing in patients on concurrent ECMO and RRT. Future studies should be designed and powered to evaluate specific RRT settings and relevant covariates within the ECMO population. Until further data becomes available, therapeutic drug monitoring is recommended to prevent subtherapeutic and toxic concentrations of antimicrobials in this patient population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Askenazi DJ, Selewski DT, Paden ML, Cooper DS, Bridges BC, Zappitelli M, et al. Renal replacement therapy in critically ill patients receiving extracorporeal membrane oxygenation. Clin J Am Soc Nephrol. 2012;7(8):1328–36. This is a comprehensive review of articles on technical aspects of concomitant RRT and ECMO.

  2. Ha MA, Sieg AC. Evaluation of altered drug pharmacokinetics in critically ill adults receiving extracorporeal membrane oxygenation. Pharmacotherapy. 2017;37(2):221–35.

    Article  PubMed  Google Scholar 

  3. Dado DN, Ainsworth CR, Thomas SB, Huang B, Piper LC, Sams VG, et al. Outcomes among patients treated with renal replacement therapy during extracorporeal membrane oxygenation: a single-center retrospective study. Blood Purif. 2020;49(3):341–7.

    Article  PubMed  Google Scholar 

  4. Hoste EA, Bagshaw SM, Bellomo R, Cely CM, Colman R, Cruz DN, et al. Epidemiology of acute kidney injury in critically ill patients: the multinational AKI-EPI study. Intensive Care Med. 2015;41(8):1411–23.

    Article  PubMed  Google Scholar 

  5. Bouchard J, Acharya A, Cerda J, Maccariello ER, Madarasu RC, Tolwani AJ, et al. A prospective international multicenter study of AKI in the intensive care unit. Clinical journal of the American Society of Nephrology : CJASN. 2015;10(8):1324–31.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bagshaw SM, Uchino S, Bellomo R, Morimatsu H, Morgera S, Schetz M, et al. Septic acute kidney injury in critically ill patients: clinical characteristics and outcomes. Clinical Journal of the American Society of Nephrology : CJASN. 2007;2(3):431–9.

    Article  PubMed  Google Scholar 

  7. Douma CE, Redekop WK, van der Meulen JH, van Olden RW, Haeck J, Struijk DG, et al. Predicting mortality in intensive care patients with acute renal failure treated with dialysis. J Am Soc Nephrol. 1997;8(1):111–7.

    Article  CAS  PubMed  Google Scholar 

  8. Metnitz PG, Krenn CG, Steltzer H, Lang T, Ploder J, Lenz K, et al. Effect of acute renal failure requiring renal replacement therapy on outcome in critically ill patients. Crit Care Med. 2002;30(9):2051–8.

    Article  PubMed  Google Scholar 

  9. Riedemann NC, Guo RF, Ward PA. The enigma of sepsis. J Clin Invest. 2003;112(4):460–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Choi GYS, Joynt GM. Acute kidney injury and renal replacement therapy. In: Udy AA, Roberts JA, Lipman J, editors. Antibiotic pharmacokinetic/pharmacodynamic considerations in the critically ill. Singapore: Springer Singapore; 2018. p. 101–24. This is a comprehensive review of articles on drug dosing in the setting of RRT.

  11. Hoste EA, Schurgers M. Epidemiology of acute kidney injury: how big is the problem? Crit Care Med. 2008;36(4 Suppl):S146–51.

    Article  PubMed  Google Scholar 

  12. Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, et al. Acute renal failure in critically ill patients: a multinational, multicenter study. JAMA : the journal of the American Medical Association. 2005;294(7):813–8.

    Article  CAS  PubMed  Google Scholar 

  13. Jamal JA, Mueller BA, Choi GY, Lipman J, Roberts JA. How can we ensure effective antibiotic dosing in critically ill patients receiving different types of renal replacement therapy? Diagn Microbiol Infect Dis. 2015;82(1):92–103.

    Article  CAS  PubMed  Google Scholar 

  14. Sethi SK, Krishnappa V, Nangethu N, Nemer P, Frazee LA, Raina R. Antibiotic dosing in sustained low-efficiency dialysis in critically ill patients. Canadian Journal of Kidney Health and Disease. 2018;5:2054358118792229.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Dellinger RP, Levy MM, Carlet JM, Bion J, Parker MM, Jaeschke R, et al. Surviving Sepsis Campaign: international guidelines for management of severe sepsis and septic shock: 2008. Intensive Care Med. 2008;34(1):17–60.

