Skip to main content

Advertisement

Log in

Current Perspectives on Systemic Hypertension in Heart Failure with Preserved Ejection Fraction

  • Hypertension and the Heart (D Kitzman and B Upadhya, Section Editors)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Heart failure with preserved ejection fraction (HFpEF) is a prevalent but incompletely understood syndrome. Traditional models of HFpEF pathophysiology revolve around systemic HTN and other causes of increased left ventricular afterload leading to left ventricular hypertrophy (LVH) and diastolic dysfunction. However, emerging models attribute the development of HFpEF to systemic proinflammatory changes secondary to common comorbidities which include HTN. Alterations in passive ventricular stiffness, ventricular-arterial coupling, peripheral microvascular function, systolic reserve, and chronotropic response occur. As a result, HFpEF is heterogeneous in nature, making it difficult to prescribe uniform therapies to all patients. Nonetheless, treating systemic HTN remains a cornerstone of HFpEF management. Antihypertensive therapies have been linked to LVH regression and improvement in diastolic dysfunction. However, to date, no therapies have definitive mortality benefit in HFpEF. Non-pharmacologic management for HTN, including dietary modification, exercise, and treating sleep disordered breathing, may provide some morbidity benefit in the HFpEF population. Future research is need to identify effective treatments, perhaps in more specific subgroups, and focus may need to shift from reducing mortality to improving exercise capacity and symptoms. Tailoring antihypertensive therapies to specific phenotypes of HFpEF may be an important component of this strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Drazner MH, et al. 2013 ACCF/AHA guideline for the management of heart failure: executive summary: a report of the American College of Cardiology Foundation/American Heart Association Task Force on practice guidelines. Circulation. 2013;128:1810–52.

    Article  PubMed  Google Scholar 

  2. Owan TE, Hodge DO, Herges RM, Jacobsen SJ, Roger VL, Redfield MM. Trends in prevalence and outcome of heart failure with preserved ejection fraction. N Engl J Med. 2006;355:251–9.

    Article  CAS  PubMed  Google Scholar 

  3. Heidenreich PA, Albert NM, Allen LA, Bluemke DA, Butler J, Fonarow GC, et al. Forecasting the impact of heart failure in the United States: a policy statement from the American Heart Association. Circ Heart Fail. 2013;6:606–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Writing Group Members, Mozaffarian D, Benjamin EJ, Go AS, Arnett DK, Blaha MJ, et al. Heart Disease and Stroke Statistics-2016 Update: a Report From the American Heart Association. Circulation. 2016;133:e38–e360.

    Article  Google Scholar 

  5. Steinberg BA, Zhao X, Heidenreich PA, Peterson ED, Bhatt DL, Cannon CP, et al. Trends in patients hospitalized with heart failure and preserved left ventricular ejection fraction: prevalence, therapies, and outcomes. Circulation. 2012;126:65–75.

    Article  PubMed  Google Scholar 

  6. Meta-analysis Global Group in Chronic Heart Failure (MAGGIC). The survival of patients with heart failure with preserved or reduced left ventricular ejection fraction: an individual patient data meta-analysis. Eur Heart J. 2012;33:1750–7.

    Article  Google Scholar 

  7. Yancy CW, Lopatin M, Stevenson LW, De Marco T, Fonarow GC, ADHERE Scientific Advisory Committee and Investigators. Clinical presentation, management, and in-hospital outcomes of patients admitted with acute decompensated heart failure with preserved systolic function: a report from the Acute Decompensated Heart Failure National Registry (ADHERE) Database. J Am Coll Cardiol. 2006;47:76–84.

    Article  PubMed  Google Scholar 

  8. Fonarow GC, Stough WG, Abraham WT, Albert NM, Gheorghiade M, Greenberg BH, et al. Characteristics, treatments, and outcomes of patients with preserved systolic function hospitalized for heart failure: a report from the OPTIMIZE-HF Registry. J Am Coll Cardiol. 2007;50:768–77.

    Article  PubMed  Google Scholar 

  9. Eaton CB, Pettinger M, Rossouw J, Martin LW, Foraker R, Quddus A, et al. Risk factors for incident hospitalized heart failure with preserved versus reduced ejection fraction in a multiracial cohort of postmenopausal women. Circ Heart Fail. 2016;9.

  10. Djoussé L, Driver JA, Gaziano JM. Relation between modifiable lifestyle factors and lifetime risk of heart failure. JAMA. 2009;302:394–400.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Levy D, Larson MG, Vasan RS, Kannel WB, Ho KK. The progression from hypertension to congestive heart failure. JAMA. 1996;275:1557–62.

    Article  CAS  PubMed  Google Scholar 

  12. Kostis JB, Davis BR, Cutler J, Grimm RH, Berge KG, Cohen JD, et al. Prevention of heart failure by antihypertensive drug treatment in older persons with isolated systolic hypertension. SHEP Cooperative Research Group. JAMA. 1997;278:212–6.

