Pharmacokinetic/Pharmacodynamic Considerations of Beta-Lactam Antibiotics in Adult Critically Ill Patients

  • Anne M. Masich
  • Mojdeh S. Heavner
  • Jeffrey P. Gonzales
  • Kimberly C. Claeys
Healthcare Associated Infections (G Bearman and D Morgan, Section Editors)
Part of the following topical collections:
  1. Topical Collection on Healthcare Associated Infections


Purpose of Review

Beta-lactam antibiotics are commonly prescribed in critically ill patients for a variety of infectious conditions. Our understanding of how critical illness alters beta-lactam pharmacokinetics/pharmacodynamics (PK/PD) is rapidly evolving.

Recent Findings

There is a growing body of literature in adult patients demonstrating that physiological alterations occurring in critically ill patients may limit our ability to optimally dose beta-lactam antibiotics to reach these PK/PD targets. These alterations include changes in volume of distribution and renal clearance with multiple, often overlapping causative pathways, including hypoalbuminemia, renal replacement therapy, and extracorporeal membrane oxygenation. Strategies to overcome these PK alterations include extended infusions and therapeutic drug monitoring. Combined data has demonstrated a possible survival benefit associated with extending beta-lactam infusions in critically ill adult patients.


This review highlights research on physiological derangements affecting beta-lactam concentrations and strategies to optimize beta-lactam PK/PD in critically ill adults.


Beta-lactams Critically ill Pharmacokinetics Pharmacodynamics Renal replacement therapy Extracorporeal membrane oxygenation 


Compliance with Ethical Standards

Conflict of Interest

Anne M. Masich, Mojdeh S. Heavner, Jeffrey P. Gonzales, and Kimberly C. Claeys declare they have no conflicts of interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.


Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    Ambrose PG, Bhavnani SM, Rubino CM, Louie A, Gumbo T, Forrest A, et al. Pharmacokinetics-pharmacodynamics of antimicrobial therapy: it’s not just for mice anymore. Clin Infect Dis. 2007;44(1):79–86.CrossRefPubMedGoogle Scholar
  2. 2.
    Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis. 1998;26(1):1–10. quiz 11-2CrossRefPubMedGoogle Scholar
  3. 3.
    Tsai D, Lipman J, Roberts JA. Pharmacokinetic/pharmacodynamic considerations for the optimization of antimicrobial delivery in the critically ill. Curr Opin Crit Care. 2015;21(5):412–20.CrossRefPubMedGoogle Scholar
  4. 4.
    Pea F, Viale P. Bench-to-bedside review: appropriate antibiotic therapy in severe sepsis and septic shock—does the dose matter? Crit Care. 2009;13(3):214.CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Blot SI, Pea F, Lipman J. The effect of pathophysiology on pharmacokinetics in the critically ill patient—concepts appraised by the example of antimicrobial agents. Adv Drug Deliv Rev. 2014;77:3–11.CrossRefPubMedGoogle Scholar
  6. 6.
    Roberts JA, Lipman J. Pharmacokinetic issues for antibiotics in the critically ill patient. Crit Care Med. 2009;37(3):840–51. quiz 859CrossRefPubMedGoogle Scholar
  7. 7.
    Ulldemolins M, Roberts JA, Rello J, Paterson DL, Lipman J. The effects of hypoalbuminaemia on optimizing antibacterial dosing in critically ill patients. Clin Pharmacokinet. 2011;50(2):99–110.CrossRefPubMedGoogle Scholar
  8. 8.
    Hayashi Y, Lipman J, Udy AA, Ng M, McWhinney B, Ungerer J, et al. Beta-lactam therapeutic drug monitoring in the critically ill: optimising drug exposure in patients with fluctuating renal function and hypoalbuminaemia. Int J Antimicrob Agents. 2013;41(2):162–6.CrossRefPubMedGoogle Scholar
  9. 9.
    Schleibinger M, Steinbach CL, Topper C, Kratzer A, Liebchen U, Kees F, et al. Protein binding characteristics and pharmacokinetics of ceftriaxone in intensive care unit patients. Br J Clin Pharmacol. 2015;80(3):525–33.CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Roberts JA, Pea F, Lipman J. The clinical relevance of plasma protein binding changes. Clin Pharmacokinet. 2013;52(1):1–8.CrossRefPubMedGoogle Scholar
  11. 11.
    Claus BO, Hoste EA, Colpaert K, Robays H, Decruyenaere J, De Waele JJ. Augmented renal clearance is a common finding with worse clinical outcome in critically ill patients receiving antimicrobial therapy. J Crit Care. 2013;28(5):695–700.CrossRefPubMedGoogle Scholar
  12. 12.
    Baptista JP, Udy AA, Sousa E, Pimentel J, Wang L, Roberts JA, et al. A comparison of estimates of glomerular filtration in critically ill patients with augmented renal clearance. Crit Care. 2011;15(3):R139.CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    • Udy AA, Lipman J, Jarrett P, Klein K, Wallis SC, Patel K, et al. Are standard doses of piperacillin sufficient for critically ill patients with augmented creatinine clearance? Crit Care. 2015;19:28. 015-0750-y. PK/PD study of adultl patients receiving piperacillin-tazobactam demonstrating mean clearance was 1.5 fold increased in critically ill adults compared to healthy volunteers.Google Scholar
  14. 14.
    Udy AA, Varghese JM, Altukroni M, Briscoe S, McWhinney BC, Ungerer JP, et al. Subtherapeutic initial beta-lactam concentrations in select critically ill patients: association between augmented renal clearance and low trough drug concentrations. Chest. 2012;142(1):30–9.CrossRefPubMedGoogle Scholar
  15. 15.
    • Udy AA, Baptista JP, Lim NL, Joynt GM, Jarrett P, Wockner L, et al. Augmented renal clearance in the ICU: results of a multicenter observational study of renal function in critically ill patients with normal plasma creatinine concentrations. Crit Care Med. 2014;42(3):520–7. Prospective observational study of over 900 adult patients in the ICU. Based on eight-hour creatinine clearances, more than half of patients experienced augmented renal clearance.Google Scholar
  16. 16.
    Carlier M, Carrette S, Roberts JA, Stove V, Verstraete A, Hoste E, et al. Meropenem and piperacillin/tazobactam prescribing in critically ill patients: does augmented renal clearance affect pharmacokinetic/pharmacodynamic target attainment when extended infusions are used? Crit Care. 2013;17(3):R84.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Hoste EA, Lameire NH, Vanholder RC, Benoit DD, Decruyenaere JM, Colardyn FA. Acute renal failure in patients with sepsis in a surgical ICU: predictive factors, incidence, comorbidity, and outcome. J Am Soc Nephrol. 2003;14(4):1022–30.CrossRefPubMedGoogle Scholar
  18. 18.
    de Mendonca A, Vincent JL, Suter PM, Moreno R, Dearden NM, Antonelli M, et al. Acute renal failure in the ICU: risk factors and outcome evaluated by the SOFA score. Intensive Care Med. 2000;26(7):915–21.CrossRefPubMedGoogle Scholar
