Skip to main content

Advertisement

Log in

Physiological Mechanisms of Hypertension and Cardiovascular Disease in End-Stage Kidney Disease

  • Mechanisms of Hypertension and Target-Organ Damage (JE Hall and ME Hall, Section Editors)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

In this article, we summarize recent advances in understanding hypertension and cardiovascular disease in patients with end-stage kidney disease.

Recent Findings

Factors such as anemia, valvular and vascular calcification, vasoconstrictors, uremic toxins, hypoglycemia, carbamylated proteins, oxidative stress, and inflammation have all been associated with the progression of cardiovascular disease in end-stage kidney disease but the causality of these mechanisms has not been proven.

Summary

The high risk of cardiovascular mortality has not improved as in the general population despite many advancements in cardiovascular care over the last two decades. Mechanisms that increase hypertension risk in these patients are centered on the control of extracellular fluid volume; however, over-correction of volume with dialysis can increase risks of intradialytic hypotension and death in these patients. This review presents both recent and classic work that increases our understanding of hypertension and cardiovascular disease in end-stage kidney disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Blacher J, Levy BI, Mourad JJ, Safar ME, Bakris G. From epidemiological transition to modern cardiovascular epidemiology: hypertension in the 21st century. Lancet. 2016; 388: p. 530–2. https://doi.org/10.1016/S0140-6736(16)00002-7. This article suggests important strategies to focus on to control blood pressure and reduce the risks of hypertension.

  2. Onesti G, Kim KE, Greco JA, del Guercio ET, Fernandes M, Swartz C. Blood pressure regulation in end-stage renal disease and anephric man. Circ Res. 1975;36:145–52. https://doi.org/10.1161/01.res.36.6.145.

    Article  CAS  PubMed  Google Scholar 

  3. Coleman TG, Bower JD, Langford HG, Guyton AC. Regulation of arterial pressure in the anephric state. Circulation. 1970;42:509–14. https://doi.org/10.1161/01.cir.42.3.509.

    Article  CAS  PubMed  Google Scholar 

  4. Group FHNT, Chertow GM, Levin NW, Beck GJ, Depner TA, Eggers PW, et al. In-center hemodialysis six times per week versus three times per week. N Engl J Med. 2010;363:2287–300. https://doi.org/10.1056/NEJMoa1001593.

    Article  CAS  Google Scholar 

  5. Chan CT, Greene T, Chertow GM, Kliger AS, Stokes JB, Beck GJ, et al. Determinants of left ventricular mass in patients on hemodialysis: frequent hemodialysis network (FHN) trials. Circ Cardiovasc Imaging. 2012;5:251–61. https://doi.org/10.1161/CIRCIMAGING.111.969923.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Van Buren PN, Inrig JK. Mechanisms and treatment of intradialytic hypertension. Blood Purif. 2016;41:188–93. https://doi.org/10.1159/000441313.

    Article  CAS  PubMed  Google Scholar 

  7. Charra B, Calemard E, Ruffet M, Chazot C, Terrat JC, Vanel T, et al. Survival as an index of adequacy of dialysis. Kidney Int. 1992;41:1286–91. https://doi.org/10.1038/ki.1992.191.

    Article  CAS  PubMed  Google Scholar 

  8. McGregor DO, Buttimore AL, Lynn KL, Yandle T, Nicholls MG. Effects of long and short hemodialysis on endothelial function: a short-term study. Kidney Int. 2003;63:709–15. https://doi.org/10.1046/j.1523-1755.2003.00770.x.

    Article  CAS  PubMed  Google Scholar 

  9. Lindley EJ. Reducing sodium intake in hemodialysis patients. Semin Dial. 2009;22:260–3. https://doi.org/10.1111/j.1525-139X.2009.00570.x.

    Article  PubMed  Google Scholar 

  10. Smyth A, O’Donnell MJ, Yusuf S, Clase CM, Teo KK, Canavan M, et al. Sodium intake and renal outcomes: a systematic review. Am J Hypertens. 2014;27:1277–84. https://doi.org/10.1093/ajh/hpt294.

    Article  CAS  PubMed  Google Scholar 

  11. Ikenoue T, Koike K, Fukuma S, Ogata S, Iseki K, Fukuhara S. Salt intake and all-cause mortality in hemodialysis patients. Am J Nephrol. 2018;48:87–95. https://doi.org/10.1159/000492034.

    Article  CAS  PubMed  Google Scholar 

  12. Cole NI, Swift PA, He FJ, MacGregor GA, Suckling RJ. The effect of dietary salt on blood pressure in individuals receiving chronic dialysis: a systematic review and meta-analysis of randomised controlled trials. J Hum Hypertens. 2019;33:319–26. https://doi.org/10.1038/s41371-018-0131-5.

    Article  CAS  PubMed  Google Scholar 

  13. Palmer SC, Saglimbene V, Mavridis D, Salanti G, Craig JC, Tonelli M, et al. Erythropoiesis-stimulating agents for anaemia in adults with chronic kidney disease: a network meta-analysis. Cochrane Database Syst Rev. 2014: p. CD010590. https://doi.org/10.1002/14651858.CD010590.pub2.

