Skip to main content
Log in

Gene-environment interactions in hypertension

  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Environmental factors such as stress, diet, and physical activity have long been recognized as playing an important role in the pathogenesis of essential hypertension. Individuals may vary in their response to these factors depending on differences in genes determining physiologic systems that mediate the response. In this article we discuss geneenvironment interactions that contribute to the development of essential hypertension (environmental susceptibility to hypertension) and those that are involved in control of the disease (pharmacogenetics).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Williams RR, Hunt SC, Hasstedt SJ, et al.: Are there interactions and relations between genetic and environmental factors predisposing to high blood pressure? Hypertension 1991, 18(Suppl I):I29-I37.

    PubMed  CAS  Google Scholar 

  2. Hunt SC, Williams RR, Barlow GK: Comparison of positive family history definitions for defining risk of future disease. J Chronic Dis 1986, 39:809–821.

    Article  PubMed  CAS  Google Scholar 

  3. Williams RR, Hunt SC, Hasstedt SJ, et al.: The genetics of hypertension: an unresolved puzzle with many pieces. In Human Genetics. Edited by Vogel F, Sperling K. Berlin: Springer Verlag; 1987:311–325.

    Google Scholar 

  4. Burke W, Motulsky AG: Hypertension. In The Genetic Basis of Human Diseases. Edited by King RA, Rotter JI, Motulsky AG. New York: Oxford University Press; 1992:170–191.

    Google Scholar 

  5. Kurtz TW, Spence MA: Genetics of essential hypertension. Am J Med 1993, 94:77–84.

    Article  PubMed  CAS  Google Scholar 

  6. Schork NJ, Nath SP, Lindpainter K, Jacob HJ: Extensions to quantitative trait locus mapping in experimental organisms. Hypertension 1996, 28:1104–1111.

    PubMed  CAS  Google Scholar 

  7. Hamet P: Environmentally-regulated genes of hypertension. Clin Exper Hypertens 1996, 18:267–278.

    CAS  Google Scholar 

  8. Hamet P: Environmental stress and genes of hypertension. Clin Exp Pharmacol Physio 1995, 22(Suppl 12):394–398.

    Google Scholar 

  9. Hamet P, Pausova Z, Adarichev S, et al.: Hypertension: genes andenvironment. J Hypertens 1998, 16:397–418.

    Article  PubMed  CAS  Google Scholar 

  10. Zerba KE, Sing CF: The role of genome type-environment interaction and time in understanding the impact of genetic polymorphisms on lipid metabolism. Curr Opin Lipidol 1993, 4:152–162.

    Article  CAS  Google Scholar 

  11. Garte S, Zocchetti C, Taioli E: Gene-environment interactions in the application of biomarkers of cancer susceptibility in epidemiology. Sci Publ 1997, 142:251–264.

    Google Scholar 

  12. Khoury MJ, Adams MJ, Flanders WD: An epidemiologic approach to ecogenetics. Am J Hum Genet 1988, 42:89–95.

    PubMed  CAS  Google Scholar 

  13. Rapp JP, Deng H: Development and characteristics of inbred strains of Dahl salt sensitive and salt-resistant rats. Hypertension 1985, 7:340–349.

    PubMed  CAS  Google Scholar 

  14. Yagil Y, Yagil C: Genetic basis of salt-susceptibility in the Sabra rat model of hypertension. Kidney Int 1998, 53:1493–1500.

    Article  PubMed  CAS  Google Scholar 

  15. Luft FC: Bad genes, good people, association, linkage, and the environment. J Mol Med 1997, 75:309–311.

    PubMed  CAS  Google Scholar 

  16. Shimkets RA, Warnock DG, Bositis CM, et al.: Liddle’s syndrome: heritable human hypertension caused by mutations in the beta subunit of the epithelial sodium channel. Cell 1994, 79(3):407–414.

    Article  PubMed  CAS  Google Scholar 

  17. Hansson JH, Nelson-Williams C, Suzuki H, et al.: Hypertension caused by a truncated epithelial sodium channel gamma subunit: genetic heterogeneity of Liddle syndrome. Nature Gen 1995, 11:76–82.

    Article  CAS  Google Scholar 

  18. Gordon RD: Heterogeneous hypertension. Nature Gen 1995, 11:6–9.

    Article  CAS  Google Scholar 

  19. Kern PA: Potential role of TNF-a and lipoprotein lipase as candidate genes for obesity J Nutr 1997, 127:1917S-1922S.

    PubMed  CAS  Google Scholar 

  20. Eaton SB, Konner M, Shostak M: Stoneagers in the fast lane: chronic degenerative diseases in evolutionary perspective. Am J Med 1988, 84:739–749.

