Skip to main content

Advertisement

Log in

The Role of Central Nervous System Mechanisms in Resistant Hypertension

  • Hypertension and the Brain (S Stocker, Section Editor)
  • Published:
Current Hypertension Reports Aims and scope Submit manuscript

Abstract

Arterial hypertension remains a primary global health problem with significant impact on cardiovascular morbidity and mortality. The low rate of hypertension control and failure to achieve target blood pressure levels particularly among high-risk patients with resistant hypertension has triggered renewed interest in unravelling the underlying mechanisms to implement therapeutic approaches for better patient management. Here, we summarize the crucial role of neurogenic mechanisms in drug-resistant hypertension, with a specific focus on central control of blood pressure, the factors involved in central integration of afferent signalling to increase sympathetic drive in resistant hypertension, and briefly review recently introduced interventional strategies distinctively targeting sympathetic activation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Esler M, Lambert G, Jennings G. Regional norepinephrine turnover in human hypertension. Clinical and experimental hypertension Part A. Theory Pract. 1989;11 Suppl 1:75–89. This study presents first evidence for organ-specific regional differentiation of sympathetic outflow indicating that increased NA release from the heart and kidney is pivotal in human essential hypertension.

    Google Scholar 

  2. Esler M. The 2009 Carl Ludwig Lecture: pathophysiology of the human sympathetic nervous system in cardiovascular diseases: the transition from mechanisms to medical management. J Appl Physiol. 2010;108(2):227–37. doi:10.1152/japplphysiol.00832.2009.

    Article  CAS  PubMed  Google Scholar 

  3. Esler M, Lambert G, Jennings G. Increased regional sympathetic nervous activity in human hypertension—causes and consequences. J Hypertens. 1990;8:S53–7. The importance of increased renal NA spillover to the pathophysiology of essential hypertension.

    Article  CAS  Google Scholar 

  4. Parati G, Esler M. The human sympathetic nervous system: its relevance in hypertension and heart failure. Eur Heart J. 2012;33(9):1058–U39. doi:10.1093/eurheartj/ehs041.

    Article  CAS  PubMed  Google Scholar 

  5. Schlaich MP, Lambert E, Kaye DM, Krozowski Z, Campbell DJ, Lambert G, et al. Sympathetic augmentation in hypertension—role of nerve firing, norepinephrine reuptake, and angiotensin neuromodulation. Hypertension. 2004;43(2):169–75. doi:10.1161/01.Hyp.0000103160.35395.9e.

    Article  CAS  PubMed  Google Scholar 

  6. Rumantir MS, Jennings GL, Lambert GW, Kaye DM, Seals DR, Esler MD. The ‘adrenaline hypothesis’ of hypertension revisited: evidence for adrenaline release from the heart of patients with essential hypertension. J Hypertens. 2000;18(6):717–23. doi:10.1097/00004872-200018060-00009. First study indicating augmented adrenaline release from cardiac sympathetic nerves and the relevant contribution of adrenaline co-transmission in triggering noradrenaline release in essential hypertension development.

    Article  CAS  PubMed  Google Scholar 

  7. Kaye DM, Lefkovits J, Jennings GL, Bergin P, Broughton A, Esler MD. Adverse consequences of high sympathetic nervous activity in the failing human heart. J Am Coll Cardiol. 1995;26(5):1257–63. doi:10.1016/0735-1097(95)00332-0. This study demonstrated that increased cardiac noradrenaline spillover predicted poor CV outcomes in heart failure patients.

    Article  CAS  PubMed  Google Scholar 

  8. Petersson M, Friberg P, Eisenhofer G, Lambert G, Rundqvist B. Long-term outcome in relation to renal sympathetic activity in patients with chronic heart failure. Eur Heart J. 2005;26(9):906–13. doi:10.1093/eurheartj/ehi184. This study documented the association of increased renal noradrenaline spillover and all-cause mortality and heart transplantation in heart failure patients.

    Article  PubMed  Google Scholar 

  9. Schlaich MP, Kaye DM, Lambert E, Sommerville M, Socratous F, Esler MD. Relation between cardiac sympathetic activity and hypertensive left ventricular hypertrophy. Circulation. 2003;108(5):560–5. doi:10.1161/01.Cir.0000081775.72651.B6.