    Article  CAS  PubMed  Google Scholar 

  13. ALLHAT Officers and Coordinators for the ALLHAT Collaborative Research Group. The Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: the Antihypertensive and Lipid-Lowering Treatment to Prevent Heart Attack Trial (ALLHAT). JAMA. 2002;288:2981–97.

    Article  Google Scholar 

  14. Beckett NS, Peters R, Fletcher AE, Staessen JA, Liu L, Dumitrascu D, et al. Treatment of hypertension in patients 80 years of age or older. N Engl J Med. 2008;358:1887–98.

    Article  CAS  PubMed  Google Scholar 

  15. SPRINT Research Group, Wright JT, Williamson JD, Whelton PK, Snyder JK, Sink KM, et al. A randomized trial of intensive versus standard blood-pressure control. N Engl J Med. 2015;373:2103–16.

    Article  CAS  Google Scholar 

  16. Agha G, Loucks EB, Tinker LF, Waring ME, Michaud DS, Foraker RE, et al. Healthy lifestyle and decreasing risk of heart failure in women: the Women’s Health Initiative observational study. J Am Coll Cardiol. 2014;64:1777–85.

    Article  PubMed  PubMed Central  Google Scholar 

  17. James PA, Oparil S, Carter BL, Cushman WC, Dennison-Himmelfarb C, Handler J, et al. 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA. 2014;311:507–20.

    Article  CAS  PubMed  Google Scholar 

  18. Beache GM, Herzka DA, Boxerman JL, Post WS, Gupta SN, Faranesh AZ, et al. Attenuated myocardial vasodilator response in patients with hypertensive hypertrophy revealed by oxygenation-dependent magnetic resonance imaging. Circulation. 2001;104:1214–7.

    Article  CAS  PubMed  Google Scholar 

  19. Carluccio E, Tommasi S, Bentivoglio M, Buccolieri M, Filippucci L, Prosciutti L, et al. Prognostic value of left ventricular hypertrophy and geometry in patients with a first, uncomplicated myocardial infarction. Int J Cardiol. 2000;74:177–83.

    Article  CAS  PubMed  Google Scholar 

  20. Norton GR, Woodiwiss AJ, Gaasch WH, Mela T, Chung ES, Aurigemma GP, et al. Heart failure in pressure overload hypertrophy. The relative roles of ventricular remodeling and myocardial dysfunction. J Am Coll Cardiol. 2002;39:664–71.

    Article  PubMed  Google Scholar 

  21. Okin PM, Wachtell K, Devereux RB, Harris KE, Jern S, Kjeldsen SE, et al. Regression of electrocardiographic left ventricular hypertrophy and decreased incidence of new-onset atrial fibrillation in patients with hypertension. JAMA. 2006;296:1242–8.

    Article  CAS  PubMed  Google Scholar 

  22. Verdecchia P, Carini G, Circo A, Dovellini E, Giovannini E, Lombardo M, et al. Left ventricular mass and cardiovascular morbidity in essential hypertension: the MAVI study. J Am Coll Cardiol. 2001;38:1829–35.

    Article  CAS  PubMed  Google Scholar 

  23. Haider AW, Larson MG, Benjamin EJ, Levy D. Increased left ventricular mass and hypertrophy are associated with increased risk for sudden death. J Am Coll Cardiol. 1998;32:1454–9.

    Article  CAS  PubMed  Google Scholar 

  24. Burke AP, Farb A, Liang YH, Smialek J, Virmani R. Effect of hypertension and cardiac hypertrophy on coronary artery morphology in sudden cardiac death. Circulation. 1996;94:3138–45.

    Article  CAS  PubMed  Google Scholar 

  25. Levy D, Salomon M, D’Agostino RB, Belanger AJ, Kannel WB. Prognostic implications of baseline electrocardiographic features and their serial changes in subjects with left ventricular hypertrophy. Circulation. 1994;90:1786–93.

    Article  CAS  PubMed  Google Scholar 

  26. Mathew J, Sleight P, Lonn E, Johnstone D, Pogue J, Yi Q, et al. Reduction of cardiovascular risk by regression of electrocardiographic markers of left ventricular hypertrophy by the angiotensin-converting enzyme inhibitor ramipril. Circulation. 2001;104:1615–21.

    Article  CAS  PubMed  Google Scholar 

  27. Arnold JMO, Yusuf S, Young J, Mathew J, Johnstone D, Avezum A, et al. Prevention of Heart Failure in Patients in the Heart Outcomes Prevention Evaluation (HOPE) Study. Circulation. 2003;107:1284–90.