    Article  PubMed  CAS  Google Scholar 

  21. Schork NJ, Cardon LR, Xu X: The future of genetic epidemiology. Trends Genet 1998, 14:266–272.

    Article  PubMed  CAS  Google Scholar 

  22. Julius S: The defense reaction: a common denominator of coronary risk and blood pressure in neurogenic hypertension? Clin Exp Hypertens 1995, 17:375 386.

    PubMed  Google Scholar 

  23. Henry JP, Cassel JC: Psyhcosocial factors in essential hypertension: recent epidemiologic and animal experimental evidence. Am J Epidemiol 1969, 90:171–200.

    PubMed  CAS  Google Scholar 

  24. Widgren BR, Wikstrand J, Berglund G, Andersson OK: Increased response to physical and mental stress in men with hypertensive parents. Hypertension 1992, 20:606 611.

    PubMed  Google Scholar 

  25. Spence JD, Bass M, Cameron Robinson H, et al.: Prospective study of ambulatory monitoring and echocardiography in borderline hypertension. Clin Invest Med 1991, 14(3):241–250.

    PubMed  CAS  Google Scholar 

  26. Pravenec M, Sun YL, Kunes J, et al.: Environmental susceptibility in hypertension: potential role of HSP70 and TNF-a genes. J Vasc Med Biol 1991, 3:297–302.

    Google Scholar 

  27. Dumas P, Pausova Z, Krenova D, et al.: QTL of the stress response by total genome scan of rat recombinant inbred strains: evidence for salt-sensitive loci [abstract]. The 9th International Symposium of SHR and Cardiovascular Genetics. Montreal, Canada, 1997. This study is the first one to identify genetic determinants of stress response in the rat genetic model of hypertension. In addition, the study demonstrates that sodium potentiates the effect of identifie quantitative trait loci.

  28. Hamet P, Kaiser MA, Sun YL, et al.: HSP27 locus cosegregates with left ventricular mass independently of blood pressure. Hypertension 1996, 28:1112–1117.

    PubMed  CAS  Google Scholar 

  29. Dumas P, Tremblay J, Hamet P: Stress modulation by electrolytes in salt-sensitive spontaneously hypertensive rats. Am J Med Sci 1994, 307(Suppl 1):130–137.

    Google Scholar 

  30. Dibona GF: Neural control of renal tubular solute and water transport. Miner Electrolyte Metab 1989, 15:44–50.

    PubMed  CAS  Google Scholar 

  31. Koepke JP, Dibona GF: High sodium intake enhances renal nerve and antinatriuretic responses to stress in spontaneously hypertensive rats. Hypertension 1985, 7:357–363.

    PubMed  CAS  Google Scholar 

  32. Staessen JA, Poulter NR, Fletcher AE, et al.: Psycho-emotional stress salt intake may interact to raise blood pressure. J Cardiovasc Risk 1994, 1:45–51.

    Article  PubMed  CAS  Google Scholar 

  33. Weinberger MH: Salt sensitivity: does it play an important role in the pathogenesis and treatment of hypertension. Curr Opin Nephrol Hypertens 1996, 5:205–208.

    Article  PubMed  CAS  Google Scholar 

  34. Tobian L: The protective effects of high-potassium diets in hypertension, and the mechanisms by which high-NaCl diets produce hypertension: a personal view. In Hypertension: Pathophysiology, Diagnosis, and Management, 2nd edn. Edited by Laragh JH, Brenner BM. New York: Raven Press Ltd.; 1995:299–312.

    Google Scholar 

  35. Rapp JP, Wang SM, Deng H: A genetic polymorphism in the renin gene of Dahl rats segregates with blood pressure. Science 1989, 243:542 544.

    Article  PubMed  Google Scholar 

  36. Cowley AW Jr: Genetic and nongenetic determinants of salt sensitivity and blood pressure. Am J Clin Nutr 1997, 65:587S-593S.

    PubMed  CAS  Google Scholar 

  37. Deng Y, Rapp JP: Cosegregation of blood pressure with angiotensin converting enzyme and atrial natriuretic peptide receptor genes using Dahl salt-sensitive rats. Nature Gen 1992, 1:267–272.