    Article  PubMed  Google Scholar 

  10. Grassi G, Seravalle G, Quarti-Trevano F, Dell'Oro R, Arenare F, Spaziani D, et al. Sympathetic and baroreflex cardiovascular control in hypertension-related left ventricular dysfunction. Hypertension. 2009;53(2):205–9. doi:10.1161/HYPERTENSIONAHA.108.121467.

    Article  CAS  PubMed  Google Scholar 

  11. Hering D, Kara T, Kucharska W, Somers VK, Narkiewicz K. High-normal blood pressure is associated with increased resting sympathetic activity but normal responses to stress tests. Blood Press. 2013;22(3):183–7. doi:10.3109/08037051.2012.759689.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Hering D, Lambert EA, Marusic P, Walton AS, Krum H, Lambert GW, et al. Substantial reduction in single sympathetic nerve firing after renal denervation in patients with resistant hypertension. Hypertension. 2013;61(2):457–+. doi:10.1161/Hypertensionaha.111.00194. First study documenting resting multi-unit and single-unit muscle sympathetic nerve activity in patients with resistant hypertension and the effect of renal denervation on sympathetic nerve firing.

    Article  CAS  PubMed  Google Scholar 

  13. Hering D, Lambert EA, Marusic P, Ika-Sari C, Walton AS, Krum H, et al. Renal nerve ablation reduces augmentation index in patients with resistant hypertension. J Hypertens. 2013;31(9):1893–900. doi:10.1097/Hjh.0b013e3283622e58.

    Article  CAS  PubMed  Google Scholar 

  14. Hering D, Marusic P, Walton AS, Lambert EA, Krum H, Narkiewicz K, et al. Sustained sympathetic and blood pressure reduction 1 year after renal denervation in patients with resistant hypertension. Hypertension. 2014;64(1):118–24. doi:10.1161/Hypertensionaha.113.03098. First study demonstrating the sustained effect of renal denervation on blood pressure and sympathetic nerve firing out to 12 months post procedure.

    Article  CAS  PubMed  Google Scholar 

  15. Calhoun DA, Jones D, Textor S, Goff DC, Murphy TP, Toto RD, et al. Resistant hypertension: diagnosis, evaluation, and treatment—a scientific statement from the American Heart Association Professional Education Committee of the Council for High Blood Pressure Research (Reprinted from Hypertension, vol 51, pg 1403–1419, 2008). Circulation. 2008;117(25):E510–26. doi:10.1161/Circulationaha.108.189141.

    Article  PubMed  Google Scholar 

  16. Mancia G, Fagard R, Narkiewicz K, Redon J, Zanchetti A, Bohm M, et al. ESH/ESC Guidelines for the management of arterial hypertension: the Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens. 2013;31(7):1281–357. doi:10.1097/01.hjh.0000431740.32696.cc.

    Article  CAS  PubMed  Google Scholar 

  17. Judd E, Calhoun DA. Apparent and true resistant hypertension: definition, prevalence and outcomes. J Hum Hypertens. 2014;28(8):463–8. doi:10.1038/jhh.2013.140.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Jannetta PJ, Segal R, Wolfson SK. Neurogenic Hypertension—etiology and surgical-treatment. 1. Observations in 53 patients. Ann Surg. 1985;201(3):391–8. doi:10.1097/00000658-198503000-00023. Study demonstrating the contribution of pulsatile compression of the nerve at the level of medulla oblongata to neurogenic hypertension and the potential for microvascular decompression in the treatment of associated hypertension.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Naraghi R, Gaab MR, Walter GF, Kleineberg B. Arterial hypertension and neurovascular compression at the ventrolateral medulla—a comparative microanatomical and pathological study. J Neurosurg. 1992;77(1):103–12. doi:10.3171/jns.1992.77.1.0103.

    Article  CAS  PubMed  Google Scholar 

  20. Jannetta PJ, Gendell HM. Clinical observations on etiology of essential hypertension. Surg Forum. 1979;30:431–2.

    CAS  PubMed  Google Scholar 

  21. Amano M, Kubo T. Involvement of both Gaba-A and Gaba-B receptors in tonic inhibitory control of blood-pressure at the rostral ventrolateral medulla of the rat. N S Arch Pharmacol. 1993;348(2):146–53. doi:10.1007/Bf00164791.