    Article  CAS  PubMed  Google Scholar 

  28. Aurigemma GP, Gaasch WH. Clinical practice. Diastolic heart failure. N Engl J Med. 2004;351:1097–105.

    Article  CAS  PubMed  Google Scholar 

  29. Nagueh SF, Smiseth OA, Appleton CP, Byrd BF, Dokainish H, Edvardsen T, et al. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr Off Publ Am Soc Echocardiogr. 2016;29:277–314.

    Article  Google Scholar 

  30. Zile MR, Baicu CF, Gaasch WH. Diastolic heart failure—abnormalities in active relaxation and passive stiffness of the left ventricle. N Engl J Med. 2004;350:1953–9.

    Article  CAS  PubMed  Google Scholar 

  31. Redfield MM, Jacobsen SJ, Burnett JC, Mahoney DW, Bailey KR, Rodeheffer RJ. Burden of systolic and diastolic ventricular dysfunction in the community: appreciating the scope of the heart failure epidemic. JAMA. 2003;289:194–202.

    Article  PubMed  Google Scholar 

  32. Halley CM, Houghtaling PL, Khalil MK, Thomas JD, Jaber WA. Mortality rate in patients with diastolic dysfunction and normal systolic function. Arch Intern Med. 2011;171:1082–7.

    Article  PubMed  Google Scholar 

  33. Lam CSP, Roger VL, Rodeheffer RJ, Bursi F, Borlaug BA, Ommen SR, et al. Cardiac structure and ventricular-vascular function in persons with heart failure and preserved ejection fraction from Olmsted County, Minnesota. Circulation. 2007;115:1982–90.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Shah AM, Shah SJ, Anand IS, Sweitzer NK, O’Meara E, Heitner JF, et al. Cardiac structure and function in heart failure with preserved ejection fraction: baseline findings from the echocardiographic study of the Treatment of Preserved Cardiac Function Heart Failure with an Aldosterone Antagonist trial. Circ Heart Fail. 2014;7:104–15.

    Article  CAS  PubMed  Google Scholar 

  35. • Paulus WJ, Tschöpe C. A novel paradigm for heart failure with preserved ejection fraction: comorbidities drive myocardial dysfunction and remodeling through coronary microvascular endothelial inflammation. J Am Coll Cardiol. 2013;62:263–71. This paper introduces the paradigm shift from the traditional model of HFpEF as a direct result of HTN and subsequent diastolic dysfunction to a product of systemic inflammation from co-morbid conditions. This article outlines the proinflammatory cascade mediated by endothelial dysfunction and reduction in NO-bioavailability.

    Article  PubMed  Google Scholar 

  36. Franssen C, Chen S, Unger A, Korkmaz HI, De Keulenaer GW, Tschöpe C, et al. Myocardial microvascular inflammatory endothelial activation in heart failure with preserved ejection fraction. JACC Heart Fail. 2016;4:312–24.

    Article  PubMed  Google Scholar 

  37. van Heerebeek L, Hamdani N, Falcão-Pires I, Leite-Moreira AF, Begieneman MPV, Bronzwaer JGF, et al. Low myocardial protein kinase G activity in heart failure with preserved ejection fraction. Circulation. 2012;126:830–9.

    Article  PubMed  CAS  Google Scholar 

  38. Borbély A, van der Velden J, Papp Z, Bronzwaer JGF, Edes I, Stienen GJM, et al. Cardiomyocyte stiffness in diastolic heart failure. Circulation. 2005;111:774–81.

    Article  PubMed  Google Scholar 

  39. van Heerebeek L, Borbély A, Niessen HWM, Bronzwaer JGF, van der Velden J, Stienen GJM, et al. Myocardial structure and function differ in systolic and diastolic heart failure. Circulation. 2006;113:1966–73.

    Article  PubMed  Google Scholar 

  40. Wu Y, Cazorla O, Labeit D, Labeit S, Granzier H. Changes in titin and collagen underlie diastolic stiffness diversity of cardiac muscle. J Mol Cell Cardiol. 2000;32:2151–62.

    Article  CAS  PubMed  Google Scholar 

  41. LeWinter MM, Granzier HL. Titin is a major human disease gene. Circulation. 2013;127:938–44.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Hamdani N, Franssen C, Lourenço A, Falcão-Pires I, Fontoura D, Leite S, et al. Myocardial titin hypophosphorylation importantly contributes to heart failure with preserved ejection fraction in a rat metabolic risk model. Circ Heart Fail. 2013;6:1239–49.

    Article  CAS  PubMed  Google Scholar 

  43. Bishu K, Hamdani N, Mohammed SF, Kruger M, Ohtani T, Ogut O, et al. Sildenafil and B-type natriuretic peptide acutely phosphorylate titin and improve diastolic distensibility in vivoclinical perspective. Circulation. 2011;124:2882–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Chung CS, Hutchinson KR, Methawasin M, Saripalli C, Smith JE, Hidalgo CG, et al. Shortening of the elastic tandem immunoglobulin segment of titin leads to diastolic dysfunction clinical perspective. Circulation. 2013;128:19–28.

