Skip to main content

Advertisement

Log in

Carbapenem-Resistant Enterobacteriaceae: Laboratory Detection and Infection Control Practices

  • Healthcare Associated Infections (G Bearman and M Stevens, Section Editors)
  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Over the past decade, carbapenem-resistant Enterobacteriaceae (CRE) have become one of the most challenging problems in infectious diseases. Fast and accurate detection of carbapenem resistance is crucial for guiding the treatment of the individual patient as well as for instituting proper infection control measures to limit the spread of the organism. Currently there are no consensus recommendations for screening, detection and confirmation of CRE either on the clinical or the laboratory side. In infection control, data from controlled intervention studies is largely missing and most recommendations have been deduced from outbreak situations. From the available limited evidence, infection control guidelines have been developed in most countries at national, regional and hospital levels. The aim of this review is to summarize the currently available laboratory methods and infection control options.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Orsi G, Falcone M, Venditti M. Surveillance and management of multidrug-resistant microorganisms. Expert Rev Anti Infect Ther. 2011;9:653–79.

    Article  PubMed  Google Scholar 

  2. Centers for Disease Control and Prevention (CDC). CDC National Center for Emerging and Zoonotic Infectious Diseases, Division of Healthcare Quality Promotion. Guidance for control of carbapenem-resistant Enterobacteriaceae (CRE). 2012 CRE Toolkit. http://www.cdc.gov/hai/organisms/cre/cre-toolkit/index.html. Accessed 22 Sep 2013.

  3. Nordmann P, Naas T, Poirel L. Global spread of carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2011;17:1791–8.

    Article  PubMed  CAS  Google Scholar 

  4. Casellas JM. Antibacterial drug resistance in Latin America: consequences for infectious disease control. Rev Panam Salud Publica. 2011;30:519–28.

    PubMed  Google Scholar 

  5. Canton R, Akova M, Carmeli Y, Giske CG, Glupczynski Y, Gniadkowski M, et al. Rapid evolution and spread of carbapenemases among Enterobacteriaceae in Europe. Clin Microbiol Infect. 2012;18:413–31.

    Article  PubMed  CAS  Google Scholar 

  6. Pitout JD, Laupland KB. Extended-spectrum beta-lactamase producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis. 2008;8:159–66.

    Article  PubMed  CAS  Google Scholar 

  7. Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA. Carbapenems: past, present, and future. Antimicrob Agents Chemother. 2011;55:4943–60.

    Article  PubMed  CAS  Google Scholar 

  8. • Hara G, Gould I, Endimiani A, Pardo P, Daikos G, Hsueh P, et al. Detection, treatment, and prevention of carbapenemase-producing Enterobacteriaceae: recommendations from an International working group. J Chemother. 2013;25:129–40. This is one of the most comprehensive reviews addressing detection, treatment and prevention of CREs authored by an International Working Group of clinical microbiologists, and infectious disease, infection control, and public-health specialists.

    Article  CAS  Google Scholar 

  9. Queenan AM, Bush K. Carbapenemases: the versatile β-lactamases. Clin Microbiol Rev. 2007;20:440–58.

    Article  PubMed  CAS  Google Scholar 

  10. Nordmann P, Gniadkowski M, Giske CG, Poirel L, Woodford N, Miriagou V, et al. Identification and screening of carbapenemase-producing Enterobacteriaceae. Clin Microbiol Infect. 2012;18:432–8.

    Article  PubMed  CAS  Google Scholar 

  11. Giske CG, Sundsfjord AS, Kahlmeter G, Woodford N, Nordmann P, Paterson DL. Redefining extended-spectrum β-lactamase: balancing science and clinical need. J Antimicrob Chemother. 2009;63:1–4.

    Article  PubMed  CAS  Google Scholar 

  12. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial susceptibility testing; twenty-first informational supplement. Document M100-S21. Wayne, PA: Clinical and Laboratory Standards Institute; 2011.