    Article  CAS  Google Scholar 

  22. Parmer RJ, Cervenka JH, Stone RA. Baroreflex sensitivity and heredity in essential hypertension. Circulation. 1992;85(2):497–503.

    Article  CAS  PubMed  Google Scholar 

  23. Smith JK, Barron KW. The rostral and caudal ventrolateral medulla in young spontaneously hypertensive rats. Brain Res. 1990;506(1):153–8. doi:10.1016/0006-8993(90)91213-Z.

    Article  CAS  PubMed  Google Scholar 

  24. Colombari E, Sato MA, Cravo SL, Bergamaschi CT, Campos RR, Lopes OU. Role of the medulla oblongata in hypertension. Hypertension. 2001;38(3):549–54.

    Article  CAS  PubMed  Google Scholar 

  25. Ferrier C, Jennings GL, Eisenhofer G, Lambert G, Cox HS, Kalff V, et al. Evidence for increased noradrenaline release from subcortical brain regions in essential hypertension. J Hypertens. 1993;11(11):1217–27. First study demonstrating increased brain noradrenaline turnover in the pathophysiology of human essential hypertension.

    CAS  PubMed  Google Scholar 

  26. Lambert GW, Ferrier C, Kaye DM, Kalff V, Kelly MJ, Cox HS, et al. Monoaminergic neuronal activity in subcortical brain regions in essential hypertension. Blood Press. 1994;3(1–2):55–66.

    Article  CAS  PubMed  Google Scholar 

  27. Esler M, Lambert G, Vaz M, Thompson J, Kaye D, Kalff V, et al. Central nervous system monoamine neurotransmitter turnover in primary and obesity-related human hypertension. Clin Exp Hypertens. 1997;19(5–6):577–90. doi:10.3109/10641969709083171.

    Article  CAS  PubMed  Google Scholar 

  28. Foote SL, Bloom FE, Astonjones G. Nucleus locus ceruleus—new evidence of anatomical and physiological specificity. Physiol Rev. 1983;63(3):844–914.

    CAS  PubMed  Google Scholar 

  29. Stella A, Zanchetti A. Functional role of renal afferents. Physiol Rev. 1991;71(3):659–82.

    CAS  PubMed  Google Scholar 

  30. DiBona GF, Kopp UC. Neural control of renal function. Physiol Rev. 1997;77(1):75–197.

    CAS  PubMed  Google Scholar 

  31. Campese VM, Kogosov E. Renal afferent denervation prevents hypertension in rats with chronic renal failure. Hypertension. 1995;25(4):878–82. First study demonstrating the contribution of afferent renal nerves from the failing kidney to the brain stem resulting in blood pressure elevation and sympathetic activation.

    Article  CAS  PubMed  Google Scholar 

  32. Converse RL, Jacobsen TN, Toto RD, Jost CMT, Cosentino F, Fouadtarazi F, et al. Sympathetic overactivity in patients with chronic renal failure. N Engl J Med. 1992;327(27):1912–8. doi:10.1056/Nejm199212313272704. First study demonstrating the effect of nephrectomy on sympathetic nerve firing in chronic renal failure indicating that sympathetic excitation is associated with afferent signals arising from the failing kidney.

    Article  PubMed  Google Scholar 

  33. Hausberg M, Kosch M, Harmelink P, Barenbrock M, Hohage H, Kisters K, et al. Sympathetic nerve activity in end-stage renal disease. Circulation. 2002;106(15):1974–9. doi:10.1161/01.Cir.0000034043.16664.96.

    Article  PubMed  Google Scholar 

  34. Zazgornik J, Biesenbach G, Janko O, Gross C, Mair R, Brucke P, et al. Bilateral nephrectomy: the best, but often overlooked treatment for refractory hypertension in hemodialysis patients. Am J Hypertens. 1998;11(11):1364–70. doi:10.1016/S0895-7061(98)00154-X. First study demonstrating the beneficial effect of bilateral nephrectomy in the treatment of resistant hypertension in hemodialysis patients.