    Article  CAS  PubMed  Google Scholar 

  45. Zile MR, Baicu CF, Ikonomidis JS, Stroud RE, Nietert PJ, Bradshaw AD, et al. Myocardial stiffness in patients with heart failure and a preserved ejection fraction: contributions of collagen and titin. Circulation. 2015;131:1247–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Kasner M, Westermann D, Lopez B, Gaub R, Escher F, Kühl U, et al. Diastolic tissue Doppler indexes correlate with the degree of collagen expression and cross-linking in heart failure and normal ejection fraction. J Am Coll Cardiol. 2011;57:977–85.

    Article  CAS  PubMed  Google Scholar 

  47. López B, Ravassa S, González A, Zubillaga E, Bonavila C, Bergés M, et al. Myocardial collagen cross-linking is associated with heart failure hospitalization in patients with hypertensive heart failure. J Am Coll Cardiol. 2016;67:251–60.

    Article  PubMed  CAS  Google Scholar 

  48. Martos R, Baugh J, Ledwidge M, O’Loughlin C, Conlon C, Patle A, et al. Diastolic heart failure: evidence of increased myocardial collagen turnover linked to diastolic dysfunction. Circulation. 2007;115:888–95.

    Article  PubMed  Google Scholar 

  49. Su M-YM, Lin L-Y, Tseng Y-HE, Chang C-C, Wu C-K, Lin J-L, et al. CMR-verified diffuse myocardial fibrosis is associated with diastolic dysfunction in HFpEF. JACC Cardiovasc Imaging. 2014;7:991–7.

    Article  PubMed  Google Scholar 

  50. Kawaguchi M, Hay I, Fetics B, Kass DA. Combined ventricular systolic and arterial stiffening in patients with heart failure and preserved ejection fraction: implications for systolic and diastolic reserve limitations. Circulation. 2003;107:714–20.

    Article  PubMed  Google Scholar 

  51. Chantler PD, Lakatta EG, Najjar SS. Arterial-ventricular coupling: mechanistic insights into cardiovascular performance at rest and during exercise. J Appl Physiol Bethesda Md 1985. 2008;105:1342–51.

    Google Scholar 

  52. Phan TT, Abozguia K, Nallur Shivu G, Mahadevan G, Ahmed I, Williams L, et al. Heart failure with preserved ejection fraction is characterized by dynamic impairment of active relaxation and contraction of the left ventricle on exercise and associated with myocardial energy deficiency. J Am Coll Cardiol. 2009;54:402–9.

    Article  PubMed  Google Scholar 

  53. Borlaug BA, Olson TP, Lam CSP, Flood KS, Lerman A, Johnson BD, et al. Global cardiovascular reserve dysfunction in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2010;56:845–54.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Little WC, Zile MR, Klein A, Appleton CP, Kitzman DW, Wesley-Farrington DJ. Effect of losartan and hydrochlorothiazide on exercise tolerance in exertional hypertension and left ventricular diastolic dysfunction. Am J Cardiol. 2006;98:383–5.

    Article  CAS  PubMed  Google Scholar 

  55. Warner JG, Metzger DC, Kitzman DW, Wesley DJ, Little WC. Losartan improves exercise tolerance in patients with diastolic dysfunction and a hypertensive response to exercise. J Am Coll Cardiol. 1999;33:1567–72.

    Article  CAS  PubMed  Google Scholar 

  56. Little WC, Wesley-Farrington DJ, Hoyle J, Brucks S, Robertson S, Kitzman DW, et al. Effect of candesartan and verapamil on exercise tolerance in diastolic dysfunction. J Cardiovasc Pharmacol. 2004;43:288–93.

    Article  CAS  PubMed  Google Scholar 

  57. Maréchaux S, Samson R, van Belle E, Breyne J, de Monte J, Dédrie C, et al. Vascular and microvascular endothelial function in heart failure with preserved ejection fraction. J Card Fail. 2016;22:3–11.

    Article  PubMed  Google Scholar 

  58. Lee JF, Barrett-O’Keefe Z, Garten RS, Nelson AD, Ryan JJ, Nativi JN, et al. Evidence of microvascular dysfunction in heart failure with preserved ejection fraction. Heart Br Card Soc. 2016;102:278–84.

    CAS  Google Scholar 

  59. Yu C-M, Lin H, Yang H, Kong S-L, Zhang Q, Lee SW-L. Progression of systolic abnormalities in patients with “isolated” diastolic heart failure and diastolic dysfunction. Circulation. 2002;105:1195–201.

    Article  PubMed  Google Scholar 

  60. Borlaug BA, Lam CSP, Roger VL, Rodeheffer RJ, Redfield MM. Contractility and ventricular systolic stiffening in hypertensive heart disease insights into the pathogenesis of heart failure with preserved ejection fraction. J Am Coll Cardiol. 2009;54:410–8.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Kraigher-Krainer E, Shah AM, Gupta DK, Santos A, Claggett B, Pieske B, et al. Impaired systolic function by strain imaging in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2014;63:447–56.

