Skip to main content
Log in

Deep Brain Stimulation for the Treatment of Resistant Hypertension

  • Device-Based Approaches for Hypertension (M Schlaich, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Hypertension is a leading risk factor for the development of several cardiovascular diseases. As the global prevalence of hypertension increases, so too has the recognition of resistant hypertension. Whilst figures vary, the proportion of hypertensive patients that are resistant to multiple drug therapies have been reported to be as high as 16.4 %. Resistant hypertension is typically associated with elevated sympathetic activity and abnormal homeostatic reflex control and is termed neurogenic hypertension because of its presumed central autonomic nervous system origin. This resistance to conventional pharmacological treatment has stimulated a plethora of medical devices to be investigated for use in hypertension, with varying degrees of success. In this review, we discuss a new therapy for drug-resistant hypertension, deep brain stimulation. The utility of deep brain stimulation in resistant hypertension was first discovered in patients with concurrent neuropathic pain, where it lowered blood pressure and improved baroreflex sensitivity. The most promising central target for stimulation is the ventrolateral periaqueductal gray, which has been well characterised in animal studies as a control centre for autonomic outflow. In this review, we will discuss the promise and potential mechanisms of deep brain stimulation in the treatment of severe, resistant hypertension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Fisher JP, Paton JF. The sympathetic nervous system and blood pressure in humans: implications for hypertension. J Hum Hypertens. 2012;26(8):463–75.

    Article  PubMed  CAS  Google Scholar 

  2. Sobotka PA, Osborn JW, Paton JF. Restoring autonomic balance: future therapeutic targets. EuroInterv. 2013;9 Suppl R:R140–8.

    Article  Google Scholar 

  3. Paton JF et al. The carotid body as a therapeutic target for the treatment of sympathetically mediated diseases. Hypertension. 2013;61(1):5–13. This review provides a comprehensive account of most studies in which carotid body ablation was performed. It considers how safe this procedure is and how effective it might be as an interventional approach to treat hypertension.

    Article  PubMed  CAS  Google Scholar 

  4. Esler M. The sympathetic system and hypertension. Am J Hypertens. 2000;13(6 Pt 2):99S–105.

    Article  PubMed  CAS  Google Scholar 

  5. Smith PA et al. Relationship between central sympathetic activity and stages of human hypertension. Am J Hypertens. 2004;17(3):217–22.

    Article  PubMed  Google Scholar 

  6. Calhoun DA et al. Resistant hypertension: diagnosis, evaluation, and treatment. A scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research. Hypertension. 2008;51(6):1403–19.

    Article  PubMed  CAS  Google Scholar 

  7. Esler M et al. Sympathetic nerve activity and neurotransmitter release in humans: translation from pathophysiology into clinical practice. Acta Physiol Scand. 2003;177(3):275–84.

    Article  PubMed  CAS  Google Scholar 

  8. Hart EC et al. Translational examination of changes in baroreflex function after renal denervation in hypertensive rats and humans. Hypertension. 2013;62(3):533–41. One of the first publications reporting the efficacy of renal denervation in hypertensive patients indicating an approximate 50 % success rate. Interestingly, mean falls in systolic pressure after renal denervation were not dissimilar to those in humans.

    Article  PubMed  CAS  Google Scholar 

  9. Persell SD. Prevalence of resistant hypertension in the United States, 2003-2008. Hypertension. 2011;57(6):1076–80.

    Article  PubMed  CAS  Google Scholar 

  10. de la Sierra A et al. Clinical features of 8295 patients with resistant hypertension classified on the basis of ambulatory blood pressure monitoring. Hypertension. 2011;57(5):898–902. This large study assesses the prevalence of resistant hypertensive patients and addresses the importance of using ambulatory blood pressure recording in this assessment.

    Article  PubMed  Google Scholar 

  11. Judd E, Calhoun DA. Apparent and true resistant hypertension: definition, prevalence and outcomes. J Hum Hypertens. 2014;28:463–8.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Kearney PM et al. Global burden of hypertension: analysis of worldwide data. Lancet. 2005;365(9455):217–23. An important paper providing evidence of the pandemic prevalence of hypertension and its rate of growth.