    Article  CAS  PubMed  Google Scholar 

  35. Fatouleh RH, Hammam E, Lundblad LC, Macey PM, McKenzie DK, Henderson LA, et al. Functional and structural changes in the brain associated with the increase in muscle sympathetic nerve activity in obstructive sleep apnoea. NeuroImage Clin. 2014;6:275–83. doi:10.1016/j.nicl.2014.08.021. First study which simultaneously assessed functional brain activity and sympathetic nerve firing in obstructive sleep apnoea.

    Article  PubMed Central  PubMed  Google Scholar 

  36. Shantha GPS, Pancholy SB. Effect of renal sympathetic denervation on apnea-hypopnea index in patients with obstructive sleep apnea: a systematic review and meta-analysis. Sleep Breath. 2015;19(1):29–34. doi:10.1007/s11325-014-0991-z.

    Article  PubMed  Google Scholar 

  37. Krum H, Schlaich MP, Sobotka PA, Bohm M, Mahfoud F, Rocha-Singh K, et al. Percutaneous renal denervation in patients with treatment-resistant hypertension: final 3-year report of the Symplicity HTN-1 study. Lancet. 2014;383(9917):622–9. doi:10.1016/S0140-6736(13)62192-3. First study demonstrating sustained blood pressure reduction out to 3 syears following renal denervation in patients with resistant hypertension.

    Article  PubMed  Google Scholar 

  38. Esler MD, Bohm M, Sievert H, Rump CL, Schmieder RE, Krum H, et al. Catheter-based renal denervation for treatment of patients with treatment-resistant hypertension: 36 month results from the SYMPLICITY HTN-2 randomized clinical trial. Eur Heart J. 2014;35(26):1752–9. doi:10.1093/eurheartj/ehu209. First randomized-controlled study demonstrating the long-term effect of renal denervation on sustained blood pressure reduction in patients with resistant hypertension.

    Article  PubMed  Google Scholar 

  39. Bhatt DL, Kandzari DE, O'Neill WW, D'Agostino R, Flack JM, Katzen BT, et al. A controlled trial of renal denervation for resistant hypertension. N Engl J Med. 2014;370(15):1393–401. doi:10.1056/NEJMoa1402670. First prospective, single-blind, randomized, sham-controlled study which did not show a significant reduction in blood pressure in patients with resistant hypertension when compared to sham control.

    Article  CAS  PubMed  Google Scholar 

  40. Kandzari DE, Bhatt DL, Brar S, Devireddy CM, Esler M, Fahy M, et al. Predictors of blood pressure response in the SYMPLICITY HTN-3 trial. Eur Heart J. 2015;36(4):219–27. doi:10.1093/eurheartj/ehu441. Post hoc analysis of the Symplicity HTN-3 trial which revealed several potential confounding factors that could explain the lack of a difference in blood pressure responses between the renal denervation and the sham control groups.

    Article  PubMed  Google Scholar 

  41. Schlaich MP, Bart B, Hering D, Walton A, Marusic P, Mahfoud F, et al. Feasibility of catheter-based renal nerve ablation and effects on sympathetic nerve activity and blood pressure in patients with end-stage renal disease. Int J Cardiol. 2013;168(3):2214–20. doi:10.1016/j.ijcard.2013.01.218. First pilot study demonstrating the feasibility of renal denervation in patients with end-stage renal disease with a substantial reduction in blood pressure and sympathetic activity.

    Article  PubMed  Google Scholar 

  42. Schlaich MP, Sobotka PA, Krum H, Lambert E, Esler MD. Renal sympathetic nerve ablation for uncontrolled hypertension. N Engl J Med. 2009;361(9):932–4. doi:10.1056/Nejmc0904179. First case report of a patient with uncontrolled hypertension demonstrating a reduction in central sympathetic outflow after renal denervation indicating the potential involvement of afferent nerve fibers in sustained blood pressure reduction.

    Article  CAS  PubMed  Google Scholar 

  43. Lambert GW, Hering D, Esler MD, Marusic P, Lambert EA, Tanamas SK, et al. Health-related quality of life after renal denervation in patients with treatment-resistant hypertension. Hypertension. 2012;60(6):1479–84. doi:10.1161/Hypertensionaha.112.200865. First study demonstrating an improvement in several aspects of quality of life in patients with resistant hypertension following renal denervation.