  14. Collister D, Komenda P, Hiebert B, Gunasekara R, Xu Y, Eng F, et al. The effect of erythropoietin-stimulating agents on health-related quality of life in anemia of chronic kidney disease: a systematic review and meta-analysis. Ann Intern Med. 2016;164:472–8. https://doi.org/10.7326/M15-1839.

    Article  PubMed  Google Scholar 

  15. Phrommintikul A, Haas SJ, Elsik M, Krum H. Mortality and target haemoglobin concentrations in anaemic patients with chronic kidney disease treated with erythropoietin: a meta-analysis. Lancet. 2007;369:381–8. https://doi.org/10.1016/S0140-6736(07)60194-9.

    Article  CAS  PubMed  Google Scholar 

  16. Koulouridis I, Alfayez M, Trikalinos TA, Balk EM, Jaber BL. Dose of erythropoiesis-stimulating agents and adverse outcomes in CKD: a metaregression analysis. Am J Kidney Dis. 2013;61:44–56. https://doi.org/10.1053/j.ajkd.2012.07.014.

    Article  CAS  PubMed  Google Scholar 

  17. Vaziri ND. Cardiovascular effects of erythropoietin and anemia correction. Curr Opin Nephrol Hypertens. 2001;10:633–7. https://doi.org/10.1097/00041552-200109000-00013.

    Article  CAS  PubMed  Google Scholar 

  18. Vaziri ND, Zhou XJ. Potential mechanisms of adverse outcomes in trials of anemia correction with erythropoietin in chronic kidney disease. Nephrol Dial Transplant. 2009;24:1082–8. https://doi.org/10.1093/ndt/gfn601.

    Article  CAS  PubMed  Google Scholar 

  19. Kim KE, Onesti G, Schwartz AB, Chinitz JL, Swartz C. Hemodynamics of hypertension in chronic end-stage renal disease. Circulation. 1972;46:456–64. https://doi.org/10.1161/01.cir.46.3.456.

    Article  CAS  PubMed  Google Scholar 

  20. Esler M, Jennings G, Biviano B, Lambert G, Hasking G. Mechanism of elevated plasma noradrenaline in the course of essential hypertension. J Cardiovasc Pharmacol. 1986;8(Suppl 5):S39-43. https://doi.org/10.1097/00005344-198608005-00008.

    Article  PubMed  Google Scholar 

  21. Grassi G, Quarti-Trevano F, Seravalle G, Arenare F, Volpe M, Furiani S, et al. Early sympathetic activation in the initial clinical stages of chronic renal failure. Hypertension. 2011;57:846–51. https://doi.org/10.1161/HYPERTENSIONAHA.110.164780.

    Article  CAS  PubMed  Google Scholar 

  22. • Kaur J, Young BE, and Fadel PJ. Sympathetic Overactivity in chronic kidney disease: consequences and mechanisms. Int J Mol Sci. 2017; 18. https://doi.org/10.3390/ijms18081682. This review sums the possible mechanisms including afferent sympathetic signals coming from remnant kidneys and subsequent consequences of sympathetic activation in ESKD.

  23. Hausberg M, Kosch M, Harmelink P, Barenbrock M, Hohage H, Kisters K, et al. Sympathetic nerve activity in end-stage renal disease. Circulation. 2002;106:1974–9. https://doi.org/10.1161/01.cir.0000034043.16664.96.

    Article  PubMed  Google Scholar 

  24. Augustyniak RA, Tuncel M, Zhang W, Toto RD, Victor RG. Sympathetic overactivity as a cause of hypertension in chronic renal failure. J Hypertens. 2002;20:3–9. https://doi.org/10.1097/00004872-200201000-00002.

    Article  CAS  PubMed  Google Scholar 

  25. Zazgornik J, Biesenbach G, Janko O, Gross C, Mair R, Brucke P, et al. Bilateral nephrectomy: the best, but often overlooked, treatment for refractory hypertension in hemodialysis patients. Am J Hypertens. 1998;11:1364–70. https://doi.org/10.1016/s0895-7061(98)00154-x.

    Article  CAS  PubMed  Google Scholar 

  26. Converse RL Jr, Jacobsen TN, Toto RD, Jost CM, Cosentino F, Fouad-Tarazi F, et al. Sympathetic overactivity in patients with chronic renal failure. N Engl J Med. 1992;327:1912–8. https://doi.org/10.1056/NEJM199212313272704.

    Article  PubMed  Google Scholar 

  27. Desir GV. Regulation of blood pressure and cardiovascular function by renalase. Kidney Int. 2009;76:366–70. https://doi.org/10.1038/ki.2009.169.

    Article  CAS  PubMed  Google Scholar 

  28. • Cao W, Wu L, Zhang X, Zhou J, Wang J, Yang Z, et al. Sympathetic Overactivity in CKD disrupts buffering of neurotransmission by endothelium-derived hyperpolarizing factor and enhances vasoconstriction. J Am Soc Nephrol. 2020; 31: p. 2312–2325. https://doi.org/10.1681/ASN.2020030234. This work demonstrated enhanced vasoconstriction in CKD mice, driven by impaired gap junctions and decreased endothelial cell hyperpolarization.