    Article  PubMed  Google Scholar 

  16. Rhodes A, Evans LE, Alhazzani W, Levy MM, Antonelli M, Ferrer R, et al. Surviving Sepsis Campaign: international guidelines for management of sepsis and septic shock: 2016. Crit Care Med. 2017;45(3):486–552.

    Article  PubMed  Google Scholar 

  17. Combes A, Hajage D, Capellier G, Demoule A, Lavoué S, Guervilly C, et al. Extracorporeal membrane oxygenation for severe acute respiratory distress syndrome. N Engl J Med. 2018;378(21):1965–75.

    Article  PubMed  Google Scholar 

  18. Chakaramakkil MJ, Sivathasan C. ECMO and short-term support for cardiogenic shock in heart failure. Curr Cardiol Rep. 2018;20(10):87.

    Article  PubMed  Google Scholar 

  19. Yan X, Jia S, Meng X, Dong P, Jia M, Wan J, et al. Acute kidney injury in adult postcardiotomy patients with extracorporeal membrane oxygenation: evaluation of the RIFLE classification and the Acute Kidney Injury Network criteria. Eur J Cardiothorac Surg. 2010;37(2):334–8.

    PubMed  Google Scholar 

  20. Lin CY, Chen YC, Tsai FC, Tian YC, Jenq CC, Fang JT, et al. RIFLE classification is predictive of short-term prognosis in critically ill patients with acute renal failure supported by extracorporeal membrane oxygenation. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association. 2006;21(10):2867–73.

    Article  Google Scholar 

  21. Thongprayoon C, Cheungpasitporn W, Lertjitbanjong P, Aeddula NR, Bathini T, Watthanasuntorn K, et al. Incidence and impact of acute kidney injury in patients receiving extracorporeal membrane oxygenation: a meta-analysis. J Clin Med. 2019;8(7).

  22. Fleming GM, Askenazi DJ, Bridges BC, Cooper DS, Paden ML, Selewski DT, et al. A multicenter international survey of renal supportive therapy during ECMO: the Kidney Intervention During Extracorporeal Membrane Oxygenation (KIDMO) group. ASAIO Journal (American Society for Artificial Internal Organs : 1992). 2012;58(4):407–14.

    Article  CAS  Google Scholar 

  23. Kilburn DJ, Shekar K, Fraser JF. The complex relationship of extracorporeal membrane oxygenation and acute kidney injury: causation or association? Biomed Res Int. 2016;2016:1094296, 14.

    Article  CAS  Google Scholar 

  24. Extracorporeal Life Support Organization. ECLS registry report, international summary. Ann Arbor, MI; 2017 January 2017.

  25. Kielstein JT, Heiden AM, Beutel G, Gottlieb J, Wiesner O, Hafer C, et al. Renal function and survival in 200 patients undergoing ECMO therapy. Nephrology, dialysis, transplantation : official publication of the European Dialysis and Transplant Association - European Renal Association. 2013;28(1):86–90.

    Article  Google Scholar 

  26. Yap HJ, Chen YC, Fang JT, Huang CC. Combination of continuous renal replacement therapies (CRRT) and extracorporeal membrane oxygenation (ECMO) for advanced cardiac patients. Ren Fail. 2003;25(2):183–93.

    Article  PubMed  Google Scholar 

  27. Roberts JA, Paul SK, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, et al. DALI: defining antibiotic levels in intensive care unit patients: are current beta-lactam antibiotic doses sufficient for critically ill patients? Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2014;58(8):1072–83.

    Article  CAS  Google Scholar 

  28. Shekar K, Roberts JA, Welch S, Buscher H, Rudham S, Burrows F, et al. ASAP ECMO: Antibiotic, sedative and analgesic pharmacokinetics during extracorporeal membrane oxygenation: a multi-centre study to optimise drug therapy during ECMO. BMC Anesthesiol. 2012;12:29. This is a protocol paper with the aim of defining optimal drug dosing in the setting of ECMO with and without RRT.

  29. Choi G, Gomersall CD, Tian Q, Joynt GM, Li AM, Lipman J. Principles of antibacterial dosing in continuous renal replacement therapy. Blood Purif. 2010;30(3):195–212.

    Article  CAS  PubMed  Google Scholar 

  30. Roberts JA, Joynt G, Lee A, Choi G, Bellomo R, Kanji S, et al. The effect of renal replacement therapy and antibiotic dose on antibiotic concentrations in critically ill patients: data from the multinational SMARRT Study. Clinical infectious diseases : an official publication of the Infectious Diseases Society of America. 2020. This is a multinational study describing optimal drug dosing in the setting of RRT.

