Skip to main content

Advertisement

Log in

New advances in the pathogenesis and pathophysiology of bacterial meningitis

  • Published:
Current Infectious Disease Reports Aims and scope Submit manuscript

Abstract

Acute bacterial meningitis continues to be a significant health concern, with a fatality rate of more than 30% in some studies. Although the face of bacterial meningitis has changed substantially over the past 15 years, this disease still causes significant mortality (particularly in underdeveloped countries) and neurological sequelae. Our understanding of the pathophysiology of bacterial meningitis continues to develop. Our understanding of the mechanisms of neuronal injury now includes the concept that many of the pathological changes are only secondary to the infection and that the human immune system contributes to the majority of the neuronal death. A complicated series of interactions among immune, vascular and central nervous system cells, cytokines and chemokines, matrix metalloproteinases and free radical molecules are ultimately responsible for many bacterial meningitis changes. We hope that a complete understanding of these processes will ultimately lead to better diagnostic techniques and improved treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Bryan JP, et al.: Etiology and mortality of bacterial meningitis in northeastern Brazil. Rev Infect Dis 1990, 12:128–135.

    PubMed  CAS  Google Scholar 

  2. Gold R: Epidemiology of bacterial meningitis. Infect Dis Clin North Am 1999, 13(suppl 3):515–525. Update on the changing epidemiology of bacterial meningitis

    Article  PubMed  CAS  Google Scholar 

  3. Schuchat A, et al.: Bacterial Meningitis in the United States in 1995. N Engl J Med 1997, 337(suppl 14):970–976. Demonstrates the virtual elimination of Hib meningitis

    Article  PubMed  CAS  Google Scholar 

  4. Leib SL, Tauber MG: Pathogenesis of bacterial meningitis. Infect Dis Clin North Am 1999, 13(suppl_3):527–548. Excellent review

    Article  PubMed  CAS  Google Scholar 

  5. Irazuzta JE, et al.: Hypothermia decreases excitatory neurotransmitter release in bacterial meningitis in rabbits. Brain Res 1999, 847(suppl 1):143–148. Suggests that hypothermia may decrease the amount of CNS damage associated with bacterial meningitis

    Article  PubMed  CAS  Google Scholar 

  6. Shen EY, et al.: Excitatory and inhibitory amino acid levels in the cerebrospinal fluids of children with neurological disorders (English abstract). Chung Hua Min Kuo Hsiao Erh Ko I Hsueh Hui Tsa Chih 1999, 40(suppl 2):65–69.

    CAS  Google Scholar 

  7. Kastenbauer S, Koedel U, Pfister HW: Role of peroxynitrite as a mediator of pathophysiological alterations in experimental pneumococcal meningitis. J Infect Dis 1999, 180(suppl 4):1164–1170.

    Article  PubMed  CAS  Google Scholar 

  8. Paul R, et al.: Matrix metalloproteinases contribute to the blood-brain barrier disruption during bacterial meningitis. Ann Neurol 1998, 44(suppl 4):592–600.

    Article  PubMed  CAS  Google Scholar 

  9. Azeh I, et al.: Experimental pneumococcal meningitis in rabbits: the increase of matrix metalloproteinase-9 in cerebrospinal fluid correlates with leucocyte invasion. Neurosci Lett 1998, 256(suppl 3):127–30.

    Article  PubMed  CAS  Google Scholar 

  10. Kieseier BC, et al.: Differential expression of matrix metalloproteinases in bacterial meningitis. Brain 1999, 122(Pt 8):1579–1587. Analyzes the spectrum of different MMPs involved in experimental menigococcal meningitis.

    Article  PubMed  Google Scholar 

  11. Matsuura E, et al.: Marked increase of matrix metalloproteinase 9 in cerebrospinal fluid of patients with fungal or tuberculous meningoencephalitis. J Neurol Sci 2000, 173(suppl 1):45–52.

    Article  PubMed  CAS  Google Scholar 

  12. Lee MA, et al.: Serum gelatinase B, TIMP-1 and TIMP-2 levels in multiple sclerosis. A longitudinal clinical and MRI study [see comments]. Brain 1999, 122(Pt 2):191–197.

    Article  PubMed  Google Scholar 

  13. Leib S, et al.: Combined inhibition of tumor-necrosis-factor-alpha converting enzyme and matrix-metalloproteinases by BB1101 attenuates disease, mortality and brain damage in experimental bacterial meningitis. In Program and Abstracts of the 39th Interscience Conference on Antimicrobial Agents and Chemotherapy. Washington, D.C.: Am Soc Microbiol; 1999.

    Google Scholar 

  14. Tauber M, Kim Y, Leib S: Neuronal Injury in Meningitis. In Defense of the Brain: Current Concepts in the Immunopathogenesis of Clinical Aspects of CNS Infections. Edited by Peterson PK Peterson, Remington JS. CITY:North Point Press; 1997:124–143. Another excellent review of the pathology and pathogenesis of bacterial meningitis

    Google Scholar 

  15. Granert IC, et al.: Effects of polysaccharide fucoidin on cerebrospinal fluid interleukin-1 and tumor necrosis factor alpha in pneumococcal meningitis in the rabbit. Infect Immun 1999, 67(suppl 5):2071–2074.