    Article  PubMed  Google Scholar 

  62. Norman HS, Oujiri J, Larue SJ, Chapman CB, Margulies KB, Sweitzer NK. Decreased cardiac functional reserve in heart failure with preserved systolic function. J Card Fail. 2011;17:301–8.

    Article  PubMed  Google Scholar 

  63. Henein M, Mörner S, Lindmark K, Lindqvist P. Impaired left ventricular systolic function reserve limits cardiac output and exercise capacity in HFpEF patients due to systemic hypertension. Int J Cardiol. 2013;168:1088–93.

    Article  PubMed  Google Scholar 

  64. Borlaug BA, Melenovsky V, Russell SD, Kessler K, Pacak K, Becker LC, et al. Impaired chronotropic and vasodilator reserves limit exercise capacity in patients with heart failure and a preserved ejection fraction. Circulation. 2006;114:2138–47.

    Article  PubMed  Google Scholar 

  65. Phan TT, Shivu GN, Abozguia K, Davies C, Nassimizadeh M, Jimenez D, et al. Impaired heart rate recovery and chronotropic incompetence in patients with heart failure with preserved ejection fraction. Circ Heart Fail. 2010;3:29–34.

    Article  PubMed  Google Scholar 

  66. Benes J, Kotrc M, Borlaug BA, Lefflerova K, Jarolim P, Bendlova B, et al. Resting heart rate and heart rate reserve in advanced heart failure have distinct pathophysiologic correlates and prognostic impact: a prospective pilot study. JACC Heart Fail. 2013;1:259–66.

    Article  PubMed  Google Scholar 

  67. Gharacholou SM, Scott CG, Borlaug BA, Kane GC, McCully RB, Oh JK, et al. Relationship between diastolic function and heart rate recovery after symptom-limited exercise. J Card Fail. 2012;18:34–40.

    Article  PubMed  Google Scholar 

  68. Cahalin LP, Arena R, Labate V, Bandera F, Lavie CJ, Guazzi M. Heart rate recovery after the 6 min walk test rather than distance ambulated is a powerful prognostic indicator in heart failure with reduced and preserved ejection fraction: a comparison with cardiopulmonary exercise testing. Eur J Heart Fail. 2013;15:519–27.

    Article  PubMed  Google Scholar 

  69. Shimiaie J, Sherez J, Aviram G, Megidish R, Viskin S, Halkin A, et al. Determinants of Effort Intolerance in Patients With Heart Failure: Combined Echocardiography and Cardiopulmonary Stress Protocol. JACC Heart Fail. 2015;3:803–14.

    Article  PubMed  Google Scholar 

  70. Wang J, Fang F, Yip GW-K, Sanderson JE, Feng W, Xie J-M, et al. Importance of chronotropic response and left ventricular long-axis function for exercise performance in patients with heart failure and preserved ejection fraction. Int J Cardiol. 2016;202:339–43.

    Article  PubMed  Google Scholar 

  71. Cahalin LP, Arena R, Labate V, Bandera F, Guazzi M. Predictors of abnormal heart rate recovery in patients with heart failure reduced and preserved ejection fraction. Eur J Prev Cardiol. 2014;21:906–14.

    Article  PubMed  Google Scholar 

  72. Maeder MT, Thompson BR, Htun N, Kaye DM. Hemodynamic determinants of the abnormal cardiopulmonary exercise response in heart failure with preserved left ventricular ejection fraction. J Card Fail. 2012;18:702–10.

    Article  PubMed  Google Scholar 

  73. Devereux RB, Dahlöf B, Gerdts E, Boman K, Nieminen MS, Papademetriou V, et al. Regression of hypertensive left ventricular hypertrophy by losartan compared with atenolol: the Losartan Intervention for Endpoint Reduction in Hypertension (LIFE) trial. Circulation. 2004;110:1456–62.

    Article  CAS  PubMed  Google Scholar 

  74. Dahlöf B, Pennert K, Hansson L. Reversal of left ventricular hypertrophy in hypertensive patients. A metaanalysis of 109 treatment studies. Am J Hypertens. 1992;5:95–110.

    Article  PubMed  Google Scholar 

  75. Klingbeil AU, Schneider M, Martus P, Messerli FH, Schmieder RE. A meta-analysis of the effects of treatment on left ventricular mass in essential hypertension. Am J Med. 2003;115:41–6.

    Article  PubMed  Google Scholar 

  76. Ruggenenti P, Iliev I, Costa GM, Parvanova A, Perna A, Giuliano GA, et al. Preventing left ventricular hypertrophy by ACE inhibition in hypertensive patients with type 2 diabetes: a prespecified analysis of the Bergamo Nephrologic Diabetes Complications Trial (BENEDICT). Diabetes Care. 2008;31:1629–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Ruilope LM, Schmieder RE. Left ventricular hypertrophy and clinical outcomes in hypertensive patients. Am J Hypertens. 2008;21:500–8.