  31. Bougle A, Dujardin O, Lepere V, Ait Hamou N, Vidal C, Lebreton G, et al. PHARMECMO: therapeutic drug monitoring and adequacy of current dosing regimens of antibiotics in patients on extracorporeal life support. Critical Care & Pain Medicine: Anaesthesia; 2019.

    Google Scholar 

  32. Donadello K, Antonucci E, Cristallini S, Roberts JA, Beumier M, Scolletta S, et al. Beta-lactam pharmacokinetics during extracorporeal membrane oxygenation therapy: a case-control study. Int J Antimicrob Agents. 2015;45(3):278–82.

    Article  CAS  PubMed  Google Scholar 

  33. Donadello K, Roberts JA, Cristallini S, Beumier M, Shekar K, Jacobs F, et al. Vancomycin population pharmacokinetics during extracorporeal membrane oxygenation therapy: a matched cohort study. Critical care (London, England). 2014;18(6):632.

    Article  Google Scholar 

  34. Shekar K, Roberts JA, Barnett AG, Diab S, Wallis SC, Fung YL, et al. Can physicochemical properties of antimicrobials be used to predict their pharmacokinetics during extracorporeal membrane oxygenation? Illustrative data from ovine models, Critical care (London, England). 2015;19:437.

  35. Shekar K, Roberts JA, McDonald CI, Ghassabian S, Anstey C, Wallis SC, et al. Protein-bound drugs are prone to sequestration in the extracorporeal membrane oxygenation circuit: results from an ex vivo study. Critical care (London, England). 2015;19:164.

    Article  Google Scholar 

  36. Roberts JA, Choi GYS, Joynt GM, Paul SK, Deans R, Peake S, et al. SaMpling Antibiotics in Renal Replacement Therapy (SMARRT): an observational pharmacokinetic study in critically ill patients. BMC Infect Dis. 2016;16:103.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Shekar K, Fraser JF, Taccone FS, Welch S, Wallis SC, Mullany DV, et al. The combined effects of extracorporeal membrane oxygenation and renal replacement therapy on meropenem pharmacokinetics: a matched cohort study. Crit Care. 2014;18(6):565.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Harthan AA, Buckley KW, Heger ML, Fortuna RS, Mays K. Medication adsorption into contemporary extracorporeal membrane oxygenator circuits. The Journal of Pediatric Pharmacology and Therapeutics: JPPT : the official journal of PPAG. 2014;19(4):288–95.

    Google Scholar 

  39. Wildschut ED, Ahsman MJ, Allegaert K, Mathot RA, Tibboel D. Determinants of drug absorption in different ECMO circuits. Intensive Care Med. 2010;36(12):2109–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Preston TJ, Ratliff TM, Gomez D, Olshove VE Jr, Nicol KK, Sargel CL, et al. Modified surface coatings and their effect on drug adsorption within the extracorporeal life support circuit. J Extra Corpor Technol. 2010;42(3):199–202.

    PubMed  PubMed Central  Google Scholar 

  41. Cheng V, Abdul-Aziz MH, Roberts JA, Shekar K. Overcoming barriers to optimal drug dosing during ECMO in critically ill adult patients. Expert Opin Drug Metab Toxicol. 2018;15(2):103–12.

    Article  CAS  Google Scholar 

  42. Shekar K, Roberts JA, McDonald CI, Fisquet S, Barnett AG, Mullany DV, et al. Sequestration of drugs in the circuit may lead to therapeutic failure during extracorporeal membrane oxygenation. Critical Care (London, England). 2012;16(5):R194.

    Article  Google Scholar 

  43. Di Nardo M, Wildschut ED. Drugs pharmacokinetics during veno-venous extracorporeal membrane oxygenation in pediatrics. Journal of Thoracic Disease. 2017:S642–S52.

  44. Wildschut ED, Ahsman MJ, Houmes RJ, Pokorna P, de Wildt SN, Mathot RA, et al. Pharmacotherapy in neonatal and pediatric extracorporeal membrane oxygenation (ECMO). Curr Drug Metab. 2012;13(6):767–77.

    Article  CAS  PubMed  Google Scholar 

  45. Cohen P, Collart L, Prober CG, Fischer AF, Blaschke TF. Gentamicin pharmacokinetics in neonates undergoing extracorporal membrane oxygenation. Pediatr Infect Dis J. 1990;9(8):562–6.