  29. Fenske W, Wanner C, Allolio B, Drechsler C, Blouin K, Lilienthal J, et al. Copeptin levels associate with cardiovascular events in patients with ESRD and type 2 diabetes mellitus. J Am Soc Nephrol. 2011;22:782–90. https://doi.org/10.1681/ASN.2010070691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Raj DS, Vincent B, Simpson K, Sato E, Jones KL, Welbourne TC, et al. Hemodynamic changes during hemodialysis: role of nitric oxide and endothelin. Kidney Int. 2002;61:697–704. https://doi.org/10.1046/j.1523-1755.2002.00150.x.

    Article  CAS  PubMed  Google Scholar 

  31. Lovati E, Richard A, Frey BM, Frey FJ, Ferrari P. Genetic polymorphisms of the renin-angiotensin-aldosterone system in end-stage renal disease. Kidney Int. 2001;60:46–54. https://doi.org/10.1046/j.1523-1755.2001.00769.x.

    Article  CAS  PubMed  Google Scholar 

  32. Morse SA, Dang A, Thakur V, Zhang R, Reisin E. Hypertension in chronic dialysis patients: pathophysiology, monitoring, and treatment. Am J Med Sci. 2003;325:194–201. https://doi.org/10.1097/00000441-200304000-00005.

    Article  PubMed  Google Scholar 

  33. Safar ME, London GM, Weiss YA, Milliez PL. Overhydratation and renin in hypertensive patients with terminal renal failure: a hemodynamic study. Clin Nephrol. 1975;4:183–8.

    CAS  PubMed  Google Scholar 

  34. Goodman WG, Goldin J, Kuizon BD, Yoon C, Gales B, Sider D, et al. Coronary-artery calcification in young adults with end-stage renal disease who are undergoing dialysis. N Engl J Med. 2000;342:1478–83. https://doi.org/10.1056/NEJM200005183422003.

    Article  CAS  PubMed  Google Scholar 

  35. Guerraty MA, Chai B, Hsu JY, Ojo AO, Gao Y, Yang W, et al. Relation of aortic valve calcium to chronic kidney disease (from the chronic renal insufficiency cohort study). Am J Cardiol. 2015;115:1281–6. https://doi.org/10.1016/j.amjcard.2015.02.011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Moe SM, Chen NX. Mechanisms of vascular calcification in chronic kidney disease. J Am Soc Nephrol. 2008;19:213–6. https://doi.org/10.1681/ASN.2007080854.

    Article  CAS  PubMed  Google Scholar 

  37. Wang MC, Tsai WC, Chen JY, Huang JJ. Stepwise increase in arterial stiffness corresponding with the stages of chronic kidney disease. Am J Kidney Dis. 2005;45:494–501. https://doi.org/10.1053/j.ajkd.2004.11.011.

    Article  PubMed  Google Scholar 

  38. Cho A, Lee YK, Oh J, Yoon JW, Shin DH, Jeon HJ, et al. The relationship between intradialytic hypotension and vascular calcification in hemodialysis patients. PLoS ONE. 2017;12: e0185846. https://doi.org/10.1371/journal.pone.0185846.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dubin R, Owens C, Gasper W, Ganz P, Johansen K. Associations of endothelial dysfunction and arterial stiffness with intradialytic hypotension and hypertension. Hemodial Int. 2011;15:350–8. https://doi.org/10.1111/j.1542-4758.2011.00560.x.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Mazzaferro S, Pasquali M, Taggi F, Baldinelli M, Conte C, Muci ML, et al. Progression of coronary artery calcification in renal transplantation and the role of secondary hyperparathyroidism and inflammation. Clin J Am Soc Nephrol. 2009;4:685–90. https://doi.org/10.2215/CJN.03930808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Abedi SA, Tarzamni MK, Nakhjavani MR, Bohlooli A. Effect of renal transplantation on coronary artery calcification in hemodialysis patients. Transplant Proc. 2009;41:2829–31. https://doi.org/10.1016/j.transproceed.2009.07.037.

    Article  CAS  PubMed  Google Scholar 

  42. Urena-Torres P, D’Marco L, Raggi P, Garcia-Moll X, Brandenburg V, Mazzaferro S, et al. Valvular heart disease and calcification in CKD: more common than appreciated. Nephrol Dial Transplant. 2020;35:2046–53. https://doi.org/10.1093/ndt/gfz133.

    Article  CAS  PubMed  Google Scholar 

  43. •• Marwick TH, Amann K, Bangalore S, Cavalcante JL, Charytan DM, Craig JC, et al. Chronic kidney disease and valvular heart disease: conclusions from a kidney disease: improving global outcomes (KDIGO) controversies conference. Kidney Int. 2019; 96: p. 836–849. https://doi.org/10.1016/j.kint.2019.06.025. This review highlights the clinical significance of valve calcification in ESKD patients and identifies the current knowledge gaps for optimal management.