    Google Scholar 

  13. Cohen Stuart J, Leverstein-Van Hall MA, Dutch Working Party on the Detection of Highly Resistant Microorganisms. Guideline for phenotypic screening and confirmation of carbapenemases in Enterobacteriaceae. Int J Antimicrob Agents. 2010;36(3):205–10.

    Article  PubMed  CAS  Google Scholar 

  14. •• Nordmann P, Poirel L. Strategies for identification of carbapenemase-producing Enterobacteriaceae. J Antimicrob Chemother. 2013;68(3):487–9. This paper proposes an interesting strategy for detection of CREs without molecular techniques.

    Article  PubMed  CAS  Google Scholar 

  15. Willems E, Verhaegen J, Magerman K, Nys S, Cartuyvels R. Towards a phenotypic screening strategy for emerging β-lactamases in Gram-negative bacilli. Int J Antimicrob Agents. 2013;41(2):99–109.

    Article  PubMed  CAS  Google Scholar 

  16. Frawley J, Mangan L, Boo TW. Comparison of four laboratory methods in the detection of carbapenemase-producing Enterobacteriaceae. J Med Microbiol. 2013;62(7):1094–6.

    Article  PubMed  Google Scholar 

  17. Clinical and Laboratory Standards Institute. M100-23: performance standards for antimicrobial susceptibility testing; twenty third informational supplement. Wayne, PA: Clinical and Laboratory Standards Institute; 2013.

    Google Scholar 

  18. European Committee on Antimicrobial Susceptibility Testing (EUCAST). Clinical breakpoints. http://www.eucast.org/clinical_breakpoints/. Accessed 22 Sep 2013.

  19. Pasteran F, Mendez T, Guerriero L, Rapoport M, Corso A. Sensitive screening tests for suspected class A carbapenemase production in species of Enterobacteriaceae. J Clin Microbiol. 2009;47:1631–9.

    Article  PubMed  CAS  Google Scholar 

  20. Lartigue MF, Poirel L, Poyart C, Réglier-Poupet H, Nordmann P. Ertapenem resistance of Escherichia coli. Emerg Infect Dis. 2007;13:315–7.

    Article  PubMed  CAS  Google Scholar 

  21. Doumith M, Ellington MJ, Livermore DM, Woodford N. Molecular mechanisms disrupting porin expression in ertapenem-resistant Klebsiella and Enterobacter spp. clinical isolates from the UK. J Antimicrob Chemother. 2009;63:659–67.

    Article  PubMed  CAS  Google Scholar 

  22. Endimiani A, Hujer AM, Hujer KM, Gatta JA, Schriver AC, Jacobs MR, et al. Evaluation of a commercial microarray system for detection of SHV-, TEM-, CTX-M-, and KPC-type beta-lactamase genes in Gram-negative isolates. J Clin Microbiol. 2010;48:2618–22.

    Article  PubMed  CAS  Google Scholar 

  23. Vading M, Samuelsen Ø, Haldorsen B, Sundsfjord AS, Giske CG. Comparison of disk diffusion, Etest and VITEK2 for detection of carbapenemase-producing Klebsiella pneumoniae with the EUCAST and CLSI breakpoint systems. Clin Microbiol Infect. 2011;17:668–74.

    Article  PubMed  CAS  Google Scholar 

  24. Blackburn J, Tsimiklis C, Lavergne V, Pilotte J, Grenier S, Gilbert A, et al. Carbapenem disks on MacConkey agar in screening methods for detection of carbapenem-resistant Gram-negative rods in stools. J Clin Microbiol. 2013;51(1):331–3.

    Article  PubMed  CAS  Google Scholar 

  25. Day KM, Pike R, Winstanley TG, Lanyon C, Cummings SP, Raza MW, et al. Use of faropenem as an indicator of carbapenemase activity in the Enterobacteriaceae. J Clin Microbiol. 2013;51(6):1881–6.

    Article  PubMed  CAS  Google Scholar 

  26. Anderson KF, Lonsway DR, Rasheed JK, Biddle J, Jensen B, McDougal LK, et al. Evaluation of methods to identify the Klebsiella pneumoniae carbapenemase in Enterobacteriaceae. J Clin Microbiol. 2007;45:2723–5.