    Article  CAS  Google Scholar 

  38. Harris EL, Dene H, Rapp JP: Sa gene and blood pressure cosegregation using Dahl salt-sensitive rats Am J Hypertens 1993, 6:330–334.

    PubMed  CAS  Google Scholar 

  39. Deng AY, Dene H, Pravenec M, Rapp JP: Genetic mapping of two new blood pressure quantitative trait loci in the rat by genotyping endothelin system genes J Clin Invest 1994, 93:2701–2709.

    PubMed  CAS  Google Scholar 

  40. St-Lezin E, Pravenec M, Wong AL, et al.: Effects of renin gene transfer on blood pressure and renin gene expression in a congenic strain of Dahl salt-resistant rats. J Clin Invest 1996, 97:522–527.

    PubMed  CAS  Google Scholar 

  41. Deng AY, Dene H, Rapp JP: Congenic strains for the blood pressure quantitative trait locus on rat chromosome 2. Hypertension 1997, 30[part 1]:199–202.

    PubMed  CAS  Google Scholar 

  42. Hamet P, Mongeau E, Lambert J, et al.: Interactions among calcium, sodium and alcohol intake as determinants of blood pressure. Hypertension 1991, 17(Suppl I):I150-I154.

    PubMed  CAS  Google Scholar 

  43. Hamet P, Daignault-Gelinas M, Lambert J, et al.: Epidemiological evidence of an interaction between calcium and sodium intake impacting on blood pressure: a Montreal study. Am J Hypertens 199, 5:378–385.

  44. Spiegelman D, Israel RG, Bouchard C, Willett WC: Absolute fat mass, percent body fat, and body-fat distribution which is the real determinant of blood pressure and serum glucose. Am J Clin Nutr 1992, 55:1033–1044.

    PubMed  CAS  Google Scholar 

  45. Joffres MR, Hamet P, Rabkin SW, et al.: Prevalence, control and awareness of high blood pressure among Canadian adults. Can Med Assoc J 1992, 146:1997–2005.

    CAS  Google Scholar 

  46. Zhang Y, Proenca R, Maffel M, et al.: Positional cloning of the mouse obese gene and its human homologue Nature 1994, 372:425–431.

    Article  PubMed  CAS  Google Scholar 

  47. Tartagli LA, Dembrski M, Weng X, et al.: Identification and expression cloning of a leptin receptor, OBR. Cell 1995, 83:1263–1271.

    Article  Google Scholar 

  48. Spiegelman BM, Flier JS: Adipogenesis and obesity: rounding out the big picture. Cell 1996, 87:377–389.

    Article  PubMed  CAS  Google Scholar 

  49. Tritos NA, Mantzoros CS: Leptin: its role in obesity and beyond. Diabetologia 1997, 40:1371–1379.

    Article  PubMed  CAS  Google Scholar 

  50. Considine R, Sinha M, Heiman M, et al.: Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 1995, 334:292–295.

    Article  Google Scholar 

  51. Maffei M, Halaas J, Ravussin E, et al.: Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nature Med 1995, 1:1155–1161.

    Article  PubMed  CAS  Google Scholar 

  52. Frederich RC, Hamann A, Anderson S, et al.: Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nature Med 1995, 12:1311–1314.

    Google Scholar 

  53. Shek EW, Brands MW, Hall JE: Chronic leptin infusion increases arterial pressure. Hypertension 1998, 31:409–414.

    PubMed  CAS  Google Scholar 

  54. Haynes WG, Sivitz WI, Morgan DA, et al.: Sympathetic and cardiorenal actions of leptin. Hypertension 1997, 30:619 623.

    PubMed  Google Scholar 

  55. Barker DJP, Osmond C, Golding J, et al.: Growth in utero, blood pressure in childhood and adult life, and mortality from cardiovascular disease. BMJ 1989, 298:564–567.

    Article  PubMed  CAS  Google Scholar 

  56. Chertow GM, Brenner BM: Low birth weight as a risk factor for juvenile and adult hypertension. In Hypertension: Pathophysiology, Diagnosis, and Management, 2nd edn. Edited by Laragh JH, Brenner BM. New York: Raven Press; 1995:89–96.

    Google Scholar 

  57. Cater J, Gill M: The follow-up study: medical aspects. In Low birthweight: A Medical, Psychological and Social Study. Edited by Illsley R, Mitchell RG. Chichester: John Wiley; 1984:191–205.