  44. Bossola M, Tazza L, Vulpio C, Luciani G. Is regression of left ventricular hypertrophy in maintenance hemodialysis patients possible? Semin Dial. 2008;21:422–30. https://doi.org/10.1111/j.1525-139X.2008.00471.x.

    Article  PubMed  Google Scholar 

  45. Zoccali C, Benedetto FA, Mallamaci F, Tripepi G, Giacone G, Stancanelli B, et al. Left ventricular mass monitoring in the follow-up of dialysis patients: prognostic value of left ventricular hypertrophy progression. Kidney Int. 2004;65:1492–8. https://doi.org/10.1111/j.1523-1755.2004.00530.x.

    Article  PubMed  Google Scholar 

  46. Foley RN, Parfrey PS, Harnett JD, Kent GM, Martin CJ, Murray DC, et al. Clinical and echocardiographic disease in patients starting end-stage renal disease therapy. Kidney Int. 1995;47:186–92. https://doi.org/10.1038/ki.1995.22.

    Article  CAS  PubMed  Google Scholar 

  47. Zoccali C, Mallamaci F, Parlongo S, Cutrupi S, Benedetto FA, Tripepi G, et al. Plasma norepinephrine predicts survival and incident cardiovascular events in patients with end-stage renal disease. Circulation. 2002;105:1354–9. https://doi.org/10.1161/hc1102.105261.

    Article  CAS  PubMed  Google Scholar 

  48. Urakawa I, Yamazaki Y, Shimada T, Iijima K, Hasegawa H, Okawa K, et al. Klotho converts canonical FGF receptor into a specific receptor for FGF23. Nature. 2006;444:770–4. https://doi.org/10.1038/nature05315.

    Article  CAS  PubMed  Google Scholar 

  49. Musgrove J, Wolf M. Regulation and effects of FGF23 in chronic kidney disease. Annu Rev Physiol. 2020;82:365–90. https://doi.org/10.1146/annurev-physiol-021119-034650.

    Article  CAS  PubMed  Google Scholar 

  50. Scialla JJ, Xie H, Rahman M, Anderson AH, Isakova T, Ojo A, et al. Fibroblast growth factor-23 and cardiovascular events in CKD. J Am Soc Nephrol. 2014;25:349–60. https://doi.org/10.1681/ASN.2013050465.

    Article  CAS  PubMed  Google Scholar 

  51. Grabner A, Amaral AP, Schramm K, Singh S, Sloan A, Yanucil C, et al. Activation of cardiac fibroblast growth factor receptor 4 causes left ventricular hypertrophy. Cell Metab. 2015;22:1020–32. https://doi.org/10.1016/j.cmet.2015.09.002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Graves JM, Vallejo JA, Hamill CS, Wang D, Ahuja R, Patel S, et al. Fibroblast growth factor 23 (FGF23) induces ventricular arrhythmias and prolongs QTc interval in mice in an FGF receptor 4-dependent manner. Am J Physiol Heart Circ Physiol. 2021;320:H2283–94. https://doi.org/10.1152/ajpheart.00798.2020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pastor-Arroyo EM, Gehring N, Krudewig C, Costantino S, Bettoni C, Knopfel T, et al. The elevation of circulating fibroblast growth factor 23 without kidney disease does not increase cardiovascular disease risk. Kidney Int. 2018;94:49–59. https://doi.org/10.1016/j.kint.2018.02.017.

    Article  CAS  PubMed  Google Scholar 

  54. Takashi Y, Kinoshita Y, Hori M, Ito N, Taguchi M, Fukumoto S. Patients with FGF23-related hypophosphatemic rickets/osteomalacia do not present with left ventricular hypertrophy. Endocr Res. 2017;42:132–7. https://doi.org/10.1080/07435800.2016.1242604.

    Article  CAS  PubMed  Google Scholar 

  55. Matsui I, Oka T, Kusunoki Y, Mori D, Hashimoto N, Matsumoto A, et al. Cardiac hypertrophy elevates serum levels of fibroblast growth factor 23. Kidney Int. 2018;94:60–71. https://doi.org/10.1016/j.kint.2018.02.018.

    Article  CAS  PubMed  Google Scholar 

  56. Andrukhova O, Slavic S, Odorfer KI, Erben RG. Experimental myocardial infarction upregulates circulating fibroblast growth factor-23. J Bone Miner Res. 2015;30:1831–9. https://doi.org/10.1002/jbmr.2527.

    Article  CAS  PubMed  Google Scholar 

  57. Komaba H, Fukagawa M. Jury still out on whether FGF23 is a direct contributor, a useful biomarker, or neither. Kidney Int. 2021;100:989–93. https://doi.org/10.1016/j.kint.2021.04.045.