    Article  PubMed  CAS  Google Scholar 

  27. Nordmann P, Girlich D, Poirel L. Detection of carbapenemase producers in Enterobaceriaceae using a novel screening medium. J Clin Microbiol. 2012;50:2761–6.

    Article  PubMed  Google Scholar 

  28. Samra Z, Bahar J, Madar-Shapiro L, Aziz N, Israel S, Bishara J. Evaluation of CHROMagar KPC for rapid detection of carbapenem-resistant Enterobacteriaceae. J Clin Microbiol. 2008;46:3110–1.

    Article  PubMed  CAS  Google Scholar 

  29. Moran Gilad J, Carmeli Y, Schwartz D, Navon-Venezia S. Laboratory evaluation of the CHROMagar KPC medium for identification of carbapenem-nonsusceptible Enterobacteriaceae. Diagn Microbiol Infect Dis. 2011;70(4):565–7.

    Article  PubMed  CAS  Google Scholar 

  30. Withey S, Scopes E. A new screening medium for detection of carbapenem-resistant Enterobacteriaceae. In: Abstracts of the Twenty-first European Congress for Clinical Microbiology and Infectious Diseases, Milan, 2011. Abstract P862.

  31. Cohen Stuart J, Voets G, Rottier W, Voskuil S, Scharringa J, van Dijk K, et al. Evaluation of the Oxoid Brilliance™ CRE Agar for the detection of carbapenemase-producing Enterobacteriaceae. Eur J Clin Microbiol Infect Dis. 2013. doi:10.1007/s10096-013-1896-7.

    Google Scholar 

  32. Vrioni G, Daniil I, Voulgari E, Ranellou K, Koumaki V, Ghirardi S, et al. Comparative evaluation of a prototype chromogenic medium (ChromID CARBA) for detecting carbapenemase-producing Enterobacteriaceae in surveillance rectal swabs. J Clin Microbiol. 2012;50(6):1841–6.

    Article  PubMed  CAS  Google Scholar 

  33. Panagea T, Galani I, Souli M, Adamou P, Antoniadou A, Giamarellou H. Evaluation of CHROMagar™ KPC for the detection of carbapenemase-producing Enterobacteriaceae in rectal surveillance cultures. Int J Antimicrob Agents. 2011;37:124–8.

    Article  PubMed  CAS  Google Scholar 

  34. Girlich D, Poirel L, Nordmann P. Comparison of the SUPERBA, CHROMagr KPC, and Brilliance CRE screening media for detection of Enterobacteriaceae with reduced susceptibility to carbapenems. Diagn Microbiol Infect Dis. 2013;75:214–7.

    Article  PubMed  CAS  Google Scholar 

  35. Centers for Disease Control and Prevention (CDC). Modified Hodge test for carbapenemase detection in Enterobacteriaceae. www.cdc.gov/HAI/pdfs/labSettings/HodgeTest_Carbapenemase_Enterobacteriaceae.pdf. Accessed 22 Sep 2013.

  36. Carvalhaes C, Picao R, Nicoletti A, Xavier D, Gales A. Cloverleaf test (modified Hodge test) for detecting carbapenemase production in Klebsiella pneumoniae: be aware of false positive results. J Antimicrob Chemother. 2010;65:249–51.

    Article  PubMed  CAS  Google Scholar 

  37. Girlich D, Poirel L, Nordmann P. Value of the modified Hodge test for detection of emerging carbapenemases in Enterobacteriaceae. J Clin Microbiol. 2012;50:477–9.

    Article  PubMed  CAS  Google Scholar 

  38. Österblad MH, Jalava P. Evaluation of EDTA and dipicolinic acid, with and without the addition of zinc, in the detection of metallo-lactamases. In: 19th European Congress of Clinical Microbiology and Infectious Diseases (ECCMID). ESCMID; 2009. Abstract P700.