    Article  CAS  PubMed  Google Scholar 

  46. Shekar K, Fraser JF, Taccone FS, Welch S, Wallis SC, Mullany DV, et al. The combined effects of extracorporeal membrane oxygenation and renal replacement therapy on meropenem pharmacokinetics: a matched cohort study. Critical Care (London, England). 2014;18(6):565.

    Article  Google Scholar 

  47. Zhao Y, Seelhammer TG, Barreto EF, Wilson JW. Altered Pharmacokinetics and Dosing of Liposomal Amphotericin B and isavuconazole during extracorporeal membrane oxygenation. pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy. 2020;40(1):89-95.

  48. Wang Q, Zhang Z, Liu D, Chen W, Cui G, Li P, et al. Population pharmacokinetics of caspofungin among extracorporeal membrane oxygenation patients during the postoperative period of lung transplantation. Antimicrobial Agents and Chemotherapy. 2020;64(11).

  49. de Pont AC. Extracorporeal treatment of intoxications. Curr Opin Crit Care. 2007;13(6):668–73.

    Article  PubMed  Google Scholar 

  50. Choi G, Gomersall CD, Tian Q, Joynt GM, Freebairn R, Lipman J. Principles of antibacterial dosing in continuous renal replacement therapy. Crit Care Med. 2009;37(7):2268–82.

    Article  CAS  PubMed  Google Scholar 

  51. Brunet S, Leblanc M, Geadah D, Parent D, Courteau S, Cardinal J. Diffusive and convective solute clearances during continuous renal replacement therapy at various dialysate and ultrafiltration flow rates. Am J Kidney Dis. 1999;34(3):486–92.

    Article  CAS  PubMed  Google Scholar 

  52. Clark WR, Ronco C. CRRT efficiency and efficacy in relation to solute size. Kidney Int. 1999;56:S3–7.

    Article  Google Scholar 

  53. Golper TA, Marx MA. Drug dosing adjustments during continuous renal replacement therapies. Kidney Int Suppl. 1998;66:S165–8.

    CAS  PubMed  Google Scholar 

  54. Uchino S, Cole L, Morimatsu H, Goldsmith D, Bellomo R. Clearance of vancomycin during high-volume haemofiltration: impact of pre-dilution. Intensive Care Med. 2002;28(11):1664–7.

    Article  PubMed  Google Scholar 

  55. Phillips GJ, Davies JG, Olliff CJ, Kingswood C, Street M. Use of in vitro models of haemofiltration and haemodiafiltration to estimate dosage regimens for critically ill patients prescribed cefpirome. J Clin Pharm Ther. 1998;23(5):353–9.

    Article  CAS  PubMed  Google Scholar 

  56. Harvey B, Yeomanson D, Mulla H, Johnson TN, Mayer A. Ceftriaxone pharmacokinetic properties during continuous venovenous haemofiltration using an in vitro model. Critical Care. 2008;12(Suppl 2):P481-P.

  57. Braune S, König C, Roberts JA, Nierhaus A, Steinmetz O, Baehr M, et al. Pharmacokinetics of meropenem in septic patients on sustained low-efficiency dialysis: a population pharmacokinetic study. Critical Care. 2018;22(1).

  58. König C, Braune S, Roberts JA, Nierhaus A, Steinmetz OM, Baehr M, et al. Population pharmacokinetics and dosing simulations of ceftazidime in critically ill patients receiving sustained low-efficiency dialysis. J Antimicrob Chemother. 2017;72(5):1433–40.

    Article  PubMed  CAS  Google Scholar 

  59. Cheng V, Rawlins M, Chang T, Fox E, Dyer J, Allen C, et al. Pharmacokinetics of benzylpenicillin (penicillin G) during prolonged intermittent renal replacement therapy. Chemotherapy. 2019;64(1):17–21.

    Article  CAS  PubMed  Google Scholar 

  60. Ostermann M, Connor M Jr, Kashani K. Continuous renal replacement therapy during extracorporeal membrane oxygenation: why, when and how? Curr Opin Crit Care. 2018;24(6):493–503.