    Article  CAS  PubMed  Google Scholar 

  58. Bao JF, Hu PP, She QY, Li A. A Land of controversy: fibroblast growth factor-23 and uremic cardiac hypertrophy. J Am Soc Nephrol. 2020;31:1423–34. https://doi.org/10.1681/ASN.2020010081.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Abdallah E, Mosbah O, Khalifa G, Metwaly A, El-Bendary O. Assessment of the relationship between serum soluble Klotho and carotid intima-media thickness and left ventricular dysfunction in hemodialysis patients. Kidney Res Clin Pract. 2016;35:42–9. https://doi.org/10.1016/j.krcp.2015.12.006.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Kim HJ, Kang E, Oh YK, Kim YH, Han SH, Yoo TH, et al. The association between soluble klotho and cardiovascular parameters in chronic kidney disease: results from the KNOW-CKD study. BMC Nephrol. 2018;19:51. https://doi.org/10.1186/s12882-018-0851-3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. •• Hu JR, Grams ME, Coresh J, Hwang S, Kovesdy CP, Guallar E, et al. Serum metabolites and cardiac death in patients on hemodialysis. Clin J Am Soc Nephrol. 2019;14:747–9. https://doi.org/10.2215/CJN.12691018This study used metabolomics to identify uremic toxins that predicted cardiovascular mortality in hemodialysis patients.

    Article  PubMed  PubMed Central  Google Scholar 

  62. •• Shafi T, Powe NR, Meyer TW, Hwang S, Hai X, Melamed ML, et al. Trimethylamine N-oxide and cardiovascular events in hemodialysis patients. J Am Soc Nephrol. 2017; 28: p. 321–331. https://doi.org/10.1681/ASN.2016030374. This study demonstrates the use of the proatherogenic metabolite trimethylamine N-oxide as a predictor for cardiovascular morbidity and mortality in hemodialysis. Authors also conclude that these relationships may also depend on race.

  63. Shafi T, Sirich TL, Meyer TW, Hostetter TH, Plummer NS, Hwang S, et al. Results of the HEMO Study suggest that p-cresol sulfate and indoxyl sulfate are not associated with cardiovascular outcomes. Kidney Int. 2017;92:1484–92. https://doi.org/10.1016/j.kint.2017.05.012.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. •• Arinze NV, Yin W, Lotfollahzadeh S, Napoleon MA, Richards S, Walker JA, et al. Tryptophan metabolites suppress the Wnt pathway and promote adverse limb events in chronic kidney disease. J Clin Invest. 2022; 132. https://doi.org/10.1172/JCI142260. This study links possible mechanisms of the increased risk for peripheral artery disease in CKD patients. Authors demonstrated the importance of elevated uremic toxins in vascular rarefaction during CKD, leading to the increased risk of adverse limb events.

  65. Tanaka H, Iwasaki Y, Yamato H, Mori Y, Komaba H, Watanabe H, et al. p-Cresyl sulfate induces osteoblast dysfunction through activating JNK and p38 MAPK pathways. Bone. 2013;56:347–54. https://doi.org/10.1016/j.bone.2013.07.002.

    Article  CAS  PubMed  Google Scholar 

  66. Wong J, Piceno YM, DeSantis TZ, Pahl M, Andersen GL, Vaziri ND. Expansion of urease- and uricase-containing, indole- and p-cresol-forming and contraction of short-chain fatty acid-producing intestinal microbiota in ESRD. Am J Nephrol. 2014;39:230–237. https://doi.org/10.1159/000360010.67.

  67. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B, et al. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472:57-63. https://doi.org/10.1038/nature09922.

  68. Addabbo F, Chen Q, Patel DP, Rabadi M, Ratliff B, Zhang F, et al. Glutamine supplementation alleviates vasculopathy and corrects metabolic profile in an in vivo model of endothelial cell dysfunction. PLoS ONE. 2013;8: e65458. https://doi.org/10.1371/journal.pone.0065458.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Passauer J, Pistrosch F, Bussemaker E, Lassig G, Herbrig K, Gross P. Reduced agonist-induced endothelium-dependent vasodilation in uremia is attributable to an impairment of vascular nitric oxide. J Am Soc Nephrol. 2005;16:959–65. https://doi.org/10.1681/ASN.2004070582.

    Article  CAS  PubMed  Google Scholar 

  70. Forstermann U, Xia N, Li H. Roles of vascular oxidative stress and nitric oxide in the pathogenesis of atherosclerosis. Circ Res. 2017;120:713–35. https://doi.org/10.1161/CIRCRESAHA.116.309326.

    Article  CAS  PubMed  Google Scholar 

  71. Kielstein JT, Boger RH, Bode-Boger SM, Frolich JC, Haller H, Ritz E, et al. Marked increase of asymmetric dimethylarginine in patients with incipient primary chronic renal disease. J Am Soc Nephrol. 2002;13:170–6. https://doi.org/10.1681/ASN.V131170.