    Article  CAS  PubMed  Google Scholar 

  44. Lenski D, Kindermann I, Lenski M, Ukena C, Bunz M, Mahfoud F, et al. Anxiety, depression, quality of life and stress in patients with resistant hypertension before and after catheter-based renal sympathetic denervation. Eurointervention. 2013;9(6):700–8. doi:10.4244/Eijv916a114.

    PubMed  Google Scholar 

  45. Geiger H, Naraghi R, Schobel HP, Frank H, Sterzel RB, Fahlbusch R. Decrease of blood pressure by ventrolateral medullary decompression in essential hypertension. Lancet. 1998;352(9126):446–9. doi:10.1016/S0140-6736(97)11343-5.

    Article  CAS  PubMed  Google Scholar 

  46. Yin J, Wang WH, Zhang QB. A single microvascular decompression surgery cures a patient with trigeminal neuralgia, hemifacial spasm, tinnitus, hypertension, and paroxysmal supraventricular tachycardia caused by the compression of a vertebral artery. Neurol India. 2013;61(1):73–5. doi:10.4103/0028-3886.108016.

    Article  Google Scholar 

  47. Legrady P, Voros E, Bajcsi D, Sonkodi S, Barzo P, Abraham G. Neurovascular pulsatile compression and neurosurgical decompression of the rostral ventrolateral medulla in medically resistant hypertensive patients. Kidney Blood Press Res. 2008;31(6):433–7. doi:10.1159/000195696.

    Article  PubMed  Google Scholar 

  48. Legrady P, Voros E, Bajcsi D, Fejes I, Barzo P, Abraham G. Observations of changes of blood pressure before and after neurosurgical decompression in hypertensive patients with different types of neurovascular compression of brain stem. Kidney Blood Press Res. 2013;37(4–5):451–7. doi:10.1159/000355725.

    Article  PubMed  Google Scholar 

  49. Smith PA, Meaney JFM, Graham LN, Stoker JB, Mackintosh AF, Mary DASG, et al. Relationship of neurovascular compression to central sympathetic discharge and essential hypertension. J Am Coll Cardiol. 2004;43(8):1453–8. doi:10.1016/j.jacc.2003.11.047. First study indicating that increased sympathetic nerve firing is related to neurovascular compression.

    Article  PubMed  Google Scholar 

  50. Sendeski MM, Consolim-Colombo FM, Leite CC, Rubira MC, Lessa P, Krieger EM. Increased sympathetic nerve activity correlates with neurovascular compression at the rostral ventrolateral medulla. Hypertension. 2006;47(5):988–95. doi:10.1161/.01.Hyp.0000214403.07762.47.

    Article  CAS  PubMed  Google Scholar 

  51. Frank H, Heusser K, Geiger H, Fahlbusch R, Naraghi R, Schobel HP. Temporary reduction of blood pressure and sympathetic nerve activity in hypertensive patients after microvascular decompression. Stroke. 2009;40(1):47–51. doi:10.1161/Strokeaha.108.518670.

    Article  PubMed  Google Scholar 

  52. Morimoto S, Aota Y, Sakuma T, Ichibangase A, Ikeda K, Sawada S, et al. Efficacy of clonidine in a patient with refractory hypertension and chronic renal failure exhibiting neurovascular compression of the rostral ventrolateral medulla. Hypertens Res. 2009;32(3):227–8. doi:10.1038/Hr.2009.1.

    Article  PubMed  Google Scholar 

  53. Pereira EAC, Wang SY, Paterson DJ, Stein JF, Aziz TZ, Green AL. Sustained reduction of hypertension by deep brain stimulation. J Clin Neurosci. 2010;17(1):124–7. doi:10.1016/j.jocn.2009.02.041. First case report demonstrating blood pressure reduction and pain relief following deep brain stimulation in a patient with resistant hypertension.

    Article  PubMed  Google Scholar 

  54. Patel NK, Javed S, Khan S, Papouchado M, Malizia AL, Pickering AE, et al. Deep brain stimulation relieves refractory hypertension. Neurology. 2011;76(4):405–7. doi:10.1212/Wnl.0b013e3182088108.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Sverrisdottir Y, Green A, Aziz T, Bahuri NF, Hyam J, Basnayake S et al. Effect of deep brain stimulation on sympathetic outflow in humans. Faseb J. 2014;28(1).