    Google Scholar 

  58. Barker DJ, Gluckman PD, Godfrey KM, et al.: Fetal nutrition and cardiovascular disease in adult life. Lancet 1993, 341:938–941.

    Article  PubMed  CAS  Google Scholar 

  59. Godfrey K, Robinson S, Barker DJP, et al.: Maternal nutrition in early and late pregnancy in relation to placental and fetal growth. BMJ 1996, 312:410–414.

    PubMed  CAS  Google Scholar 

  60. Campbell DM, Hall MH, Barker DJP, et al.: Diet in pregnancy and the offspring’s blood pressure 40 years later. Br J Obstet Gynecol 1996, 103:273–280.

    CAS  Google Scholar 

  61. Langle SC, Jackson AA: Increased systolic blood pressure in adult rats induced by fetal exposure to maternal low protein diets. Clin Sci (Colch) 1994, 86:217–22.

    Google Scholar 

  62. Delafontaine P, Bernstein KE, Alexander RW: Insulin-like growth factor I gene expression in vascular cells. Hypertension 1991, 17:693–699.

    PubMed  CAS  Google Scholar 

  63. Martyn CN, Barker DJP, Jespersen S, et al.: Growth in utero, adult blood pressure, and arterial compliance. Br Heart J 1995, 73:116–121.

    PubMed  CAS  Google Scholar 

  64. Lithell HO, McKeigue PM, Berglund L, et al.: Relation of size at birth to non-insulin dependent diabetes and insulin concentrations in men aged 50–60 years. BMJ 199, 312:406–410.

  65. Katz EB, Stenbit AE, Hatton K, et al.: Cardiac and adipose tissue abnormalities but not diabetes in mice deficient in GLUT4. Nature 1995, 377:151–155.

    Article  PubMed  CAS  Google Scholar 

  66. Stenbit A, Tsao T-S, Li J, et al.: GLUT4 heterozygous knockout mice develop muscle insulin resistance and diabetes. Nature Med 1997, 3:1096–1101. This study clearly demonstrates that insulin resistance can be a determining factor in the pathogenesis of hypertension. Knockout of one copy of the GLUT4 gene in the mouse results in the development of both insulin resistance and hypertension.

    Article  PubMed  CAS  Google Scholar 

  67. Hattersley AT, Beards F, Ballantyne E, et al.: Mutations in the glucokinase gene of the fetus result in reduced birth weight. Nature Gen 1998, 19:268–270.

    Article  CAS  Google Scholar 

  68. Brenner BM, Chertow GM: Congenital oligonephropathy and the etiology of adult hypertension and progressive renal injury. Am J Kidney Dis 1994, 23:171–175.

    PubMed  CAS  Google Scholar 

  69. Bianchi G, Tripodi G, Casari G, et al.: Two point mutations within adducin genes are involved in blood pressure variation. Proc Natl Acad Sci U S A 1994, 91:3999–4003.

    Article  PubMed  CAS  Google Scholar 

  70. Hamet P, Pausova Z, Dumas P, et al.: Newborn and adult recombinant inbred strains: a tool for the search of genetic determinants of target organ damage in hypertension. Kidney Int 1998, 53:1488–1492.

    Article  PubMed  CAS  Google Scholar 

  71. Cierpial MA, McCarty R: Hypertension in SHR rats: contribution of maternal environment. Am J Physiol 1987, 253:H980-H984.

    PubMed  CAS  Google Scholar 

  72. Harrap SB, Nicolaci JA, Doyle AE: Persistent effects on blood pressure and renal haemodynamics following chronic angiotensin converting enzyme inhibition with perindopril. Clin Exp Pharmacol Physiol 1986, 13:753–765.

    PubMed  CAS  Google Scholar 

  73. Harrap SB, Van Der Merwe WM, Griffin SA, et al.: Brief angiotensin converting enzyme inhibitor treatment in young spontaneously hypertensive rats reduces blood pressure longterm. Hypertension 1990, 16:603–614.

    PubMed  CAS  Google Scholar 

  74. Wu JN, Berecek KH: Prevention of genetic hypertension by early treatment of spontaneously hypertensive rats with the angiotensin converting enzyme inhibitor captopril. Hypertension 1993, 22:139–146.

    PubMed  CAS  Google Scholar 

  75. Ferrari P: Pharmacogenomics: a new approach to individual therapy of hypertension? Curr Opin Nephrol Hypertens 1998, 7:217–222.