  39. Giske CG, Gezelius L, Samuelsen Ø, Warner M, Sundsfjord A, Woodford N. A sensitive and specific phenotypic assay for detection of metallo-β-lactamases and KPC in Klebsiella pneumoniae with the use of meropenem disks supplemented with aminophenylboronic acid, dipicolinic acid and cloxacillin. Clin Microbiol Infect. 2011;17(4):552–6.

    Article  PubMed  CAS  Google Scholar 

  40. Tsakris A, Kristo I, Poulou A, Themeli-Digalaki K, Ikonomidis A, Petropoulou D, et al. Evaluation of boronic acid disk tests for differentiating KPC-possessing Klebsiella pneumoniae isolates in the clinical laboratory. J Clin Microbiol. 2009;47:362–7.

    Article  PubMed  CAS  Google Scholar 

  41. Miriagou V, Pappagianistis CC, Tzelepi E, Bou Casals J, Legakis NJ, Tzouvelekis LS. Detection of VIM-1 production in Proteus mirabilis by an imipenem dipicolinic acid double disk synergy test. J Clin Microbiol. 2010;4:667–8.

    Article  Google Scholar 

  42. Seah C, Low DE, Patel SN, Melano RG. Comparative evaluation of a chromogenic agar medium, the modified Hodge test, and a battery of meropenem-inhibitor discs for detection of carbapenemase activity in Enterobacteriaceae. J Clin Microbiol. 2011;49:1965–9.

    Article  PubMed  Google Scholar 

  43. Poirel L, Potron A, Nordmann P. OXA-48-like carbapenemases: the phantom menace. J Antimicrob Chemother. 2012;67:1597–606.

    Article  PubMed  CAS  Google Scholar 

  44. Miriagou V, Tzelepi E, Kotsakis SD, Daikos GL, Bou Casals J, Tzouvelekis LS. Combined disc methods for the detection of KPC- and/or VIM-positive Klebsiella pneumoniae: improving reliability for the double carbapenemase producers. Clin Microbiol Infect. 2013;19(9):E412–5.

    Article  PubMed  CAS  Google Scholar 

  45. Dortet L, Poirel L, Nordmann P. Rapid identification of Carbapenemase types in Enterobacteriaceae and Pseudomonas spp. by using a biochemical test. Antimicrob Agents Chemother. 2012;12:6437–40.

    Article  Google Scholar 

  46. Nordmann P, Poirel L, Dortet L. Rapid detection of Carbapenemase-producing Enterobacteriaceae. Emerg Infect Dis. 2012;18(9):1503–7.

    Article  PubMed  Google Scholar 

  47. Vasoo S, Cunningham SA, Kohner PC, Simner PJ, Mandrekar JN, Lolans K, et al. Comparison of a novel rapid chromogenic biochemical assay, the Carba NP test with the modified Hodge test for detection of carbapenemase producing Gram-negative bacilli. J Clin Microbiol. 2013;51(9):3097–101.

    Article  PubMed  CAS  Google Scholar 

  48. Bernabeu S, Poirel L, Nordmann P. Spectrophotometry-based detection of carbapenemase producers in Enterobacteriaceae. Diagn Microbiol Infect Dis. 2012;74:88–90.

    Article  PubMed  CAS  Google Scholar 

  49. Wang L, Han C, Sui W, Wang M, Xinxin L. MALDI-TOF MS applied to indirect carbapenemase detection: a validated procedure to clearly distinguish between carbapenemase-positive and carbapenemase-negative bacterial strains. Anal Bioanal Chem. 2013;405:5259–66.

    Article  PubMed  CAS  Google Scholar 

  50. Burckhardt I, Zimmermann S. Using matrix-assisted laser desorption ionization-time of flight mass spectrometry to detect carbapenem resistance within 1 to 2.5 hours. J Clin Microbiol. 2011;49(9):3321–4.

    Article  PubMed  CAS  Google Scholar 

  51. Hrabák J, Walková R, Studentová V, Chudácková E, Bergerová T. Carbapenemase activity detection by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2011;49(9):3222–7.