    PubMed  CAS  Google Scholar 

  16. Freyer D, et al.: Cerebral endothelial cells release TNF-alpha after stimulation with cell walls of Streptococcus pneumoniae and regulate inducible nitric oxide synthase and ICAM-1 expression via autocrine loops. J Immunol 1999, 163(suppl 8):4308–4314.

    PubMed  CAS  Google Scholar 

  17. Bogdan I, et al.: Tumor necrosis factor-alpha contributes to apoptosis in hippocampal neurons during experimental group B streptococcal meningitis. J Infect Dis 1997, 176(suppl 3):693–697. TNF-alpha’s role in neuronal apoptosis.

    PubMed  CAS  Google Scholar 

  18. Ohga S, et al.: Cerebrospinal fluid cytokine levels and dexamethasone therapy in bacterial meningitis. J Infect 1999, 39(suppl 1):55–60.

    Article  PubMed  CAS  Google Scholar 

  19. Lopez-Cortes LF, et al.: Cerebrospinal fluid tumor necrosis factor-alpha, interleukin-1beta, interleukin-6, and interleukin-8 as diagnostic markers of cerebrospinal fluid infection in neurosurgical patients [see comments]. Crit Care Med 2000, 28(suppl 1):215–219.

    Article  PubMed  CAS  Google Scholar 

  20. Quagliarello VJ, et al.: Recombinant human interleukin-1 induces meningitis and blood-brain injury in the rat: characterization and comparison with tumor necrosis factor. J Clin Invest 1991, 87:1360–1366.

    PubMed  CAS  Google Scholar 

  21. van Deuren M, et al.: The pattern of interleukin-1beta (IL-1beta) and its modulating agents IL-1 receptor antagonist and IL-1 soluble receptor type II in acute meningococcal infections. Blood 1997, 90(suppl 3):1101–1108.

    PubMed  Google Scholar 

  22. Lopez-Cortes LF, et al.: Interleukin 6 in cerebrospinal fluid of patients with meningitis is not a useful diagnostic marker in the differential diagnosis of meningitis. Ann Clin Biochem 1997, 34(Pt 2):165–169.

    PubMed  Google Scholar 

  23. Gendrel D, et al.: Comparison of procalcitonin with C-reactive protein, interleukin 6 and interferon-alpha for differentiation of bacterial vs. viral infections. Pediatr Infect Dis J 1999, 18(suppl 10):875–881.

    PubMed  CAS  Google Scholar 

  24. Rusconi F, et al.: Interleukin 6 activity in infants and children with bacterial meningitis. Pediatr Infect Dis J 1991, 10:117–121.

    Article  PubMed  CAS  Google Scholar 

  25. Paris MM, et al.: The effect of interleukin-10 on meningeal inflammation in experimental bacterial meningitis. J Infect Dis 1997, 176(suppl 5):1239–1246.

    Article  PubMed  CAS  Google Scholar 

  26. Leib SL, et al.: Reactive oxygen intermediates contribute to necrotic and apoptotic neuronal injury in an infant rat model of bacterial meningitis due to group B streptococci. J Clin Invest 1996, 98(suppl 11):2632–2639.

    Article  PubMed  CAS  Google Scholar 

  27. Clemens JA, et al.: Global cerebral ischemia activates nuclear factor-kappa B prior to evidence of DNA fragmentation. Brain Res Mol Brain Res 1997, 48(suppl 2):187–196.

    Article  PubMed  CAS  Google Scholar 

  28. Mayer AM, et al.: Escherichia coli lipopolysaccharide potentiation and inhibition of rat neonatal microglia superoxide anion generation: correlation with prior lactic dehydrogenase, nitric oxide, tumor necrosis factor-alpha, thromboxane B2, and metalloprotease release. Shock 1999, 11(suppl 3):180–186.

    Article  PubMed  CAS  Google Scholar 

  29. Bernatowicz A, et al.: Pneumococci induce primary rat astrocytes cultures to release nitric oxide. In 34th ICAAC. Orlando: PUBLISHER; 1991.

    Google Scholar 

  30. Uysal G, et al.: Cerebrospinal fluid nitric oxide levels in childhood bacterial meningitis. Scand J Infect Dis 1999, 31(suppl 5):518–520.

    Article  PubMed  CAS  Google Scholar 

  31. Dawson TM, Dawson VL, Snyder SH: A novel neuronal messenger molecule in brain: the free radical, nitric oxide. Ann Neurol 1992, 32:297–311.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nathan, B.R., Scheld, W.M. New advances in the pathogenesis and pathophysiology of bacterial meningitis. Curr Infect Dis Rep 2, 332–336 (2000). https://doi.org/10.1007/s11908-000-0012-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11908-000-0012-1

Keywords

Navigation