    PubMed  CAS  Google Scholar 

  76. Grim CE, Henry JP, Myers H: High blood pressure in blacks, salt, slavery, survival, stress, and racism. Edited by Laragh JH, Brenner BM. New York: Raven Press; 1995:171–207.

    Google Scholar 

  77. Saunders E, Weir MR, Kong BW, et al.: A comparison of the efficacy and safety of a beta-blocker, a calcium channel blocker, and a converting enzyme inhibitor in hypertensive blacks Arch Intern Med 1990, 150:1707–1713.

    Article  PubMed  CAS  Google Scholar 

  78. Matterson BJ, Reda DJ, Cushman WC, et al.: Single-drug therapy for hypertension in men. A comparison of six antihypertensive agents with placebo. The Department of Veterans Affairs Cooperative Study Group on Antihypertensive Agents. N Engl J Med 1993, 328:914–921.

    Article  Google Scholar 

  79. Zannad F: Concomitant diseases in elderly hypertensives: the position of nicardipine. J Hypertens 1996, 14:S37-S40.

    Article  CAS  Google Scholar 

  80. Schild L, Schneeberger E, Gautschi I, Firsov D: Identification of amino acid residues in the alpha, beta, and gamma subunits of the epithelial sodium channel (ENaC) involved in amiloride block and ion permeation. J Gen Physiol 1997, 109:15–26.

    Article  PubMed  CAS  Google Scholar 

  81. Lifton RP, Dluhy RG, Powers M, et al.: Hereditary hypertension caused by chimaeric gene duplications and ectopic expression of aldosterone synthase. Nature Gen 1992, 2:66–74.

    Article  CAS  Google Scholar 

  82. Vincent M, Samani NJ, Gauguier D, et al.: A pharmacogenetic approach to blood pressure in Lyon hypertensive rats: a chromosome 2 locus influences the response to a calcium antagonist. J Clin Invest 1997, 100:2000–2006. The first study to identify genetic determinants of acute blood pressure response to calcium antagonists in the rat genetic model of hypertension.

    Article  PubMed  CAS  Google Scholar 

  83. Deng AY, Dene H, Rapp JP: Mapping of a quantitative trait locus for blood pressure on rat chromosome 2. J Clin Invest 1994, 94:431–436.

    PubMed  CAS  Google Scholar 

  84. Samani NJ, Gauguier D, Vincent M, et al.: Analysis of quantitative trait loci for blood pressure on rat chromosome 2 and 13. Hypertension 1996, 28:1118–1122.

    PubMed  CAS  Google Scholar 

  85. Casari G, Barlassina C, Cusi D, et al.: Association of the alphaadducin locus with essential hypertension. Hypertension 1995, 25:320–326.

    PubMed  CAS  Google Scholar 

  86. Cusi D, Barlassina C, Azzani T, et al.: Polymorphisms of a-adducin and salt sensitivity in patients with essential hypertension. Lancet 1997, 349:1353–1357. This study demonstrates that in patients with essential hypertension, effective therapy of the disease is likely to depend on its pathogenesis. The authors showed that a specific mutation in the alpha-adducin gene is associated with the development of essential hypertension, salt sensitivity of blood pressure regulation, and increased responsiveness to diuretics.

    Article  PubMed  CAS  Google Scholar 

  87. Tamaki S, Iwai N, Tsujita Y, et al.: Polymorphism of alphaadducin in Japanese patients with essential hypertension. Hypertens Res 1998, 21:29–32.

    PubMed  CAS  Google Scholar 

  88. Dudley C, Keavney B, Casadei B, et al.: Prediction of patient responses to antihypertensive drugs using genetic polymorphisms: investigation of renin-angiotensin system genes. J Hypertens 199, 14:259–262.

  89. Penno G, Chaturvedi N, Talmud PJ, et al.: Effect of angiotensin-converting enzyme (ACE) gene polymorphism on progression of renal disease and the influence of ACE inhibition in IDDM patients. Diabetes 1998, 47:1507–1511. A pharmacogenetic study that clearly demonstrates that an effect of ACE inhibitors on progression of renal disease in patients with NIDDM depends on the genotype of the ACE gene.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pausova, Z., Tremblay, J. & Hamet, P. Gene-environment interactions in hypertension. Current Science Inc 1, 42–50 (1999). https://doi.org/10.1007/s11906-999-0072-z

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-999-0072-z

Keywords

Navigation