    Article  PubMed  Google Scholar 

  52. Cuzon G, Naas T, Bogaerts P, Glupczynski Y, Nordmann P. Evaluation of a DNA microarray for the rapid detection of extended-spectrum b-lactamases (TEM, SHV and CTX-M), plasmid-mediated cephalosporinases (CMY-2-like, DHA, FOX, ACC-1, ACT/MIR and CMY-1-like/MOX) and carbapenemases (KPC, OXA-48, VIM, IMP and NDM). J Antimicrob Chemother. 2012;67:1865–9.

    Article  PubMed  CAS  Google Scholar 

  53. Kaase M, Szabados F, Wassill L, Gatermann SG. Detection of carbapenemases in Enterobacteriaceae by a commercial multiplex PCR. J Clin Microbiol. 2012;50:3115–8.

    Article  PubMed  CAS  Google Scholar 

  54. Spanu T, Fiori B, D’Inzeo T, Canu G, Campoli S, Giani T, et al. Evaluation of the new NucliSENS EasyQ KPC test for rapid detection of Klebsiella pneumoniae carbapenemase genes (blaKPC). J Clin Microbiol. 2012;50:2783–5.

    Article  PubMed  Google Scholar 

  55. McEwan A, Derome A, Meunier D, Burns P, Woodford N, Dogson A. Evaluation of the NucliSENS EasyQ KPC assay for detection of Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae. J Clin Microbiol. 2013;6:1948–50.

    Article  Google Scholar 

  56. Cuzón G, Naas T, Bogaerts P, Glupczynski Y, Nordmann P. Probe ligation and real-time detection of KPC, OXA-48, VIM, IMP, and NDM carbapenemase genes. Diagn Microbiol Infect Dis. 2013;76(4):502–5.

    Article  PubMed  Google Scholar 

  57. Centers for Disease Control and Prevention (CDC). Vital signs: carbapenem-resistant Enterobacteriaceae. MMWR Morb Mortal Wkly Rep. 2013;62(9):165–70.

    Google Scholar 

  58. European Centre for Disease Prevention and Control (ECDC). European Antimicrobial Resistance Surveillance Network (EARS-net) interactive database. http://www.ecdc.europa.eu/en/healthtopics/antimicrobial_resistance/database/Pages/table_reports.aspx. Accessed 19 Aug 2013.

  59. Swaminathan M, Sharma S, Poliansky Blash S, Patel G, Banach DB, Phillips M, et al. Prevalence and risk factors for acquisition of carbapenem-resistant Enterobacteriaceae in the setting of endemicity. Infect Control Hosp Epidemiol. 2013;34(8):809–17.

    Article  PubMed  Google Scholar 

  60. Lewis JD, Bishop M, Heon B, Mathers AJ, Enfield KB, Sifri CD. Admission surveillance for carbapenemase-producing Enterobacteriaceae at a long-term acute care hospital. Infect Control Hosp Epidemiol. 2013;34(8):832–4.

    Article  PubMed  Google Scholar 

  61. Burns K, Morris D, Murchan S, Cunney R, Smyth E, Power M, et al. Carbapenemase-producing Enterobacteriaceae in Irish critical care units: results of a pilot prevalence study, June 2011. J Hosp Infect. 2013;83(1):71–3.

    Article  PubMed  CAS  Google Scholar 

  62. Drew RJ, Turton JF, Hill RL, Livermore DM, Woodford N, Paulus S, et al. Emergence of carbapenem-resistant Enterobacteriaceae in a UK paediatric hospital. J Hosp Infect. 2013;84(4):300–4.

    Article  PubMed  CAS  Google Scholar 

  63. Calfee D, Jenkins SG. Use of active surveillance cultures to detect asymptomatic colonization with carbapenem-resistant Klebsiella pneumoniae in intensive care unit patients. Infect Control Hosp Epidemiol. 2008;29(10):966–8.