    Article  PubMed  Google Scholar 

  78. • Solomon SD, Janardhanan R, Verma A, Bourgoun M, Daley WL, Purkayastha D, et al. Effect of angiotensin receptor blockade and antihypertensive drugs on diastolic function in patients with hypertension and diastolic dysfunction: a randomised trial. Lancet Lond Engl. 2007;369:2079–87. This randomized trial highlights the importance of HTN management in improving diastolic dysfunction in HFpEF. While this study’s aim was to assess the effects of valsartan, it demonstrated that blood pressure control, regardless of agent chosen, had the desired effect.

    Article  CAS  Google Scholar 

  79. Cleland JGF, Tendera M, Adamus J, Freemantle N, Polonski L, Taylor J, et al. The perindopril in elderly people with chronic heart failure (PEP-CHF) study. Eur Heart J. 2006;27:2338–45.

    Article  CAS  PubMed  Google Scholar 

  80. Shah RV, Desai AS, Givertz MM. The effect of renin-angiotensin system inhibitors on mortality and heart failure hospitalization in patients with heart failure and preserved ejection fraction: a systematic review and meta-analysis. J Card Fail. 2010;16:260–7.

    Article  CAS  PubMed  Google Scholar 

  81. Yusuf S, Pfeffer MA, Swedberg K, Granger CB, Held P, McMurray JJV, et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM-Preserved Trial. Lancet Lond Engl. 2003;362:777–81.

    Article  CAS  Google Scholar 

  82. Massie BM, Carson PE, McMurray JJ, Komajda M, McKelvie R, Zile MR, et al. Irbesartan in patients with heart failure and preserved ejection fraction. N Engl J Med. 2008;359:2456–67.

    Article  CAS  PubMed  Google Scholar 

  83. Lund LH, Benson L, Dahlström U, Edner M. Association between use of renin-angiotensin system antagonists and mortality in patients with heart failure and preserved ejection fraction. JAMA. 2012;308:2108–17.

    Article  CAS  PubMed  Google Scholar 

  84. McMurray JJV, Packer M, Desai AS, Gong J, Lefkowitz MP, Rizkala AR, et al. Angiotensin-neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371:993–1004.

    Article  PubMed  CAS  Google Scholar 

  85. Solomon SD, Zile M, Pieske B, Voors A, Shah A, Kraigher-Krainer E, et al. The angiotensin receptor neprilysin inhibitor LCZ696 in heart failure with preserved ejection fraction: a phase 2 double-blind randomised controlled trial. Lancet Lond Engl. 2012;380:1387–95.

    Article  CAS  Google Scholar 

  86. • Pitt B, Pfeffer MA, Assmann SF, Boineau R, Anand IS, Claggett B, et al. Spironolactone for heart failure with preserved ejection fraction. N Engl J Med. 2014;370:1383–92. There is no specific drug therapy with clear-cut mortality benefit in HFpEF, though spironolactone has shown the most promising data. The TOPCAT trial was an international study that as a whole did not show mortality benefit for spironolactone, but did have a reduction in HF hospitalizations. However, subgroup analysis of patients enrolled in the Americas, though not in Russia or Georgia, demonstrated higher overall event rates and reduction in the primary endpoint.

    Article  CAS  PubMed  Google Scholar 

  87. Kosmala W, Rojek A, Przewlocka-Kosmala M, Wright L, Mysiak A, Marwick TH. Effect of aldosterone antagonism on exercise tolerance in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2016;68:1823–34.

    Article  CAS  PubMed  Google Scholar 

  88. Edelmann F, Wachter R, Schmidt AG, Kraigher-Krainer E, Colantonio C, Kamke W, et al. Effect of spironolactone on diastolic function and exercise capacity in patients with heart failure with preserved ejection fraction: the Aldo-DHF randomized controlled trial. JAMA. 2013;309:781–91.

    Article  CAS  PubMed  Google Scholar 

  89. Wang C, Xiong B, Huang J. Efficacy and safety of spironolactone in patients with resistant hypertension: a meta-analysis of randomised controlled trials. Heart Lung Circ. 2016;25:1021–30.

    Article  PubMed  Google Scholar 

  90. • Williams B, MacDonald TM, Morant S, Webb DJ, Sever P, McInnes G, et al. Spironolactone versus placebo, bisoprolol, and doxazosin to determine the optimal treatment for drug-resistant hypertension (PATHWAY-2): a randomised, double-blind, crossover trial. Lancet Lond Engl. 2015;386:2059–68. This was a randomized study in the resistant hypertension population. It demonstrated that spironolactone was superior to other antihypertensives as an add-on drug in terms of blood pressure lowering. This work is of importance as resistant hypertension is commonly present in HFpEF.