    Article  PubMed  Google Scholar 

  13. Tomaszewski M et al. High rates of non-adherence to antihypertensive treatment revealed by high-performance liquid chromatography-tandem mass spectrometry (HP LC-MS/MS) urine analysis. Heart. 2014;100(11):855–61.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  14. Laurent S, Schlaich M, Esler M. New drugs, procedures, and devices for hypertension. Lancet. 2012;380(9841):591–600.

    Article  PubMed  CAS  Google Scholar 

  15. Grassi G. Sympathetic and baroreflex function in hypertension: implications for current and new drugs. Curr Pharm Des. 2004;10(29):3579–89.

    Article  PubMed  CAS  Google Scholar 

  16. Grassi G. Counteracting the sympathetic nervous system in essential hypertension. Curr Opin Nephrol Hypertens. 2004;13(5):513–9.

    Article  PubMed  Google Scholar 

  17. Grassi G, Mancia G. New therapeutic approaches for resistant hypertension. J Nephrol. 2012;25(3):276–81.

    Article  PubMed  CAS  Google Scholar 

  18. Symplicity HTNI et al. Renal sympathetic denervation in patients with treatment-resistant hypertension (the Symplicity HTN-2 trial): a randomised controlled trial. Lancet. 2010;376(9756):1903–9. An important early paper demonstrating the potential efficacy of renal denervation for the treatment of hypertension.

    Article  Google Scholar 

  19. Krum H et al. Percutaneous renal denervation in patients with treatment-resistant hypertension: final 3-year report of the Symplicity HTN-1 study. Lancet. 2014;383(9917):622–9.

    Article  PubMed  Google Scholar 

  20. Esler MD et al. Renal sympathetic denervation for treatment of drug-resistant hypertension: one-year results from the Symplicity HTN-2 randomized, controlled trial. Circulation. 2012;126(25):2976–82.

    Article  PubMed  CAS  Google Scholar 

  21. Brinkmann J et al. Catheter-based renal nerve ablation and centrally generated sympathetic activity in difficult-to-control hypertensive patients: prospective case series. Hypertension. 2012;60(6):1485–90.

    Article  PubMed  CAS  Google Scholar 

  22. Vase H et al. Catheter-based renal denervation for treatment of resistant hypertension. Dan Med J. 2012;59(6):A4439.

    PubMed  Google Scholar 

  23. Kaltenbach B et al. Renal sympathetic denervation as second-line therapy in mild resistant hypertension: a pilot study. Catheter Cardiovasc Interv. 2013;81(2):335–9.

    Article  PubMed  Google Scholar 

  24. Bakris GL et al. Baroreflex activation therapy provides durable benefit in patients with resistant hypertension: results of long-term follow-up in the Rheos Pivotal Trial. J Am Soc Hypertens. 2012;6(2):152–8.

    Article  PubMed  Google Scholar 

  25. Schroeder C et al. Truly refractory hypertension. Hypertension. 2013;62(2):231–5.

    Article  PubMed  CAS  Google Scholar 

  26. Simms AE, Paton JF, Pickering AE. Hierarchical recruitment of the sympathetic and parasympathetic limbs of the baroreflex in normotensive and spontaneously hypertensive rats. J Physiol. 2007;579(Pt 2):473–86.

    PubMed  CAS  PubMed Central  Google Scholar 

  27. Joyner MJ, Charkoudian N, Wallin BG. Sympathetic nervous system and blood pressure in humans: individualized patterns of regulation and their implications. Hypertension. 2010;56(1):10–6.

    Article  PubMed  CAS  Google Scholar 

  28. Lohmeier TE, Iliescu R. Chronic lowering of blood pressure by carotid baroreflex activation: mechanisms and potential for hypertension therapy. Hypertension. 2011;57(5):880–6.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Heusser K et al. Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension. 2010;55(3):619–26. Land mark paper demonstrating the potential for carotid baroreceptor stimulation as a novel interventional therapeutic approach for the treatment of drug-resistant hypertension in humans.

    Article  PubMed  CAS  Google Scholar 

  30. Benabid AL et al. Long-term suppression of tremor by chronic stimulation of the ventral intermediate thalamic nucleus. Lancet. 1991;337(8738):403–6.

    Article  PubMed  CAS  Google Scholar 

  31. Pereira EA et al. Deep brain stimulation: indications and evidence. Expert Rev Med Devices. 2007;4(5):591–603.

    Article  PubMed  Google Scholar 

  32. Pouratian N et al. Deep brain stimulation for the treatment of Parkinson’s disease: efficacy and safety. Degener Neurol Neuromuscul Dis. 2012;2012(2):107–17.