  19. 19.
    Jamal JA, Mueller BA, Choi GY, Lipman J, Roberts JA. How can we ensure effective antibiotic dosing in critically ill patients receiving different types of renal replacement therapy? Diagn Microbiol Infect Dis. 2015;82(1):92–103.CrossRefPubMedGoogle Scholar
  20. 20.
    Roberts JA, Choi GY, Joynt GM, Paul SK, Deans R, Peake S, et al. SaMpling Antibiotics in Renal Replacement Therapy (SMARRT): an observational pharmacokinetic study in critically ill patients. BMC Infect Dis. 2016;16:103. –016–1421-6CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Heintz BH, Matzke GR, Dager WE. Antimicrobial dosing concepts and recommendations for critically ill adult patients receiving continuous renal replacement therapy or intermittent hemodialysis. Pharmacotherapy. 2009 May;29(5):562–77.CrossRefPubMedGoogle Scholar
  22. 22.
    Ulldemolins M, Vaquer S, Llaurado-Serra M, Pontes C, Calvo G, Soy D, et al. Beta-lactam dosing in critically ill patients with septic shock and continuous renal replacement therapy. Crit Care. 2014;18(3):227.CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Roger C, Cotta MO, Muller L, Wallis SC, Lipman J, Lefrant JY, et al. Impact of renal replacement modalities on the clearance of piperacillin-tazobactam administered via continuous infusion in critically ill patients. Int J Antimicrob Agents. 2017;50(2):227–31.CrossRefPubMedGoogle Scholar
  24. 24.
    • Jamal JA, Udy AA, Lipman J, Roberts JA. The impact of variation in renal replacement therapy settings on piperacillin, meropenem, and vancomycin drug clearance in the critically ill: an analysis of published literature and dosing regimens. Crit Care Med. 2014;42(7):1640–50. Analysis of PK data from 30 studies to determine the effects of renal replacement modalities on clearance of beta-lactam antibiotics.Google Scholar
  25. 25.
    Asin-Prieto E, Rodriguez-Gascon A, Troconiz IF, Soraluce A, Maynar J, Sanchez-Izquierdo JA, et al. Population pharmacokinetics of piperacillin and tazobactam in critically ill patients undergoing continuous renal replacement therapy: application to pharmacokinetic/pharmacodynamic analysis. J Antimicrob Chemother. 2014;69(1):180–9.CrossRefPubMedGoogle Scholar
  26. 26.
    Meng L, Mui E, Holubar MK, Deresinski SC. Comprehensive guidance for antibiotic dosing in obese adults. Pharmacotherapy. 2017;37:1415–31.CrossRefPubMedGoogle Scholar
  27. 27.
    Alobaid AS, Hites M, Lipman J, Taccone FS, Roberts JA. Effect of obesity on the pharmacokinetics of antimicrobials in critically ill patients: a structured review. Int J Antimicrob Agents. 2016;47(4):259–68.CrossRefPubMedGoogle Scholar
  28. 28.
    Hites M, Taccone FS, Wolff F, Cotton F, Beumier M, De Backer D, et al. Case-control study of drug monitoring of beta-lactams in obese critically ill patients. Antimicrob Agents Chemother. 2013 Feb;57(2):708–15.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Hites M, Taccone FS, Wolff F, Maillart E, Beumier M, Surin R, et al. Broad-spectrum beta-lactams in obese non-critically ill patients. Nutr Diabetes. 2014;4:e119.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Alobaid AS, Brinkmann A, Frey OR, Roehr AC, Luque S, Grau S, et al. What is the effect of obesity on piperacillin and meropenem trough concentrations in critically ill patients? J Antimicrob Chemother. 2016;71(3):696–702.CrossRefPubMedGoogle Scholar
  31. 31.
    Sturm AW, Allen N, Rafferty KD, Fish DN, Toschlog E, Newell M, et al. Pharmacokinetic analysis of piperacillin administered with tazobactam in critically ill, morbidly obese surgical patients. Pharmacotherapy. 2014;34(1):28–35.CrossRefPubMedGoogle Scholar
  32. 32.
    • Jung B, Mahul M, Breilh D, Legeron R, Signe J, Jean-Pierre H, et al. Repeated piperacillin-tazobactam plasma concentration measurements in severely obese versus nonobese critically ill septic patients and the risk of under- and overdosing. Crit Care Med. 2017;45(5):e470–8. Prospective PK/PD study demonstrating under-dosing of piperacillin in obese compared to non-obese patients when causative pathogens have high MICs.Google Scholar
  33. 33.
    Mosier JM, Kelsey M, Raz Y, Gunnerson KJ, Meyer R, Hypes CD, et al. Extracorporeal membrane oxygenation (ECMO) for critically ill adults in the emergency department: history, current applications, and future directions. Crit Care. 2015;19:431. –015–1155-7CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Abrams D, Brodie D. Extracorporeal membrane oxygenation for adult respiratory failure: 2017 update. Chest. 2017;152(3):639–49.CrossRefPubMedGoogle Scholar
  35. 35.
    • Dzierba AL, Abrams D, Brodie D. Medicating patients during extracorporeal membrane oxygenation: the evidence is building. Crit Care. 2017;21(1):66. –017-1644-y. Comprehensive review of PK/PD alterations during ECMO.Google Scholar