    Article  CAS  Google Scholar 

  91. Bergström A, Andersson B, Edner M, Nylander E, Persson H, Dahlström U. Effect of carvedilol on diastolic function in patients with diastolic heart failure and preserved systolic function. Results of the Swedish Doppler-echocardiographic study (SWEDIC). Eur J Heart Fail. 2004;6:453–61.

    Article  PubMed  CAS  Google Scholar 

  92. Flather MD, Shibata MC, Coats AJS, Van Veldhuisen DJ, Parkhomenko A, Borbola J, et al. Randomized trial to determine the effect of nebivolol on mortality and cardiovascular hospital admission in elderly patients with heart failure (SENIORS). Eur Heart J. 2005;26:215–25.

    Article  CAS  PubMed  Google Scholar 

  93. Hernandez AF, Hammill BG, O’Connor CM, Schulman KA, Curtis LH, Fonarow GC. Clinical effectiveness of beta-blockers in heart failure: findings from the OPTIMIZE-HF (Organized Program to Initiate Lifesaving Treatment in Hospitalized Patients with Heart Failure) Registry. J Am Coll Cardiol. 2009;53:184–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lund LH, Benson L, Dahlström U, Edner M, Friberg L. Association between use of β-blockers and outcomes in patients with heart failure and preserved ejection fraction. JAMA. 2014;312:2008–18.

    Article  PubMed  CAS  Google Scholar 

  95. Redfield MM, Anstrom KJ, Levine JA, Koepp GA, Borlaug BA, Chen HH, et al. Isosorbide mononitrate in heart failure with preserved ejection fraction. N Engl J Med. 2015;373:2314–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Borlaug BA, Koepp KE, Melenovsky V. Sodium nitrite improves exercise hemodynamics and ventricular performance in heart failure with preserved ejection fraction. J Am Coll Cardiol. 2015;66:1672–82.

    Article  CAS  PubMed  Google Scholar 

  97. Borlaug BA, Melenovsky V, Koepp KE. Inhaled sodium nitrite improves rest and exercise hemodynamics in heart failure with preserved ejection fraction. Circ Res. 2016;119:880–6.

    Article  CAS  PubMed  Google Scholar 

  98. Zamani P, Rawat D, Shiva-Kumar P, Geraci S, Bhuva R, Konda P, et al. Effect of inorganic nitrate on exercise capacity in heart failure with preserved ejection fraction. Clinical Perspective Circulation. 2015;131:371–80.

    CAS  Google Scholar 

  99. Davis BR, Kostis JB, Simpson LM, Black HR, Cushman WC, Einhorn PT, et al. Heart failure with preserved and reduced left ventricular ejection fraction in the antihypertensive and lipid-lowering treatment to prevent heart attack trial. Circulation. 2008;118:2259–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Costanzo MR, Stevenson LW, Adamson PB, Desai AS, Heywood JT, Bourge RC, et al. Interventions linked to decreased heart failure hospitalizations during ambulatory pulmonary artery pressure monitoring. JACC Heart Fail. 2016;4:333–44.

    Article  PubMed  Google Scholar 

  101. Borlaug BA, Kass DA. Ventricular-vascular interaction in heart failure. Heart Fail Clin. 2008;4:23–36.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Maurer MS, King DL, El-Khoury Rumbarger L, Packer M, Burkhoff D. Left heart failure with a normal ejection fraction: identification of different pathophysiologic mechanisms. J Card Fail. 2005;11:177–87.

    Article  PubMed  Google Scholar 

  103. • Elijovich F, Weinberger MH, Anderson CAM, Appel LJ, Bursztyn M, Cook NR, et al. Salt sensitivity of blood pressure: a scientific statement from the American Heart Association. Hypertens Dallas Tex 1979. 2016;68:e7–e46. This is the AHA statement on salt sensitivity of blood pressure. It provides a thorough review of the work done in the field, and provides a foundation for the understanding the role of specific dietary interventions in HTN and HFpEF.

    CAS  Google Scholar 

  104. Klotz S, Hay I, Zhang G, Maurer M, Wang J, Burkhoff D. Development of heart failure in chronic hypertensive Dahl rats: focus on heart failure with preserved ejection fraction. Hypertens. Dallas Tex 1979. 2006;47:901–11.

    CAS  Google Scholar 

  105. Hummel SL, Seymour EM, Brook RD, Kolias TJ, Sheth SS, Rosenblum HR, et al. Low-sodium dietary approaches to stop hypertension diet reduces blood pressure, arterial stiffness, and oxidative stress in hypertensive heart failure with preserved ejection fraction. Hypertens Dallas Tex 1979. 2012;60:1200–6.