    Google Scholar 

  33. Zrinzo L et al. Reducing hemorrhagic complications in functional neurosurgery: a large case series and systematic literature review. J Neurosurg. 2012;116(1):84–94.

    Article  PubMed  Google Scholar 

  34. Carrive P. The periaqueductal gray and defensive behavior: functional representation and neuronal organization. Behav Brain Res. 1993;58(1–2):27–47. Thorough review on the organisation and role of the periaqueductal gray in blood pressure regulation and affective behaviour.

    Article  PubMed  CAS  Google Scholar 

  35. Netzer F et al. Brain circuits mediating baroreflex bradycardia inhibition in rats: an anatomical and functional link between the cuneiform nucleus and the periaqueductal grey. J Physiol. 2011;589(Pt 8):2079–91.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Hayward LF. Midbrain modulation of the cardiac baroreflex involves excitation of lateral parabrachial neurons in the rat. Brain Res. 2007;1145:117–27.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Bandler R et al. Central circuits mediating patterned autonomic activity during active vs. passive emotional coping. Brain Res Bull. 2000;53(1):95–104.

    Article  PubMed  CAS  Google Scholar 

  38. Carrive P, Bandler R, Dampney RA. Anatomical evidence that hypertension associated with the defence reaction in the cat is mediated by a direct projection from a restricted portion of the midbrain periaqueductal grey to the subretrofacial nucleus of the medulla. Brain Res. 1988;460(2):339–45.

    Article  PubMed  CAS  Google Scholar 

  39. ter Horst GJ, Luiten PG, Kuipers F. Descending pathways from hypothalamus to dorsal motor vagus and ambiguus nuclei in the rat. J Auton Nerv Syst. 1984;11(1):59–75.

    Article  PubMed  Google Scholar 

  40. Uschakov A et al. Functional correlates of activity in neurons projecting from the lamina terminalis to the ventrolateral periaqueductal gray. Eur J Neurosci. 2009;30(12):2347–55.

    Article  PubMed  Google Scholar 

  41. Hurley KM et al. Efferent projections of the infralimbic cortex of the rat. J Comp Neurol. 1991;308(2):249–76.

    Article  PubMed  CAS  Google Scholar 

  42. An X et al. Prefrontal cortical projections to longitudinal columns in the midbrain periaqueductal gray in macaque monkeys. J Comp Neurol. 1998;401(4):455–79.

    Article  PubMed  CAS  Google Scholar 

  43. Fisk GD, Wyss JM. Descending projections of infralimbic cortex that mediate stimulation-evoked changes in arterial pressure. Brain Res. 2000;859(1):83–95.

    Article  PubMed  CAS  Google Scholar 

  44. Behbehani MM. Functional characteristics of the midbrain periaqueductal gray. Prog Neurobiol. 1995;46(6):575–605.

    Article  PubMed  CAS  Google Scholar 

  45. Holstege G. Some anatomical observations on the projections from the hypothalamus to brainstem and spinal cord: an HRP and autoradiographic tracing study in the cat. J Comp Neurol. 1987;260(1):98–126.

    Article  PubMed  CAS  Google Scholar 

  46. Jansen ASP et al. Local connections between the columns of the periaqueductal gray matter: a case for intrinsic neuromodulation. Brain Res. 1998;784:329–36. Erratum in Brain Res 1998 Jun 29;797(2):368.

    Article  PubMed  CAS  Google Scholar 

  47. Lovick TA. Inhibitory modulation of the cardiovascular defence response by the ventrolateral periaqueductal grey matter in rats. Exp Brain Res. 1992;89(1):133–9.

    Article  PubMed  CAS  Google Scholar 

  48. Farkas E, Jansen AS, Loewy AD. Periaqueductal gray matter input to cardiac-related sympathetic premotor neurons. Brain Res. 1998;792(2):179–92.

    Article  PubMed  CAS  Google Scholar 

  49. Bowman BR et al. Brain sources of inhibitory input to the rat rostral ventrolateral medulla. J Comp Neurol. 2013;521(1):213–32.

    Article  PubMed  CAS  Google Scholar 

  50. Verberne AJ, Guyenet PG. Midbrain central gray: influence on medullary sympathoexcitatory neurons and the baroreflex in rats. Am J Physiol. 1992;263(1 Pt 2):R24–33.