    Article  CAS  PubMed  Google Scholar 

  72. Shafi T, Hostetter TH, Meyer TW, Hwang S, Hai X, Melamed ML, et al. Serum asymmetric and symmetric dimethylarginine and morbidity and mortality in hemodialysis patients. Am J Kidney Dis. 2017;70:48–58. https://doi.org/10.1053/j.ajkd.2016.10.033.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. D’Apolito M, Du X, Pisanelli D, Pettoello-Mantovani M, Campanozzi A, Giacco F, et al. Urea-induced ROS cause endothelial dysfunction in chronic renal failure. Atherosclerosis. 2015;239:393–400. https://doi.org/10.1016/j.atherosclerosis.2015.01.034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Verbrugge FH, Tang WH, Hazen SL. Protein carbamylation and cardiovascular disease. Kidney Int. 2015;88:474–8. https://doi.org/10.1038/ki.2015.166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Chen Z, Ding S, Wang YP, Chen L, Mao JY, Yang Y, et al. Association of carbamylated high-density lipoprotein with coronary artery disease in type 2 diabetes mellitus: carbamylated high-density lipoprotein of patients promotes monocyte adhesion. J Transl Med. 2020;18:460. https://doi.org/10.1186/s12967-020-02623-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Koeth RA, Kalantar-Zadeh K, Wang Z, Fu X, Tang WH, Hazen SL. Protein carbamylation predicts mortality in ESRD. J Am Soc Nephrol. 2013;24:853–61. https://doi.org/10.1681/ASN.2012030254.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Drechsler C, Kalim S, Wenger JB, Suntharalingam P, Hod T, Thadhani RI, et al. Protein carbamylation is associated with heart failure and mortality in diabetic patients with end-stage renal disease. Kidney Int. 2015;87:1201–8. https://doi.org/10.1038/ki.2014.429.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Lui DTW, Cheung CL, Lee ACH, Wong Y, Shiu SWM, Tan KCB. Carbamylated HDL and mortality outcomes in type 2 diabetes. Diabetes Care. 2021;44:804–9. https://doi.org/10.2337/dc20-2186.

    Article  CAS  PubMed  Google Scholar 

  79. Costa-Hong V, Bortolotto LA, Jorgetti V, Consolim-Colombo F, Krieger EM, Lima JJ. Oxidative stress and endothelial dysfunction in chronic kidney disease. Arq Bras Cardiol. 2009; 92: p. 381–6, 398–403, 413–8. https://doi.org/10.1590/s0066-782x2009000500013.

  80. Caglar K, Peng Y, Pupim LB, Flakoll PJ, Levenhagen D, Hakim RM, et al. Inflammatory signals associated with hemodialysis. Kidney Int. 2002;62:1408–16. https://doi.org/10.1111/j.1523-1755.2002.kid556.x.

    Article  CAS  PubMed  Google Scholar 

  81. Friedrich B, Alexander D, Janessa A, Haring HU, Lang F, Risler T. Acute effects of hemodialysis on cytokine transcription profiles: evidence for C-reactive protein-dependency of mediator induction. Kidney Int. 2006;70:2124–30. https://doi.org/10.1038/sj.ki.5001865.

    Article  CAS  PubMed  Google Scholar 

  82. Takahashi T, Kubota M, Nakamura T, Ebihara I, Koide H. Interleukin-6 gene expression in peripheral blood mononuclear cells from patients undergoing hemodialysis or continuous ambulatory peritoneal dialysis. Ren Fail. 2000;22:345–54. https://doi.org/10.1081/jdi-100100878.

    Article  CAS  PubMed  Google Scholar 

  83. Inaguma D, Morii D, Kabata D, Yoshida H, Tanaka A, Koshi-Ito E, et al. Prediction model for cardiovascular events or all-cause mortality in incident dialysis patients. PLoS ONE. 2019;14: e0221352. https://doi.org/10.1371/journal.pone.0221352.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Siems W, Carluccio F, Grune T, Jakstadt M, Quast S, Hampl H, et al. Elevated serum concentration of cardiotoxic lipid peroxidation products in chronic renal failure in relation to severity of renal anemia. Clin Nephrol. 2002;58(Suppl 1):S20–5.

    CAS  PubMed  Google Scholar 

  85. Monostori P, Hracsko Z, Karg E, Varga IS, Kiss Z, Boros T, et al. Erythropoiesis-stimulating agent withdrawal and oxidative stress in hemodialysis. Clin Nephrol. 2009;71:521–6. https://doi.org/10.5414/cnp71521.

    Article  CAS  PubMed  Google Scholar 

  86. Himmelfarb J, Kane J, McMonagle E, Zaltas E, Bobzin S, Boddupalli S, et al. Alpha and gamma tocopherol metabolism in healthy subjects and patients with end-stage renal disease. Kidney Int. 2003;64:978–91. https://doi.org/10.1046/j.1523-1755.2003.00151.x.

    Article  CAS  PubMed  Google Scholar 

  87. Boaz M, Smetana S, Weinstein T, Matas Z, Gafter U, Iaina A, et al. Secondary prevention with antioxidants of cardiovascular disease in endstage renal disease (SPACE): randomised placebo-controlled trial. Lancet. 2000;356:1213–8. https://doi.org/10.1016/s0140-6736(00)02783-5.

    Article  CAS  PubMed  Google Scholar 

  88. Himmelfarb J, Ikizler TA, Ellis C, Wu P, Shintani A, Dalal S, et al. Provision of antioxidant therapy in hemodialysis (PATH): a randomized clinical trial. J Am Soc Nephrol. 2014;25:623–33. https://doi.org/10.1681/ASN.2013050545.