    CAS  Google Scholar 

  106. Hummel SL, Seymour EM, Brook RD, Sheth SS, Ghosh E, Zhu S, et al. Low-sodium DASH diet improves diastolic function and ventricular-arterial coupling in hypertensive heart failure with preserved ejection fraction. Circ Heart Fail. 2013;6:1165–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kitzman DW, Brubaker P, Morgan T, Haykowsky M, Hundley G, Kraus WE, et al. Effect of caloric restriction or aerobic exercise training on peak oxygen consumption and quality of life in obese older patients with heart failure with preserved ejection fraction: a randomized clinical trial. JAMA. 2016;315:36–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. • Pandey A, Parashar A, Kumbhani DJ, Agarwal S, Garg J, Kitzman D, et al. Exercise training in patients with heart failure and preserved ejection fraction: meta-analysis of randomized control trials. Circ Heart Fail. 2015;8:33–40. While there is a lack of therapies for HFpEF that improve mortality, there are promising interventions to improving quality of life and symptomatology. Exercise training is an important component in this latter focus, with benefit in regards to cardiopulmonary fitness highlighted in this meta-analysis.

    Article  PubMed  Google Scholar 

  109. Herrscher TE, Akre H, Øverland B, Sandvik L, Westheim AS. High prevalence of sleep apnea in heart failure outpatients: even in patients with preserved systolic function. J Card Fail. 2011;17:420–5.

    Article  PubMed  Google Scholar 

  110. Sekizuka H, Osada N, Miyake F. Sleep disordered breathing in heart failure patients with reduced versus preserved ejection fraction. Heart Lung Circ. 2013;22:104–9.

    Article  PubMed  Google Scholar 

  111. Bucca CB, Brussino L, Battisti A, Mutani R, Rolla G, Mangiardi L, et al. Diuretics in obstructive sleep apnea with diastolic heart failure. Chest. 2007;132:440–6.

    Article  PubMed  Google Scholar 

  112. Yoshihisa A, Suzuki S, Yamauchi H, Sato T, Oikawa M, Kobayashi A, et al. Beneficial effects of positive airway pressure therapy for sleep-disordered breathing in heart failure patients with preserved left ventricular ejection fraction. Clin Cardiol. 2015;38:413–21.

    Article  PubMed  Google Scholar 

  113. Arikawa T, Toyoda S, Haruyama A, Amano H, Inami S, Otani N, et al. Impact of obstructive sleep apnoea on heart failure with preserved ejection fraction. Heart Lung Circ. 2016;25:435–41.

    Article  PubMed  Google Scholar 

  114. Yoshihisa A, Suzuki S, Yamaki T, Sugimoto K, Kunii H, Nakazato K, et al. Impact of adaptive servo-ventilation on cardiovascular function and prognosis in heart failure patients with preserved left ventricular ejection fraction and sleep-disordered breathing. Eur J Heart Fail. 2013;15:543–50.

    Article  CAS  PubMed  Google Scholar 

  115. Cowie MR, Woehrle H, Wegscheider K, Angermann C, d’Ortho M-P, Erdmann E, et al. Adaptive servo-ventilation for central sleep apnea in systolic heart failure. N Engl J Med. 2015;373:1095–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. • Shah SJ, Kitzman DW, Borlaug BA, van Heerebeek L, Zile MR, Kass DA, et al. Phenotype-specific treatment of heart failure with preserved ejection fraction: a multiorgan roadmap. Circulation. 2016;134:73–90. This provides an introduction to the concept that HFpEF is heterogeneous and targeting therapies to the specific phenotype may provide the highest yield. The authors provide some guidance to implementing this strategy.

    Article  PubMed  Google Scholar 

  117. Beard DA, Pettersen KH, Carlson BE, Omholt SW, Bugenhagen SM. A computational analysis of the long-term regulation of arterial pressure. F1000Research. 2013;2:208.

    PubMed  PubMed Central  Google Scholar 

  118. Averina VA, Othmer HG, Fink GD, Osborn JW. A new conceptual paradigm for the haemodynamics of salt-sensitive hypertension: a mathematical modelling approach. J Physiol. 2012;590:5975–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Dr. Hummel is funded by NIH/NHLBI K23-HL109176, NIH/NIA R21-AG047939, AHRQ R21-HS024567, and PurFoods, LLC to perform HTN-associated research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott L. Hummel.

Ethics declarations

Conflict of interest

Dr. Hummel reports grants from PurFoods, LLC. Drs. Tam, Lee, Cascino, and Konerman declare no conflicts of interest relevant to this manuscript.

Human and animal rights and informed consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Hypertension and the Heart

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tam, M.C., Lee, R., Cascino, T.M. et al. Current Perspectives on Systemic Hypertension in Heart Failure with Preserved Ejection Fraction. Curr Hypertens Rep 19, 12 (2017). https://doi.org/10.1007/s11906-017-0709-2

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-017-0709-2

Keywords

Navigation