  36. 36.
    Sherwin J, Heath T, Watt K. Pharmacokinetics and dosing of anti-infective drugs in patients on extracorporeal membrane oxygenation: a review of the current literature. Clin Ther. 2016;38(9):1976–94.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Mousavi S, Levcovich B, Mojtahedzadeh M. A systematic review on pharmacokinetic changes in critically ill patients: role of extracorporeal membrane oxygenation. Daru. 2011;19(5):312–21.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Shekar K, Fraser JF, Smith MT, Roberts JA. Pharmacokinetic changes in patients receiving extracorporeal membrane oxygenation. J Crit Care. 2012;27(6):741.e9–18.CrossRefGoogle Scholar
  39. 39.
    Shekar K, Roberts JA, Mcdonald CI, Fisquet S, Barnett AG, Mullany DV, et al. Sequestration of drugs in the circuit may lead to therapeutic failure during extracorporeal membrane oxygenation. Crit Care. 2012;16(5):R194.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Shekar K, Roberts JA, Ghassabian S, Mullany DV, Wallis SC, Smith MT, et al. Altered antibiotic pharmacokinetics during extracorporeal membrane oxygenation: cause for concern? J Antimicrob Chemother. 2013;68(3):726–7.CrossRefPubMedGoogle Scholar
  41. 41.
    Shekar K, Fraser JF, Taccone FS, Welch S, Wallis SC, Mullany DV, et al. The combined effects of extracorporeal membrane oxygenation and renal replacement therapy on meropenem pharmacokinetics: a matched cohort study. Crit Care. 2014;18(6):565. -014-0565-2CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    • Donadello K, Antonucci E, Cristallini S, Roberts JA, Beumier M, Scolletta S, et al. Beta-lactam pharmacokinetics during extracorporeal membrane oxygenation therapy: a case-control study. Int J Antimicrob Agents. 2015;45(3):278–82. Case-control study of 41 ECMO versus 41 matched non-ECMO patients receiving meropenem or piperacillin-tazobactam that did not demonstrate significant difference in PK.Google Scholar
  43. 43.
    Shekar K, Roberts JA, Mcdonald CI, Ghassabian S, Anstey C, Wallis SC, et al. Protein-bound drugs are prone to sequestration in the extracorporeal membrane oxygenation circuit: results from an ex vivo study. Crit Care. 2015;19:164. –015-0891-zCrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Leven C, Fillatre P, Petitcollin A, Verdier MC, Laurent J, Nesseler N, et al. Ex vivo model to decipher the impact of extracorporeal membrane oxygenation on beta-lactam degradation kinetics. Ther Drug Monit. 2017;39(2):180–4.CrossRefPubMedGoogle Scholar
  45. 45.
    Shekar K, Roberts JA, Welch S, Buscher H, Rudham S, Burrows F, et al. ASAP ECMO: Antibiotic, Sedative and Analgesic Pharmacokinetics during Extracorporeal Membrane Oxygenation: a multi-centre study to optimise drug therapy during ECMO. BMC Anesthesiol. 2012;12:29. 2253–12-29CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Roberts JA, Paul SK, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, et al. DALI: defining antibiotic levels in intensive care unit patients: are current beta-lactam antibiotic doses sufficient for critically ill patients? Clin Infect Dis. 2014;58(8):1072–83.CrossRefPubMedGoogle Scholar
  47. 47.
    Carlier M, Noe M, Roberts JA, Stove V, Verstraete AG, Lipman J, et al. Population pharmacokinetics and dosing simulations of cefuroxime in critically ill patients: non-standard dosing approaches are required to achieve therapeutic exposures. J Antimicrob Chemother. 2014;69(10):2797–803.CrossRefPubMedGoogle Scholar
  48. 48.
    Abdul-Aziz MH, Lipman J, Akova M, Bassetti M, De Waele JJ, Dimopoulos G, et al. Is prolonged infusion of piperacillin/tazobactam and meropenem in critically ill patients associated with improved pharmacokinetic/pharmacodynamic and patient outcomes? An observation from the Defining Antibiotic Levels in Intensive care unit patients (DALI) cohort. J Antimicrob Chemother. 2016;71(1):196–207.CrossRefPubMedGoogle Scholar
  49. 49.
    • Chytra I, Stepan M, Benes J, Pelnar P, Zidkova A, Bergerova T, et al. Clinical and microbiological efficacy of continuous versus intermittent application of meropenem in critically ill patients: a randomized open-label controlled trial. Crit Care. 2012;16(3):R113. Prospective, randomized comparative study showed significantly increased microbiological success rate, but no significant difference in clinical cure of meropenem continuous infusion.Google Scholar
  50. 50.
    Lodise TP, Jr LB, Drusano GL. Piperacillin-tazobactam for Pseudomonas aeruginosa infection: clinical implications of an extended-infusion dosing strategy. Clin Infect Dis. 2007;44(3):357–63.CrossRefPubMedGoogle Scholar
  51. 51.
    Rhodes NJ, MacVane SH, Kuti JL, Scheetz MH. Impact of loading doses on the time to adequate predicted beta-lactam concentrations in prolonged and continuous infusion dosing schemes. Clin Infect Dis. 2014;59(6):905–7.CrossRefPubMedGoogle Scholar