    Article  CAS  PubMed  Google Scholar 

  89. Coombes JS, Fassett RG. Antioxidant therapy in hemodialysis patients: a systematic review. Kidney Int. 2012;81:233–46. https://doi.org/10.1038/ki.2011.341.

    Article  CAS  PubMed  Google Scholar 

  90. Moen MF, Zhan M, Hsu VD, Walker LD, Einhorn LM, Seliger SL, et al. Frequency of hypoglycemia and its significance in chronic kidney disease. Clin J Am Soc Nephrol. 2009;4:1121–7. https://doi.org/10.2215/CJN.00800209.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. William JH, Morales A, Rosas SE. When ESKD complicates the management of diabetes mellitus. Semin Dial. 2020;33:209–22. https://doi.org/10.1111/sdi.12873.

    Article  PubMed  Google Scholar 

  92. Zoungas S, Patel A, Chalmers J, de Galan BE, Li Q, Billot L, et al. Severe hypoglycemia and risks of vascular events and death. N Engl J Med. 2010;363:1410–8. https://doi.org/10.1056/NEJMoa1003795.

    Article  CAS  PubMed  Google Scholar 

  93. Lee AK, Warren B, Lee CJ, McEvoy JW, Matsushita K, Huang ES, et al. The association of severe hypoglycemia with incident cardiovascular events and mortality in adults with type 2 diabetes. Diabetes Care. 2018;41:104–11. https://doi.org/10.2337/dc17-1669.

    Article  PubMed  Google Scholar 

  94. Yun JS, Park YM, Han K, Cha SA, Ahn YB, Ko SH. Severe hypoglycemia and the risk of cardiovascular disease and mortality in type 2 diabetes: a nationwide population-based cohort study. Cardiovasc Diabetol. 2019;18:103. https://doi.org/10.1186/s12933-019-0909-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Fitchett D, Inzucchi SE, Wanner C, Mattheus M, George JT, Vedin O, et al. Relationship between hypoglycaemia, cardiovascular outcomes, and empagliflozin treatment in the EMPA-REG OUTCOME(R) trial. Eur Heart J. 2020;41:209–17. https://doi.org/10.1093/eurheartj/ehz621.

    Article  CAS  PubMed  Google Scholar 

  96. Goto A, Arah OA, Goto M, Terauchi Y, Noda M. Severe hypoglycaemia and cardiovascular disease: systematic review and meta-analysis with bias analysis. BMJ. 2013;347: f4533. https://doi.org/10.1136/bmj.f4533.

    Article  PubMed  Google Scholar 

  97. Yeh JS, Sung SH, Huang HM, Yang HL, You LK, Chuang SY, et al. Hypoglycemia and risk of vascular events and mortality: a systematic review and meta-analysis. Acta Diabetol. 2016;53:377–92. https://doi.org/10.1007/s00592-015-0803-3.

    Article  CAS  PubMed  Google Scholar 

  98. Rhee CM, Kovesdy CP, You AS, Sim JJ, Soohoo M, Streja E, et al. Hypoglycemia-related hospitalizations and mortality among patients with diabetes transitioning to dialysis. Am J Kidney Dis. 2018;72:701–10. https://doi.org/10.1053/j.ajkd.2018.04.022.

    Article  PubMed  Google Scholar 

  99. International Hypoglycaemia Study G. Hypoglycaemia. cardiovascular disease, and mortality in diabetes: epidemiology, pathogenesis, and management. Lancet Diabetes Endocrinol. 2019;7:385–96. https://doi.org/10.1016/S2213-8587(18)30315-2.

    Article  Google Scholar 

  100. Stefansson BV, Brunelli SM, Cabrera C, Rosenbaum D, Anum E, Ramakrishnan K, et al. Intradialytic hypotension and risk of cardiovascular disease. Clin J Am Soc Nephrol. 2014;9:2124–32. https://doi.org/10.2215/CJN.02680314.

    Article  PubMed  PubMed Central  Google Scholar 

  101. • Reeves PB, Mc Causland FR. Mechanisms, clinical implications, and treatment of intradialytic hypotension. Clin J Am Soc Nephrol. 2018; 13: p. 1297–1303. https://doi.org/10.2215/CJN.12141017. This review shows the clear risk factors for intradialytic hypotension but also discusses the lack of prospective studies and the uncertainties of its impact on cardiovascular mortality in hemodialysis patients. These authors also give potential strategies to limit intradialytic hypotension.

  102. Barnas MG, Boer WH, Koomans HA. Hemodynamic patterns and spectral analysis of heart rate variability during dialysis hypotension. J Am Soc Nephrol. 1999;10:2577–84. https://doi.org/10.1681/ASN.V10122577.

    Article  CAS  PubMed  Google Scholar 

  103. Oliver JR, Korner PI, Woods RL, Zhu JL. Reflex release of vasopressin and renin in hemorrhage is enhanced by autonomic blockade. Am J Physiol. 1990;258:H221–8. https://doi.org/10.1152/ajpheart.1990.258.1.H221.