    Article  PubMed  Google Scholar 

  64. Gagliotti C, Ciccarese V, Sarti M, Giordani S, Barozzi A, Braglia C, et al. Active surveillance for asymptomatic carriers of carbapenem-producing Klebsiella pneumoniae in a hospital setting. J Hosp Infect. 2013;83(4):330–2.

    Article  PubMed  CAS  Google Scholar 

  65. Won SY, Munoz-Price LS, Lolans K, Hota B, Weinstein RA, Hayden MK. Emergence and rapid regional spread of Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae. Clin Infect Dis. 2011;53(6):532–40.

    Article  PubMed  CAS  Google Scholar 

  66. Carmeli Y, Akova M, Cornaglia G, Daikos GL, Garau J, Harbarth S, et al. Controlling the spread of carbapenemase-producing Gram-negatives: therapeutic approach and infection control. Clin Microbiol Infect. 2010;16(2):102–11.

    Article  PubMed  CAS  Google Scholar 

  67. Magiorakos AP, Struelens M, Jasir A; European Centre for Disease Prevention and Control (ECDC). Risk assessment on the spread of carbapenemase-producing Enterobacteriaceae (CPE) through patient transfer between healthcare facilities, with special emphasis on cross-border transfer. http://ecdc.europa.eu/en/publications/Publications/110913_Risk_assessment_resistant_CPE.pdf. Accessed 22 Sep 2013.

  68. Glasner C, Albiger B, Buist G, Tanbić-Andrasević A, Canton R, Carmeli Y, et al. Carbapenemase-producing Enterobacteriaceae in Europe: a survey among national experts from 39 countries, February 2013. Euro Surveill. 2013;18(28).

  69. Siegel JD, Rhinehart E, Jackson M, Chiarello L. Management of multidrug-resistant organisms in health care settings, 2006. Am J Infect Control. 2007;35(10):S165–93.

    Article  PubMed  Google Scholar 

  70. Savard P, Carroll KC, Wilson LE, Perl TM. The challenges of carbapenemase-producing Enterobacteriaceae and infection prevention: protecting patients in the chaos. Infect Control Hosp Epidemiol. 2013;34(7):730–9.

    Article  PubMed  Google Scholar 

  71. Munoz-Price LS, Quinn JP. Deconstructing the infection control bundles for the containment of carbapenem-resistant Enterobacteriaceae. Curr Opin Infect Dis. 2013;26:378–87.

    Article  PubMed  Google Scholar 

  72. Mattner F, Bange FC, Meyer E, Seifert H, Wichelhaus TA, Chaberny IF. Preventing the spread of multidrug-resistant gram-negative pathogens: recommendations of an expert panel of the German Society for Hygiene and Microbiology. Dtsch Arztebl Int. 2012;109(3):39–45.

    PubMed  Google Scholar 

  73. Robert-Koch-Institut, Kommission für Krankenhaushygiene und Infektionsprävention (KRINKO). Hygienemaßnahmen bei Infektionen oder Besiedlung mit multiresistenten gramnegativen Stäbchen. http://www.rki.de/DE/Content/Infekt/Krankenhaushygiene/Kommission/Downloads/Gramneg_Erreger.pdf. Accessed 22 Sep 2013.

  74. Public Health England. Guidance on carbapenemase producers. http://www.hpa.org.uk/web/HPAweb&Page&HPAwebAutoListName/Page/1294740725255. Accessed 22 Sep 2013.

  75. Akova M, Daikos GL, Tzouvelekis L, Carmeli Y. Interventional strategies and current clinical experience with carbapenemase-producing Gram-negative bacteria. Clin Microbiol Infect. 2012;18:439–48.

    Article  PubMed  CAS  Google Scholar 

  76. WHO. WHO guidelines on hand hygiene in health care. http://whqlibdoc.who.int/publications/2009/9789241597906_eng.pdf. Accessed 22 Sep 2013.

  77. Zimmerman FS, Assous MV, Bdolah-Abram T, Lachish T, Yinnon AM, Wiener-Well Y. Duration of carriage of carbapenem-resistant Enterobacteriaceae following hospital discharge. Am J Infect Control. 2013;41:190–4.