    Article  PubMed  Google Scholar 

  61. Kang S, Jang JY, Hahn J, Kim D, Lee JY, Min KL, et al. Dose optimization of cefpirome based on population pharmacokinetics and target attainment during extracorporeal membrane oxygenation. Antimicrob Agents Chemother. 2020;64(5):e00249–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Kühn D, Metz C, Seiler F, Wehrfritz H, Roth S, Alqudrah M, et al. Antibiotic therapeutic drug monitoring in intensive care patients treated with different modalities of extracorporeal membrane oxygenation (ECMO) and renal replacement therapy: a prospective, observational single-center study. Crit Care. 2020;24(1):664.

    Article  PubMed  PubMed Central  Google Scholar 

  63. Hanberg P, Obrink-Hansen K, Thorsted A, Bue M, Tottrup M, Friberg LE, et al. Population pharmacokinetics of meropenem in plasma and subcutis from patients on extracorporeal membrane oxygenation treatment. Antimicrobial Agents and Chemotherapy. 2018;62(5).

  64. Ruiz-Ramos J, Gimeno R, Pérez F, Ramirez P, Villarreal E, Gordon M, et al. Pharmacokinetics of amikacin in critical care patients on extracorporeal device. ASAIO Journal (American Society for Artificial Internal Organs : 1992). 2018;64(5):686–8.

    Article  CAS  Google Scholar 

  65. Strunk AK, Ciesek S, Schmidt JJ, Kühn C, Hoeper MM, Welte T, et al. Single- and multiple-dose pharmacokinetics of ethambutol and rifampicin in a tuberculosis patient with acute respiratory distress syndrome undergoing extended daily dialysis and ECMO treatment. Int J Infect Dis. 2016;42:1–3.

    Article  CAS  PubMed  Google Scholar 

  66. Lemaitre F, Luyt CE, Roullet-Renoleau F, Nieszkowska A, Zahr N, Corvol E, et al. Impact of extracorporeal membrane oxygenation and continuous venovenous hemodiafiltration on the pharmacokinetics of oseltamivir carboxylate in critically ill patients with pandemic (H1N1) influenza. Ther Drug Monit. 2012;34(2):171–5.

    Article  CAS  PubMed  Google Scholar 

  67. Kashuba AD, Nafziger AN, Drusano GL, Bertino JS Jr. Optimizing aminoglycoside therapy for nosocomial pneumonia caused by gram-negative bacteria. Antimicrob Agents Chemother. 1999;43(3):623–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Smith PF, Ballow CH, Booker BM, Forrest A, Schentag JJ. Pharmacokinetics and pharmacodynamics of aztreonam and tobramycin in hospitalized patients. Clin Ther. 2001;23(8):1231–44.

    Article  CAS  PubMed  Google Scholar 

  69. Mouton JW, Jacobs N, Tiddens H, Horrevorts AM. Pharmacodynamics of tobramycin in patients with cystic fibrosis. Diagn Microbiol Infect Dis. 2005;52(2):123–7.

    Article  CAS  PubMed  Google Scholar 

  70. Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America. 1998;26(1):1–10.

    Article  CAS  Google Scholar 

  71. Crandon JL, Luyt CE, Aubry A, Chastre J, Nicolau DP. Pharmacodynamics of carbapenems for the treatment of Pseudomonas aeruginosa ventilator-associated pneumonia: associations with clinical outcome and recurrence. J Antimicrob Chemother. 2016;71(9):2534–7.

    Article  CAS  PubMed  Google Scholar 

  72. Li C, Du X, Kuti JL, Nicolau DP. Clinical pharmacodynamics of meropenem in patients with lower respiratory tract infections. Antimicrob Agents Chemother. 2007;51(5):1725–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Zelenitsky S, Rubinstein E, Ariano R, Iacovides H, Dodek P, Mirzanejad Y, et al. Vancomycin pharmacodynamics and survival in patients with methicillin-resistant Staphylococcus aureus-associated septic shock. Int J Antimicrob Agents. 2013;41(3):255–60.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

J.A. Roberts would like to acknowledge funding from the Australian National Health and Medical Research Council for a Centre of Research Excellence (APP1099452) and a Practitioner Fellowship (APP1117065) as well as an Advancing Queensland Clinical Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason A. Roberts.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest to declare.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Sepsis in the ICU

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, V., Abdul-Aziz, M.H. & Roberts, J.A. Applying Antimicrobial Pharmacokinetic Principles for Complex Patients: Critically Ill Adult Patients Receiving Extracorporeal Membrane Oxygenation and Renal Replacement Therapy. Curr Infect Dis Rep 23, 13 (2021). https://doi.org/10.1007/s11908-021-00757-y

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11908-021-00757-y

Keywords

Navigation