    Article  CAS  PubMed  Google Scholar 

  104. Convertino VA, Rickards CA, Ryan KL. Autonomic mechanisms associated with heart rate and vasoconstrictor reserves. Clin Auton Res. 2012;22:123–30. https://doi.org/10.1007/s10286-011-0151-5.

    Article  PubMed  Google Scholar 

  105. Studinger P, Lenard Z, Mersich B, Reusz GS, Kollai M. Determinants of baroreflex function in juvenile end-stage renal disease. Kidney Int. 2006;69:2236–42. https://doi.org/10.1038/sj.ki.5000307.

    Article  CAS  PubMed  Google Scholar 

  106. Zucker IH, Earle AM, Gilmore JP. The mechanism of adaptation of left atrial stretch receptors in dogs with chronic congestive heart failure. J Clin Invest. 1977;60:323–31. https://doi.org/10.1172/JCI108780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. McIntyre CW, Burton JO, Selby NM, Leccisotti L, Korsheed S, Baker CS, et al. Hemodialysis-induced cardiac dysfunction is associated with an acute reduction in global and segmental myocardial blood flow. Clin J Am Soc Nephrol. 2008;3:19–26. https://doi.org/10.2215/CJN.03170707.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Secher NH, Jacobsen J, Friedman DB, Matzen S. Bradycardia during reversible hypovolaemic shock: associated neural reflex mechanisms and clinical implications. Clin Exp Pharmacol Physiol. 1992;19:733–43. https://doi.org/10.1111/j.1440-1681.1992.tb00411.x.

    Article  CAS  PubMed  Google Scholar 

  109. Mark AL. The Bezold-Jarisch reflex revisited: clinical implications of inhibitory reflexes originating in the heart. J Am Coll Cardiol. 1983;1:90–102. https://doi.org/10.1016/s0735-1097(83)80014-x.

    Article  CAS  PubMed  Google Scholar 

  110. Paton JF. Convergence properties of solitary tract neurones driven synaptically by cardiac vagal afferents in the mouse. J Physiol. 1998;508(Pt 1):237–52. https://doi.org/10.1111/j.1469-7793.1998.237br.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Converse RL Jr, Jacobsen TN, Jost CM, Toto RD, Grayburn PA, Obregon TM, et al. Paradoxical withdrawal of reflex vasoconstriction as a cause of hemodialysis-induced hypotension. J Clin Invest. 1992;90:1657–65. https://doi.org/10.1172/JCI116037.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Corder CN, Sharma J, McDonald RH Jr. Variable levels of plasma catecholamines and dopamine beta-hydroxylase in hemodialysis patients. Nephron. 1980;25:267–72. https://doi.org/10.1159/000181855.

    Article  CAS  PubMed  Google Scholar 

  113. Mann H, Konigs F, Heintz B, Gladziwa U, Kirsten R, Stiller S. Vasoactive hormones during hemodialysis with intermittent ultrafiltration. ASAIO Trans. 1990;36:M367–9.

    CAS  PubMed  Google Scholar 

  114. Yoo KD, Kim CT, Kwon S, Lee J, Oh YK, Kang SW, et al. Renin angiotensin aldosterone system blockades does not protect residual renal function in patients with hemodialysis at 1 year after dialysis initiation: a prospective observational cohort study. Sci Rep. 2019;9:18103. https://doi.org/10.1038/s41598-019-54572-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hinojosa-Laborde C, Shade RE, Muniz GW, Bauer C, Goei KA, Pidcoke HF, et al. Validation of lower body negative pressure as an experimental model of hemorrhage. J Appl Physiol. 1985;2014(116):406–15. https://doi.org/10.1152/japplphysiol.00640.2013.

    Article  Google Scholar 

  116. Friess U, Rascher W, Ritz E, Gross P. Failure of arginine-vasopressin and other pressor hormones to increase in severe recurrent dialysis hypotension. Nephrol Dial Transplant. 1995;10:1421–7.

    CAS  PubMed  Google Scholar 

  117. van der Zee S, Thompson A, Zimmerman R, Lin J, Huan Y, Braskett M, et al. Vasopressin administration facilitates fluid removal during hemodialysis. Kidney Int. 2007;71:318–24. https://doi.org/10.1038/sj.ki.5001885.

    Article  CAS  PubMed  Google Scholar 

  118. Beladi-Mousavi SS, Beladi-Mousavi M, Hayati F, Talebzadeh M. Effect of intranasal DDAVP in prevention of hypotension during hemodialysis. Nefrologia. 2012;32:89–93. https://doi.org/10.3265/Nefrologia.pre2011.Nov.10967.

    Article  PubMed  Google Scholar 

Download references

Funding

This work was supported by grants from the National Institute on Minority Health and Health Disparities (R00 MD014738) to JSC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshitsugu Obi.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Mechanisms of Hypertension and Target-Organ Damage

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Clemmer, J.S., Shafi, T. & Obi, Y. Physiological Mechanisms of Hypertension and Cardiovascular Disease in End-Stage Kidney Disease. Curr Hypertens Rep 24, 413–424 (2022). https://doi.org/10.1007/s11906-022-01203-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11906-022-01203-7

Keywords

Navigation