    Article  PubMed  Google Scholar 

  78. • Tschudin-Sutter S, Frei R, Dangel M, Stranden A, Widmer AF. Rate of transmission of extended-spectrum beta-lactamase-producing Enterobacteriaceae without contact isolation. Clin Infect Dis. 2012;55(11):1505–11. This study questions the (generally agreed) value of single room isolation.

    Article  PubMed  Google Scholar 

  79. Guet-Revillet H, Le Monnier A, Breton N, Descamps P, Lecuyer H, Alaabouche I, et al. Environmental contamination with extended-spectrum β-lactamases: is there any difference between Escherichia coli and Klebsiella spp? Am J Infect Control. 2012;40(9):845–8.

    Article  PubMed  Google Scholar 

  80. Oostdijk EA, de Smet AM, Kesecioglu J, Bonten MJ, Dutch SOD-SDD Trialists Group. The role of intestinal colonization with gram-negative bacteria as a source for intensive care unit-acquired bacteremia. Crit Care Med. 2011;39:961–6.

    Article  PubMed  Google Scholar 

  81. Brun-Buisson C, Razazi K, Derde LP, Bonten MJ. Control of colonisation with extended-spectrum β-lactamase-producing bacteria: reply to Zandstra et al. Intensive Care Med. 2013;39(3):540.

    Article  PubMed  Google Scholar 

  82. Saidel-Odes L, Polachek H, Peled N, Riesenberg K, Schlaeffer F, Trabelsi Y, et al. A randomized, double-blind, placebo-controlled trial of selective digestive decontamination using oral gentamicin and oral polymyxin E for eradication of carbapenem-resistant Klebsiella pneumoniae carriage. Infect Control Hosp Epidemiol. 2012;33(1):14–9.

    Article  PubMed  Google Scholar 

  83. Zandstra D, Abecasis F, Taylor N, Damjanovic V, Silvestri L, van Saene HK. For control of colonisation with extended-spectrum β-lactamase-producing bacteria, SDD does work. Intensive Care Med. 2013;39(3):539.

    Article  PubMed  Google Scholar 

  84. Razazi K, Derde LP, Verachten M, Legrand P, Lesprit P, Brun-Buisson C. Clinical impact and risk factors for colonization with extended-spectrum β-lactamase-producing bacteria in the intensive care unit. Intensive Care Med. 2012;38(11):1769–78.

    Article  PubMed  Google Scholar 

  85. Halaby T, Al Naiemi N, Kluytmans J, van der Palen J, Vandenbroucke-Grauls CM. Emergence of colistin resistance in Enterobacteriaceae after the introduction of selective digestive tract decontamination in an intensive care unit. Antimicrob Agents Chemother. 2013;57(7):3224–9.

    Article  PubMed  CAS  Google Scholar 

  86. •• Climo MW, Yokoe DS, Warren DK, Perl TM, Bolon M, Herwaldt LA, et al. Effect of daily chlorhexidine bathing on hospital-acquired infection. N Engl J Med. 2013;368:533–42. This is one of the most important studies on the use of chlorhexidine bathing in preventing hospital infection.

    Article  PubMed  CAS  Google Scholar 

  87. Milstone AM, Elward A, Song X, Zerr DM, Orscheln R, Speck K, et al. Daily chlorhexidine bathing to reduce bacteraemia in critically ill children: a multicentre, cluster-randomised, crossover trial. Lancet. 2013;381(9872):1099–106.

    Article  PubMed  CAS  Google Scholar 

  88. Derde LP, Dautzenberg MJ, Bonten MJ. Chlorhexidine body washing to control antimicrobial-resistant bacteria in intensive care units: a systematic review. Intensive Care Med. 2012;38:931–9.

    Article  PubMed  CAS  Google Scholar 

  89. Nseir S, Blazejewski C, Lubret R, Wallet F, Courcol R, Durocher A. Risk of acquiring multidrug-resistant Gram-negative bacilli from prior room occupants in the intensive care unit. Clin Microbiol Infect. 2011;17(8):1201–8.