  56. Lohmeier TE, Irwin ED, Rossing MA, Serdar DJ, Kieval RS. Prolonged activation of the baroreflex produces sustained hypotension. Hypertension. 2004;43(2):306–11. doi:10.1161/01.Hyp.00001111837.73693.9b.

    Article  CAS  PubMed  Google Scholar 

  57. Scheffers IJ, Kroon AA, Schmidli J, Jordan J, Tordoir JJ, Mohaupt MG, et al. Novel baroreflex activation therapy in resistant hypertension: results of a European multi-center feasibility study. J Am Coll Cardiol. 2010;56(15):1254–8. doi:10.1016/j.jacc.2010.03.089. First study demonstrating sustained blood pressure reduction following carotid sinus baroreflex stimulation in patients with resistant hypertension.

    Article  PubMed  Google Scholar 

  58. Bakris GL, Nadim MK, Haller H, Lovett EG, Schafer JE, Bisognano JD. Baroreflex activation therapy provides durable benefit in patients with resistant hypertension: results of long-term follow-up in the Rheos Pivotal Trial. J Am Soc Hypertens. 2012;6(2):152–8. doi:10.1016/j.jash.2012.01.003.

    Article  PubMed  Google Scholar 

  59. Hoppe UC, Brandt MC, Wachter R, Beige J, Rump LC, Kroon AA, et al. Minimally invasive system for baroreflex activation therapy chronically lowers blood pressure with pacemaker-like safety profile: results from the Barostim neo trial. J Am Soc Hypertens. 2012;6(4):270–6. doi:10.1016/j.jash.2012.04.004.

    Article  PubMed  Google Scholar 

  60. Heusser K, Tank J, Engeli S, Diedrich A, Menne J, Eckert S, et al. Carotid baroreceptor stimulation, sympathetic activity, baroreflex function, and blood pressure in hypertensive patients. Hypertension. 2010;55(3):619–26. doi:10.1161/Hypertensionaha.109.140665.

    Article  CAS  PubMed  Google Scholar 

  61. Kishi T, Hirooka Y. Oxidative stress in the brain causes hypertension via sympathoexcitation. Frontiers in Physiology. 2012;3. doi:Unsp 335 Doi 10.3389/Fphys.2012.00335.

  62. Chrysohoou C, Panagiotakos DB, Pitsavos C, Skoumas J, Economou M, Papadimitriou L, et al. The association between pre-hypertension status and oxidative stress markers related to atherosclerotic disease: the ATTICA study. Atherosclerosis. 2007;192(1):169–76. doi:10.1016/j.atherosclerosis.2006.04.030.

    Article  CAS  PubMed  Google Scholar 

  63. Davis JT, Pasha DN, Khandrika S, Fung MM, Milic M, O'Connor DT. Central hemodynamics in prehypertension: effect of the beta-adrenergic antagonist nebivolol. J Clin Hypertens. 2013;15(1):69–74. doi:10.1111/Jch.12031.

    Article  CAS  Google Scholar 

  64. Hirooka Y, Kishi T, Ito K, Sunagawa K. Potential clinical application of recently discovered brain mechanisms involved in hypertension. Hypertension. 2013;62(6):995–1002. doi:10.1161/Hypertensionaha.113.00801.

    Article  CAS  PubMed  Google Scholar 

Download references

Compliance with Ethics Guidelines

Conflict of Interest

Dagmara Hering declare no conflicts of interest. Markus Schlaich is supported by career fellowships from the NHMRC, is an investigator in studies sponsored by Medtronic, serves on scientific advisory boards for Abbott (formerly Solvay) Pharmaceuticals, BI, Novartis Pharmaceuticals, BI, and Medtronic and has received honoraria and travel support from Abbott, BI, Servier, Novartis, and Medtronic. The laboratories of Dr. Schlaich receive research funding from Medtronic, Abbott Pharmaceuticals, Otsuka and Servier Australia.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dagmara Hering.

Additional information

This article is part of the Topical Collection on Hypertension and the Brain

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hering, D., Schlaich, M. The Role of Central Nervous System Mechanisms in Resistant Hypertension. Curr Hypertens Rep 17, 58 (2015). https://doi.org/10.1007/s11906-015-0570-0

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s11906-015-0570-0

Keywords

Navigation