    PubMed  CAS  Google Scholar 

  51. Wang WH, Lovick TA. The inhibitory effect of the ventrolateral periaqueductal grey matter on neurones in the rostral ventrolateral medulla involves a relay in the medullary raphe nuclei. Exp Brain Res. 1993;94(2):295–300.

    Article  PubMed  CAS  Google Scholar 

  52. Snowball RK, Dampney RA, Lumb BM. Responses of neurones in the medullary raphe nuclei to inputs from visceral nociceptors and the ventrolateral periaqueductal grey in the rat. Exp Physiol. 1997;82(3):485–500.

    PubMed  CAS  Google Scholar 

  53. Morgan MM, Carrive P. Activation of the ventrolateral periaqueductal gray reduces locomotion but not mean arterial pressure in awake, freely moving rats. Neuroscience. 2001;102(4):905–10.

    Article  PubMed  CAS  Google Scholar 

  54. Redfern WS, Yardley CP. Contribution of the periaqueductal grey matter to the development of hypertension in the spontaneously hypertensive rat. J Auton Nerv Syst. 1990;31(3):231–9. Land mark paper describing potential contribution of the periaqueductal gray in the development of neurogenic hypertension.

    Article  PubMed  CAS  Google Scholar 

  55. Schenberg LC, Brandao CA, Vasquez EC. Role of periaqueductal gray matter in hypertension in spontaneously hypertensive rats. Hypertension. 1995;26(6 Pt 2):1125–8.

    Article  PubMed  CAS  Google Scholar 

  56. Pelosi GG, Resstel LB, Correa FM. Dorsal periaqueductal gray area synapses modulate baroreflex in unanesthetized rats. Auton Neurosci. 2007;131(1–2):70–6.

    Article  PubMed  CAS  Google Scholar 

  57. Inui K, Murase S, Nosaka S. Facilitation of the arterial baroreflex by the ventrolateral part of the midbrain periaqueductal grey matter in rats. J Physiol. 1994;477(Pt 1):89–101.

    PubMed  PubMed Central  Google Scholar 

  58. Boscan P, Paton JF. Excitatory convergence of periaqueductal gray and somatic afferents in the solitary tract nucleus: role for neurokinin 1 receptors. Am J Physiol Regul Integr Comp Physiol. 2005;288(1):R262–9.

    Article  PubMed  CAS  Google Scholar 

  59. Inui K, Nosaka S. Target site of inhibition mediated by midbrain periaqueductal gray matter of baroreflex vagal bradycardia. J Neurophysiol. 1993;70(6):2205–14.

    PubMed  CAS  Google Scholar 

  60. Nosaka S et al. Arterial baroreflex inhibition by midbrain periaqueductal grey in anaesthetized rats. Pflugers Arch. 1993;424(3–4):266–75.

    Article  PubMed  CAS  Google Scholar 

  61. Green AL et al. Deep brain stimulation can regulate arterial blood pressure in awake humans. Neuroreport. 2005;16(16):1741–5. Original study showing unequivocally the powerful influence of deep brain stimulation in distinct regions of the periaqueductal gray on blood pressure regulation in humans.

    Article  PubMed  Google Scholar 

  62. Green AL et al. Deep brain stimulation: a new treatment for hypertension? J Clin Neurosci. 2007;14(6):592–5.

    Article  PubMed  CAS  Google Scholar 

  63. Pereira EA et al. Sustained reduction of hypertension by deep brain stimulation. J Clin Neurosci. 2010;17(1):124–7.

    Article  PubMed  Google Scholar 

  64. Patel NK et al. Deep brain stimulation relieves refractory hypertension. Neurology. 2011;76(4):405–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  65. Bandler R, Carrive P, Zhang SP. Integration of somatic and autonomic reactions within the midbrain periaqueductal grey: viscerotopic, somatotopic and functional organization. Prog Brain Res. 1991;87:269–305.

    Article  PubMed  CAS  Google Scholar 

  66. Carrive P, Bandler R. Viscerotopic organization of neurons subserving hypotensive reactions within the midbrain periaqueductal grey: a correlative functional and anatomical study. Brain Res. 1991;541(2):206–15. Land mark study describing the classical columnar organisation of the periaqueductal gray in the rat.