    Article  PubMed  CAS  Google Scholar 

  90. •• Ajao AO, Johnson JK, Harris AD, Zhan M, McGregor JC, Thom KA, et al. Risk of acquiring extended-spectrum β-lactamase-producing Klebsiella species and Escherichia coli from prior room occupants in the intensive care unit. Infect Control Hosp Epidemiol. 2013;34(5):453–8. This is one of the major studies about the limitations of the influence of the environment in ESBL transmission.

    Article  PubMed  Google Scholar 

  91. Hilty M, Betsch BY, Bögli-Stuber K, Heiniger N, Stadler M, Küffer M, et al. Transmission dynamics of extended-spectrum β-lactamase-producing Enterobacteriaceae in the tertiary care hospital and the household setting. Clin Infect Dis. 2012;55(7):967–75.

    Article  PubMed  Google Scholar 

  92. Blazejewski C, Guerry MJ, Preau S, Durocher A, Nseir S. New methods to clean ICU rooms. Infect Disord Drug Targets. 2011;11(4):365–75.

    Article  PubMed  CAS  Google Scholar 

  93. Best EL, Sandoe JA, Wilcox MH. Potential for aerosolization of Clostridium difficile after flushing toilets: the role of toilet lids in reducing environmental contamination risk. J Hosp Infect. 2012;80(1):1–5.

    Article  PubMed  CAS  Google Scholar 

  94. Johnson DL, Mead KR, Lynch RA, Hirst DV. Lifting the lid on toilet plume aerosol: a literature review with suggestions for future research. Am J Infect Control. 2013;41(3):254–8.

    Article  PubMed  Google Scholar 

  95. Marchaim D, Chopra T, Bhargava A, Bogan C, Dhar S, Hayakawa K, et al. Recent exposure to antimicrobials and carbapenem-resistant Enterobacteriaceae: the role of antimicrobial stewardship. Infect Control Hosp Epidemiol. 2012;33(8):817–30.

    Article  PubMed  Google Scholar 

  96. Martin ET, Tansek R, Collins V, Hayakawa K, Abreu-Lanfranco O, Chopra T, et al. The carbapenem-resistant Enterobacteriaceae score: a bedside score to rule out infection with carbapenem-resistant Enterobacteriaceae among hospitalized patients. Am J Infect Control. 2013;41:180–2.

    Article  PubMed  Google Scholar 

  97. Dellit TH, Owens RC, McGowan JE, Gerding DN, Weinstein RA, Burke JP, et al. Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America guidelines for developing an institutional program to enhance antimicrobial stewardship. Clin Infect Dis. 2007;44:159–77.

    Article  PubMed  Google Scholar 

  98. Society for Healthcare Epidemiology of America; Infectious Diseases Society of America; Pediatric Infectious Diseases Society. Policy statement on antimicrobial stewardship by the Society for Healthcare Epidemiology of America (SHEA), the Infectious Diseases Society of America (IDSA), and the Pediatric Infectious Diseases Society (PIDS). Infect Control Hosp Epidemiol. 2012;33(4):322–7.

    Article  Google Scholar 

  99. Centers for Disease Control and Prevention (CDC). Guidance for control of infections with carbapenem-resistant or Carbapenemase-producing Enterobacteriaceae in acute care facilities. MMWR Morb Mortal Wkly Rep. 2009;58(10):256–60.

    Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Eva-Brigitta Kruse and Ute Aurbach declare no conflict of interest.

Hilmar Wisplinghoff has received payment for development of educational presentations and travel and accommodation reimbursement from Siemens and Bruker Daltonics.

Human and Animal Rights and Informed Consent

This article does not report any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hilmar Wisplinghoff.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kruse, EB., Aurbach, U. & Wisplinghoff, H. Carbapenem-Resistant Enterobacteriaceae: Laboratory Detection and Infection Control Practices. Curr Infect Dis Rep 15, 549–558 (2013). https://doi.org/10.1007/s11908-013-0373-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11908-013-0373-x

Keywords

Navigation