  52. 52.
    Fan SY, Shum HP, Cheng WY, Chan YH, Leung SM, Yan WW. Clinical outcomes of extended versus intermittent infusion of piperacillin/tazobactam in critically ill patients: a prospective clinical trial. Pharmacotherapy. 2017;37(1):109–19.CrossRefPubMedGoogle Scholar
  53. 53.
    • Dulhunty JM, Roberts JA, Davis JS, Webb SA, Bellomo R, Gomersall C, et al. A multicenter randomized trial of continuous versus intermittent beta-lactam infusion in severe sepsis. Am J Respir Crit Care Med. 2015;192(11):1298–305. Randomized, controlled trial of 432 critically ill patients with severe sepsis showed no difference in outcomes between continuous and intermittent infusion of piperacillin-tazobactam, ticarcillin-clavulanate, or meropenem.Google Scholar
  54. 54.
    • Dulhunty JM, Roberts JA, Davis JS, Webb SA, Bellomo R, Gomersall C, et al. Continuous infusion of beta-lactam antibiotics in severe sepsis: a multicenter double-blind, randomized controlled trial. Clin Infect Dis. 2013;56(2):236–44. Prospective, double-blind, randomized controlled trial demonstrated beta-lactam antibiotics achieved higher plasma concentrations with continuous infusion compared to intermittent infusion.Google Scholar
  55. 55.
    Abdul-Aziz MH, Sulaiman H, Mat-Nor MB, Rai V, Wong KK, Hasan MS, et al. Beta-Lactam Infusion in Severe Sepsis (BLISS): a prospective, two-centre, open-labelled randomised controlled trial of continuous versus intermittent beta-lactam infusion in critically ill patients with severe sepsis. Intensive Care Med. 2016;42(10):1535–45.CrossRefPubMedGoogle Scholar
  56. 56.
    • Roberts JA, Abdul-Aziz MH, Davis JS, Dulhunty JM, Cotta MO, Myburgh J, et al. Continuous versus intermittent beta-lactam infusion in severe Ssepsis. A meta-analysis of individual patient data from randomized trials. Am J Respir Crit Care Med. 2016;194(6):681–91. Meta-analysis of 3 randomized controlled trials resulted in significantly lower hospital mortality in patients with severe sepsis who received continuous infusion beta-lactam antibiotics.Google Scholar
  57. 57.
    • Teo J, Liew Y, Lee W, Kwa AL. Prolonged infusion versus intermittent boluses of beta-lactam antibiotics for treatment of acute infections: a meta-analysis. Int J Antimicrob Agents. 2014;43(5):403–11. A systematic review and meta-analysis of 29 studies demonstrated that prolonged infusion of anti-pseudomonal beta-lactam antibiotics were associated with significantly lower mortality.Google Scholar
  58. 58.
    Roberts JA, Lipman J. Optimal doripenem dosing simulations in critically ill nosocomial pneumonia patients with obesity, augmented renal clearance, and decreased bacterial susceptibility. Crit Care Med. 2013;41(2):489–95.CrossRefPubMedGoogle Scholar
  59. 59.
    Jager NG, van Hest RM, Lipman J, Taccone FS, Roberts JA. Therapeutic drug monitoring of anti-infective agents in critically ill patients. Expert Rev Clin Pharmacol. 2016;9(7):961–79.CrossRefPubMedGoogle Scholar
  60. 60.
    Wong G, Brinkman A, Benefield RJ, Carlier M, De Waele JJ, El Helali N, et al. An international, multicentre survey of beta-lactam antibiotic therapeutic drug monitoring practice in intensive care units. J Antimicrob Chemother. 2014;69(5):1416–23.CrossRefPubMedGoogle Scholar
  61. 61.
    Pea F, Cojutti P, Sbrojavacca R, Cadeo B, Cristini F, Bulfoni A, et al. TDM-guided therapy with daptomycin and meropenem in a morbidly obese, critically ill patient. Ann Pharmacother. 2011;45(7–8):e37.PubMedGoogle Scholar
  62. 62.
    Economou CJP, Wong G, McWhinney B, Ungerer JPJ, Lipman J, Roberts JA. Impact of beta-lactam antibiotic therapeutic drug monitoring on dose adjustments in critically ill patients undergoing continuous renal replacement therapy. Int J Antimicrob Agents. 2017;49(5):589–94.CrossRefPubMedGoogle Scholar
  63. 63.
    • Charmillon A, Novy E, Agrinier N, Leone M, Kimmoun A, Levy B, et al. The ANTIBIOPERF study: a nationwide cross-sectional survey about practices for beta-lactam administration and therapeutic drug monitoring among critically ill patients in France. Clin Microbiol Infect. 2016;22(7):625–31. Cross-sectional survey of French hospitals found that most infectious disease and intensive care specialist are in favor of optimizing administration of beta-lactams through extended infusions or therapeutic drug monitoring (TDM), however that lack of guidelines and limited TDM availability were barriers to implementing such strategies.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Anne M. Masich
    • 1
  • Mojdeh S. Heavner
    • 1
  • Jeffrey P. Gonzales
    • 1
  • Kimberly C. Claeys
    • 1
  1. 1.Department of Pharmacy Practice and ScienceUniversity of Maryland School of PharmacyBaltimoreUSA

Personalised recommendations