    Article  PubMed  CAS  Google Scholar 

  67. Pereira EA et al. Ventral periaqueductal grey stimulation alters heart rate variability in humans with chronic pain. Exp Neurol. 2010;223(2):574–81.

    Article  PubMed  Google Scholar 

  68. Sverrisdottir YB et al. Differentiated Baroreflex Modulation of Sympathetic Nerve Activity During Deep Brain Stimulation in Humans. Hypertension. 2014;63:1000–10. An important paper demonstrating the influence of deep brain stimulation of the periaqueductal gray on sympathetic tone and baroreceptor reflex in humans.

    Article  PubMed  CAS  Google Scholar 

  69. Patel NK, Plaha P, Gill SS. Magnetic resonance imaging-directed method for functional neurosurgery using implantable guide tubes. Neurosurgery. 2007;61(5 Suppl 2):358–65. Discussion 365–6. First demonstration of blood pressure lowering in a drug-resistant hypertensive patient that was not associated with analgesia during deep brain stimulation of the ventrolateral periaqueductal gray. This study allowed delineation of the anti-hypertensive effect from pain relief.

    Article  PubMed  Google Scholar 

  70. Morrell MJ, R.N.S.S.i.E.S. Group. Responsive cortical stimulation for the treatment of medically intractable partial epilepsy. Neurology. 2011;77(13):1295–304.

    Article  PubMed  Google Scholar 

  71. Chang SY et al. Wireless fast-scan cyclic voltammetry to monitor adenosine in patients with essential tremor during deep brain stimulation. Mayo Clin Proc. 2012;87(8):760–5.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Van Gompel JJ et al. Increased cortical extracellular adenosine correlates with seizure termination. Epilepsia. 2014;55(2):233–44.

    Article  PubMed  Google Scholar 

  73. Cogiamanian F et al. Non-invasive brain stimulation for the management of arterial hypertension. Med Hypotheses. 2010;74(2):332–6.

    Article  PubMed  CAS  Google Scholar 

  74. Ridding MC, Rothwell JC. Is there a future for therapeutic use of transcranial magnetic stimulation? Nat Rev Neurosci. 2007;8(7):559–67.

    Article  PubMed  CAS  Google Scholar 

  75. Jansen AS et al. Local connections between the columns of the periaqueductal gray matter: a case for intrinsic neuromodulation. Brain Res. 1998;784(1–2):329–36.

    Article  PubMed  CAS  Google Scholar 

  76. Farkas E, Jansen AS, Loewy AD. Periaqueductal gray matter projection to vagal preganglionic neurons and the nucleus tractus solitarius. Brain Res. 1997;764(1–2):257–61.

    Article  PubMed  CAS  Google Scholar 

  77. Herbert H, Saper CB. Organization of medullary adrenergic and noradrenergic projections to the periaqueductal gray matter in the rat. J Comp Neurol. 1992;315(1):34–52.

    Article  PubMed  CAS  Google Scholar 

  78. Krout KE, Jansen AS, Loewy AD. Periaqueductal gray matter projection to the parabrachial nucleus in rat. J Comp Neurol. 1998;401(4):437–54.

    Article  PubMed  CAS  Google Scholar 

  79. Ennis M, Xu SJ, Rizvi TA. Discrete subregions of the rat midbrain periaqueductal gray project to nucleus ambiguus and the periambigual region. Neuroscience. 1997;80(3):829–45.

    Article  PubMed  CAS  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Erin L. O’Callaghan, Fiona D. McBryde, Amy E. Burchell, Laura E. K. Ratcliffe, Liviu Nicolae, Derek Carr, Emma C. Hart and Angus K. Nightingale declare no conflict of interest.

Ivor Gillbe is on the board of Bioinduction Ltd., a company that has worked with Bristol University in connection with this work to validate certain aspects of its neuromodulation device under development and plans to supply devices free of charge to facilitate future research.

Nikunj K. Patel and Julian F. R. Paton have received grants from the British Heart Foundation.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julian F. R. Paton.

Additional information

This article is part of the Topical Collection on Device-Based Approaches for Hypertension

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Callaghan, E.L., McBryde, F.D., Burchell, A.E. et al. Deep Brain Stimulation for the Treatment of Resistant Hypertension. Curr Hypertens Rep 16, 493 (2014). https://doi.org/10.1007/s11906-014-0493-1

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-014-0493-1

Keywords

Navigation